Commit graph

26 commits

Author SHA1 Message Date
Lionel Sambuc f14fb60209 Libraries updates and cleanup
* Updating common/lib
 * Updating lib/csu
 * Updating lib/libc
 * Updating libexec/ld.elf_so
 * Corrected test on __minix in featuretest to actually follow the
   meaning of the comment.
 * Cleaned up _REENTRANT-related defintions.
 * Disabled -D_REENTRANT for libfetch
 * Removing some unneeded __NBSD_LIBC defines and tests

Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
2013-01-14 11:36:26 +01:00
Ben Gras 604046faf3 kernel: trap-dependent state restore, trace fixes
. restore state depends on how saving of state was done;
	  also remember trap style in sig context
	. actually set and restore TRACEBIT with new trap styles;
	  have to remove it once process enters kernel though, done
	  in debug trap exception handler
	. introduce MF_STEP that makes arch-specific code
	  turn on trace bit instead of setting TRACEBIT directly,
	  a bit more arch-friendly and avoids keeping precious
	  state in per-process PSW arch-dependently
2013-01-08 15:47:37 +00:00
Ben Gras 2d72cbec41 SYSENTER/SYSCALL support
. add cpufeature detection of both
	. use it for both ipc and kernelcall traps, using a register
	  for call number
	. SYSENTER/SYSCALL does not save any context, therefore userland
	  has to save it
	. to accomodate multiple kernel entry/exit types, the entry
	  type is recorded in the process struct. hitherto all types
	  were interrupt (soft int, exception, hard int); now SYSENTER/SYSCALL
	  is new, with the difference that context is not fully restored
	  from proc struct when running the process again. this can't be
	  done as some information is missing.
	. complication: cases in which the kernel has to fully change
	  process context (i.e. sigreturn). in that case the exit type
	  is changed from SYSENTER/SYSEXIT to soft-int (i.e. iret) and
	  context is fully restored from the proc struct. this does mean
	  the PC and SP must change, as the sysenter/sysexit userland code
	  will otherwise try to restore its own context. this is true in the
	  sigreturn case.
	. override all usage by setting libc_ipc=1
2012-09-24 15:53:43 +02:00
Ben Gras caa7efa117 kernel: rely on alignment directive for stacks
. unnecessary to do it manually with ELF
	. also makes 1 extra alignment page unnecessary
2012-08-19 01:04:51 +02:00
Ben Gras 1d48c0148e segmentless smp fixes
adjust the smp booting procedure for segmentless operation. changes are
mostly due to gdt/idt being dependent on paging, because of the high
location, and paging being on much sooner because of that too.

also smaller fixes: redefine DESC_SIZE, fix kernel makefile variable name
(crosscompiling), some null pointer checks that trap now because of a
sparser pagetable, acpi sanity checking
2012-07-15 22:47:20 +02:00
Ben Gras 50e2064049 No more intel/minix segments.
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.

There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.

No static pre-allocated memory sizes exist any more.

Changes to booting:
        . The pre_init.c leaves the kernel and modules exactly as
          they were left by the bootloader in physical memory
        . The kernel starts running using physical addressing,
          loaded at a fixed location given in its linker script by the
          bootloader.  All code and data in this phase are linked to
          this fixed low location.
        . It makes a bootstrap pagetable to map itself to a
          fixed high location (also in linker script) and jumps to
          the high address. All code and data then use this high addressing.
        . All code/data symbols linked at the low addresses is prefixed by
          an objcopy step with __k_unpaged_*, so that that code cannot
          reference highly-linked symbols (which aren't valid yet) or vice
          versa (symbols that aren't valid any more).
        . The two addressing modes are separated in the linker script by
          collecting the unpaged_*.o objects and linking them with low
          addresses, and linking the rest high. Some objects are linked
          twice, once low and once high.
        . The bootstrap phase passes a lot of information (e.g. free memory
          list, physical location of the modules, etc.) using the kinfo
          struct.
        . After this bootstrap the low-linked part is freed.
        . The kernel maps in VM into the bootstrap page table so that VM can
          begin executing. Its first job is to make page tables for all other
          boot processes. So VM runs before RS, and RS gets a fully dynamic,
          VM-managed address space. VM gets its privilege info from RS as usual
          but that happens after RS starts running.
        . Both the kernel loading VM and VM organizing boot processes happen
	  using the libexec logic. This removes the last reason for VM to
	  still know much about exec() and vm/exec.c is gone.

