Now that the keymaps can distinguish between the regular slash key
and the slash key on the numeric keypad, we can avoid localization
of the latter.
Change-Id: I20ead7d26a9baa82f5a522562524fd75d44efb42
This commit separates the low-level keyboard driver from TTY, putting
it in a separate driver (PCKBD). The commit also separates management
of raw input devices from TTY, and puts it in a separate server
(INPUT). All keyboard and mouse input from hardware is sent by drivers
to the INPUT server, which either sends it to a process that has
opened a raw input device, or otherwise forwards it to TTY for
standard processing.
Design by Dirk Vogt. Prototype by Uli Kastlunger.
Additional changes made to the prototype:
- the event communication is now based on USB HID codes; all input
drivers have to use USB codes to describe events;
- all TTY keymaps have been converted to USB format, with the effect
that a single keymap covers all keys; there is no (static) escaped
keymap anymore;
- further keymap tweaks now allow remapping of literally all keys;
- input device renumbering and protocol rewrite;
- INPUT server rewrite, with added support for cancel and select;
- PCKBD reimplementation, including PC/AT-to-USB translation;
- support for manipulating keyboard LEDs has been added;
- keyboard and mouse multiplexer devices have been added to INPUT,
primarily so that an X server need only open two devices;
- a new "libinputdriver" library abstracts away protocol details from
input drivers, and should be used by all future input drivers;
- both INPUT and PCKBD can be restarted;
- TTY is now scheduled by KERNEL, so that it won't be punished for
running a lot; without this, simply running "yes" on the console
kills the system;
- the KIOCBELL IOCTL has been moved to /dev/console;
- support for the SCANCODES termios setting has been removed;
- obsolete keymap compression has been removed;
- the obsolete Olivetti M24 keymap has been removed.
Change-Id: I3a672fb8c4fd566734e4b46d3994b4b7fc96d578
Due to the existence of /dev/console and /dev/log, and the new
"console=" setting, it is now possible that a single non-PTY object
(e.g. serial) is accessible through two different minor numbers. This
poses a problem when sending late select replies (CDEV_SEL2_REPLY),
because the object's minor number can not be used to identify the
device. Since selecting on such objects through translated minor
numbers is actually required, we now save the minor number used to
initiate the select query in order to send a late reply.
The solution is suboptimal, as it is not possible to use two different
minors to select on the same object at once. In the future, there
should be at least one select record for each minor that can be used
with each object.
Change-Id: I4d39681d2ffd68b4047daf933d45b7bafe3c885e
The set of processes to which a SIGKMESS signal is sent whenever new
diagnostics messages are added to the kernel's message buffer, is now
no longer hardcoded. Instead, processes can (un)register themselves
to receive such notifications, by means of sys_diagctl().
Change-Id: I9d6ac006a5d9bbfad2757587a068fc1ec3cc083e
* Renamed struct timer to struct minix_timer
* Renamed timer_t to minix_timer_t
* Ensured all the code uses the minix_timer_t typedef
* Removed ifdef around _BSD_TIMER_T
* Removed include/timers.h and merged it into include/minix/timers.h
* Resolved prototype conflict by renaming kernel's (re)set_timer
to (re)set_kernel_timer.
Change-Id: I56f0f30dfed96e1a0575d92492294cf9a06468a5
The B0-B115200 defines are flags, and not the actual speed they
represent.
This fixes an incoherency for B0 handling, and documents why it is
required to call the function again after changing the speed flag.
DFL_BAUD is set to one of the flag, so to translate it to an actual
speed, the function calls itself again, which will always be able to
finish without inducing another recursive call.
Change-Id: I04ebfaefee31a88d05f0b726352d1581a966147b
It is unclear why /dev/log has its own open/close rules, but those
rules conflict with serial console redirection. This does not solve
the root of the problem, but it puts back in place more or less the
same workaround that was already in place before the TTY overhaul.
Change-Id: Ib53abbc28a76c1f2b0befc8448aeed0173bc96a5
- writing to a PTY master side blocks if there is not already a
blocked reader on the slave side, and select now reflects this;
- internally, TTY now uses a test based on "caller != NONE" rather
than "grant != GRANT_INVALID" to identify whether a call is
currently ongoing;
- "offset" fields have been removed as they equal the corresponding
"cum" fields;
- improved variable typing and function naming here and there;
- various other small fixes.