Further Implementation:
        . All segments are based at 0 and have a 4 GB limit.
        . The kernel is mapped in at the top of the virtual address
          space so as not to constrain the user processes.
        . Processes do not use segments from the LDT at all; there are
          no segments in the LDT any more, so no LLDT is needed.
        . The Minix segments T/D/S are gone and so none of the
          user-space or in-kernel copy functions use them. The copy
          functions use a process endpoint of NONE to realize it's
          a physical address, virtual otherwise.
        . The umap call only makes sense to translate a virtual address
          to a physical address now.
        . Segments-related calls like newmap and alloc_segments are gone.
        . All segments-related translation in VM is gone (vir2map etc).
        . Initialization in VM is simpler as no moving around is necessary.
        . VM and all other boot processes can be linked wherever they wish
          and will be mapped in at the right location by the kernel and VM
          respectively.

Other changes:
        . The multiboot code is less special: it does not use mb_print
          for its diagnostics any more but uses printf() as normal, saving
          the output into the diagnostics buffer, only printing to the
          screen using the direct print functions if a panic() occurs.
        . The multiboot code uses the flexible 'free memory map list'
          style to receive the list of free memory if available.
        . The kernel determines the memory layout of the processes to
          a degree: it tells VM where the kernel starts and ends and
          where the kernel wants the top of the process to be. VM then
          uses this entire range, i.e. the stack is right at the top,
          and mmap()ped bits of memory are placed below that downwards,
          and the break grows upwards.

Other Consequences:
        . Every process gets its own page table as address spaces
          can't be separated any more by segments.
        . As all segments are 0-based, there is no distinction between
          virtual and linear addresses, nor between userspace and
          kernel addresses.
        . Less work is done when context switching, leading to a net
          performance increase. (8% faster on my machine for 'make servers'.)
	. The layout and configuration of the GDT makes sysenter and syscall
	  possible.
2012-07-15 22:30:15 +02:00
Ben Gras b41df2eb0d kernel: mon_return cleanup
cleanup of boot monitor related code.
2012-04-25 17:59:43 +02:00
Arun Thomas b0666ba6b6 kernel: Remove unnecessary ACK conditionals 2012-03-29 13:29:09 +02:00
David van Moolenbroek 0a8a2ecfb5 Kernel: pass FPU restore exception to user process
Previously, user processes could cause a kernel panic upon FPU state
restore, by passing bogus FPU state to the kernel (through e.g.
sigreturn). With this patch, the process is now sent a SIGFPE signal
instead.
2012-03-05 22:32:14 +01:00
Antoine Leca 3fb8cb760c More cleaning up 2012-02-15 19:04:58 +00:00
Arun Thomas 1a8cf59d04 Add MKWATCHDOG option 2011-07-29 20:37:39 +02:00
Arun Thomas 93ae43f577 boot: Add multiboot support
Not yet fully spec-compliant; work in progress
2011-06-24 17:21:51 +02:00
Arun Thomas 350b60661a ELF multiboot support 2011-05-04 18:51:43 +02:00
Tomas Hruby 62c666566e SMP - We boot APs
- kernel detects CPUs by searching ACPI tables for local apic nodes

- each CPU has its own TSS that points to its own stack. All cpus boot
  on the same boot stack (in sequence) but switch to its private stack
  as soon as they can.

- final booting code in main() placed in bsp_finish_booting() which is
  executed only after the BSP switches to its final stack

- apic functions to send startup interrupts

- assembler functions to handle CPU features not needed for single cpu
  mode like memory barries, HT detection etc.

- new files kernel/smp.[ch], kernel/arch/i386/arch_smp.c and
  kernel/arch/i386/include/arch_smp.h

- 16-bit trampoline code for the APs. It is executed by each AP after
  receiving startup IPIs it brings up the CPUs to 32bit mode and let
  them spin in an infinite loop so they don't do any damage.

- implementation of kernel spinlock

- CONFIG_SMP and CONFIG_MAX_CPUS set by the build system
2010-09-15 14:09:52 +00:00
Arun Thomas 9a21d1a2fd Macros for symbols used in both ASM and C
-The macros take care of prepending the leading underscore when
 necessary.
2010-08-17 16:44:07 +00:00
Erik van der Kouwe df0ba02a38 Multiboot support (contributed by Feiran "Fam" Zheng);
keep in mind that GRUB needs to be patched to read MFS for now;
use /boot/image_latest to boot the last compiled image in GRUB
2010-07-23 14:24:34 +00:00
Ben Gras e0701109ca kernel: make loading kernel in 2nd chunk of memory (at 1MB) the default.
(indicated by flags hardcoded in kernel that the boot monitor
interprets.)
2010-07-19 16:33:49 +00:00
Tomas Hruby cbc9586c13 Lazy FPU
- FPU context is stored only if conflict between 2 FPU users or while
  exporting context of a process to userspace while it is the active
  user of FPU

- FPU has its owner (fpu_owner) which points to the process whose
  state is currently loaded in FPU

- the FPU exception is only turned on when scheduling a process which
  is not the owner of FPU

- FPU state is restored for the process that generated the FPU
  exception. This process runs immediately without letting scheduler
  to pick a new process to resolve the FPU conflict asap, to minimize
  the FPU thrashing and FPU exception hadler execution

- faster all non-FPU-exception kernel entries as FPU state is not
  checked nor saved

- removed MF_USED_FPU flag, only MF_FPU_INITIALIZED remains to signal
  that a process has used FPU in the past
2010-06-07 07:43:17 +00:00
Ben Gras 2f892aca91 kernel fpu context switching: fix race condition
There seems to have been a broken assumption in the fpu context
restoring code.  It restores the context of the running process, without
guarantee that the current process is the one that will be scheduled.
This caused fpu saving for a different process to be triggered without
fpu hardware being enabled, causing an fpu exception in the kernel. This
practically only shows up with DEBUG_RACE on. Fix my thruby+me.

The fix
 . is to only set the fpu-in-use-by-this-process flag in the
   exception handler, and then take care of fpu restoring when
   actually returning to userspace

And the patch
 . translates fpu saving and restoring to c in arch_system.c,
   getting rid of a juicy chunk of assembly
 . makes osfxsr_feature private to arch_system.c
 . removes most of the arch dependent code from do_sigsend
2010-06-03 11:32:22 +00:00
Tomas Hruby 463be393c2 Gracefull crash if FPU exception in kernel 2010-06-02 13:59:55 +00:00
Tomas Hruby 7bfa47476c Fixed stack trace if panic in stop_context() 2010-06-02 08:53:49 +00:00
Arun Thomas 007104d60e GCC build fixes/updates
-Set stack sizes for boot image processes
-Increase RS stack size
-Reduce ramdisk size
-HARDWARE task should use kernel stack
-Minor asm tweaks for leading underscores
2010-05-26 18:45:55 +00:00
Arun Thomas b0159ad168 Buildsystem changes for GCC
-Makefile updates
-Update mkdep
-Build fixes/warning cleanups for some programs
-Restore leading underscores on global syms in kernel asm files
-Increase ramdisk size
2010-05-19 13:24:15 +00:00
Tomas Hruby b90c2d7026 rename of mode/context switching functions
- this patch only renames schedcheck() to switch_to_user(),
  cycles_accounting_stop() to context_stop() and restart() to
  +restore_user_context()

- the motivation is that since the introduction of schedcheck() it has
  been abused for many things. It deserves a better name.  It should
  express the fact that from the moment we call the function we are in
  the process of switching to user.

- cycles_accounting_stop() was originally a single purpose function.
  As this function is called at were convenient places it is used in
  for other things too, e.g. (un)locking the kernel. Thus it deserves
  a better name too.

- using the old name, restart() does not call schedcheck(), however
  calls to restart are replaced by calls to schedcheck()
  [switch_to_user] and it calls restart() [restore_user_context]
2010-05-18 13:00:39 +00:00
Tomas Hruby a774cc832f do_ipc() rearrangements
this patch does not add or change any functionality of do_ipc(), it
only makes things a little cleaner (hopefully).

Until now do_ipc() was responsible for handling all ipc calls. The
catch is that SENDA is fairly different which results in some ugly
code like this typecasting and variables naming which does not make
much sense for SENDA and makes the code hard to read.

result = mini_senda(caller_ptr, (asynmsg_t *)m_ptr, (size_t)src_dst_e);

As it is called directly from assembly, the new do_ipc() takes as
input values of 3 registers in reg_t variables (it used to be 4,
however, bit_map wasn't used so I removed it), does the checks common
to all ipc calls and call the appropriate handler either for
do_sync_ipc() (all except SENDA) or mini_senda() (for SENDA) while
typecasting the reg_t values correctly. As a result, handling SENDA
differences in do_sync_ipc() is no more needed. Also the code that
uses msg_size variable is improved a little bit.

arch_do_syscall() is simplified too.
2010-04-06 11:24:26 +00:00
Arun Thomas 4ed3a0cf3a Convert kernel over to bsdmake 2010-04-01 22:22:33 +00:00
Renamed from kernel/arch/i386/mpx386.S (Browse further)