Change-Id: I6b51452888942e864b4e034e8c8490576184a23e
Opening and closing the master side of a pseudo terminal without
opening the slave side would result in the pseudo terminal becoming
permanently unavailable. In addition, reopening the slave side
would be possible but not allow for I/O. Finally, attempting to
open an in-use master would wipe its I/O state. These issues have
been resolved.
Change-Id: I9235e3d9aba321803f9280b86b6b5e3646ad5ef3
- change all sync char drivers into async drivers;
- retire support for the sync protocol in libchardev;
- remove async dev style, as this is now the default;
- remove dev_status from VFS;
- clean up now-unused protocol messages.
Change-Id: I6aacff712292f6b29f2ccd51bc1e7d7003723e87
The async char protocol already has this, so this patch closes the
gap between the two protocols a bit. Support for this flag has been
added to all sync char drivers that support CANCEL at all.
The LOG driver was already using the asynchronous protocol, but it
did not support the nonblocking transfer flag. This has been fixed
as well.
Change-Id: Ia55432c9f102765b59ad3feb45a8bd47a782c93f
. always keep reading data from uart so the interrupt is
not continually asserted if data is sent but no process
reads it
. increase tx & rx fifo trigger levels -> reduces the number
of interrupts necessary
. bigger rx/tx buffers
Change-Id: I3cf7c73b22ae2fc091b845d516ba4aa53e892cda
. ignore interrupt (stop interrupt check loop) if
interrupt bit not set; limit loop too
. mask off other bits when testing bits in the status register
. this fixes rs232 output that would otherwise never get re-triggered
as too many bits were set in the status byte to match the
possibilities.
Change-Id: I311c93377fa8fb477ee9a756455fdeda780e6ba1
. add receive hooks in the kernel to print asynchronously
delivered messages
. do not rely on MF_REPLY_PEND to decide between calls and errors,
as that isn't reliable for asynchronous messages; try both instead
. add _sendcall() that extract-mfield.sh can then reliably recognize
the fields for messages that are sent with just send()
. add DEBUG_DUMPIPC_NAMES to restrict printed messages to
from/to given process names
Change-Id: Ia65eb02a69a2b58e73bf9f009987be06dda774a3
The kernel API for requesting interrupts and the associated callback
have a somewhat strange behaviour. Requesting an interrupts is done
by calling sys_irqsetpolicy using an interrupt and a given id. This
id can be modified by the sys_irqsetpolicy and must be used for
subsequent calls to sys_irqenable/sys_irqdisable. However upon an
incoming call from the kernel NOTIFY_ARG contains the original value
encoded in a set e.g. if 1 << id == true the interrupt was raised.
The build system distinction between "bootprog" and "service" is
meaningless as boot programs are standard services.
As minix.service.mk simply imports minix.bootprog.mk, reduce confusion
by removing minix.bootprog.mk and placing the rules in minix.service.mk.
Change-Id: I4056b1e574bed59a8c890239b41b1a7c7cad63e8
Due to the ABI we are using we have to use the earm architecture
moniker for the build system to behave correctly. This involves
then some headers to move around.
There is also a few related Makefile updates as well as minor
source code corrections.
* Updating common/lib
* Updating lib/csu
* Updating lib/libc
* Updating libexec/ld.elf_so
* Corrected test on __minix in featuretest to actually follow the
meaning of the comment.
* Cleaned up _REENTRANT-related defintions.
* Disabled -D_REENTRANT for libfetch
* Removing some unneeded __NBSD_LIBC defines and tests
Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
upgrade to NetBSD CVS release from 2012/10/17 12:00:00 UTC
Makefiles updates to imporve portability
Made sure to be consistent in the usage of braces/parenthesis at
least on a per file basis. For variables, it is recommended to
continue to use braces.
The tested targets are the followgin ones:
* tools
* distribution
* sets
* release
The remaining NetBSD targets have not been disabled nor tested
*at all*. Try them at your own risk, they may reboot the earth.
For all compliant Makefiles, objects and generated files are put in
MAKEOBJDIR, which means you can now keep objects between two branch
switching. Same for DESTDIR, please refer to build.sh options.
Regarding new or modifications of Makefiles a few things:
* Read share/mk/bsd.README
* If you add a subdirectory, add a Makefile in it, and have it called
by the parent through the SUBDIR variable.
* Do not add arbitrary inclusion which crosses to another branch of
the hierarchy; If you can't do without it, put a comment on why.
If possible, do not use inclusion at all.
* Use as much as possible the infrastructure, it is here to make
life easier, do not fight it.
Sets and package are now used to track files.
We have one set called "minix", composed of one package called "minix-sys"
.Split TTY in order to support both x86 and ARM.
.Add support for the TI 16750 UARTs on OMAP35x.
.Various other improvements:
.Kernel messages are printed using generic terminal write
functions. That is, they are no longer directly displayed
on the console.
.The console can now be displayed on any terminal. This
is configured by the "console={tty00,tty01,ttyc2,ttyc3,ttyc4}"
boot variable -- basically any valid /dev/tty* terminal.
.Cutify kernel messages with colors. Configured by
"kernelclr={1,2,3,4,5,6,7}" boot variable.
By decoupling synchronous drivers from VFS, we are a big step closer to
supporting driver crashes under all circumstances. That is, VFS can't
become stuck on IPC with a synchronous driver (e.g., INET) and can
recover from crashing block drivers during open/close/ioctl or during
communication with an FS.
In order to maintain serialized communication with a synchronous driver,
the communication is wrapped by a mutex on a per driver basis (not major
numbers as there can be multiple majors with identical endpoints). Majors
that share a driver endpoint point to a single mutex object.
In order to support crashes from block drivers, the file reopen tactic
had to be changed; first reopen files associated with the crashed
driver, then send the new driver endpoint to FSes. This solves a
deadlock between the FS and the block driver;
- VFS would send REQ_NEW_DRIVER to an FS, but he FS only receives it
after retrying the current request to the newly started driver.
- The block driver would refuse the retried request until all files
had been reopened.
- VFS would reopen files only after getting a reply from the initial
REQ_NEW_DRIVER.
When a character special driver crashes, all associated files have to
be marked invalid and closed (or reopened if flagged as such). However,
they can only be closed if a thread holds exclusive access to it. To
obtain exclusive access, the worker thread (which handles the new driver
endpoint event from DS) schedules a new job to garbage collect invalid
files. This way, we can signal the worker thread that was talking to the
crashed driver and will release exclusive access to a file associated
with the crashed driver and prevent the garbage collecting worker thread
from dead locking on that file.
Also, when a character special driver crashes, RS will unmap the driver
and remap it upon restart. During unmapping, associated files are marked
invalid instead of waiting for an endpoint up event from DS, as that
event might come later than new read/write/select requests and thus
cause confusion in the freshly started driver.
When locking a filp, the usage counters are no longer checked. The usage
counter can legally go down to zero during filp invalidation while there
are locks pending.
DS events are handled by a separate worker thread instead of the main
thread as reopening files could lead to another crash and a stuck thread.
An additional worker thread is then necessary to unlock it.
Finally, with everything asynchronous a race condition in do_select
surfaced. A select entry was only marked in use after succesfully sending
initial select requests to drivers and having to wait. When multiple
select() calls were handled there was opportunity that these entries
were overwritten. This had as effect that some select results were
ignored (and select() remained blocking instead if returning) or do_select
tried to access filps that were not present (because thrown away by
secondary select()). This bug manifested itself with sendrecs, but was
very hard to reproduce. However, it became awfully easy to trigger with
asynsends only.
. map all objects named usermapped_*.o with globally visible
pages; usermapped_glo_*.o with the VM 'global' bit on, i.e.
permanently in tlb (very scarce resource!)
. added kinfo, machine, kmessages and loadinfo for a start
. modified log, tty to make use of the shared messages struct
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.
There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.
No static pre-allocated memory sizes exist any more.
Changes to booting:
. The pre_init.c leaves the kernel and modules exactly as
they were left by the bootloader in physical memory
. The kernel starts running using physical addressing,
loaded at a fixed location given in its linker script by the
bootloader. All code and data in this phase are linked to
this fixed low location.
. It makes a bootstrap pagetable to map itself to a
fixed high location (also in linker script) and jumps to
the high address. All code and data then use this high addressing.
. All code/data symbols linked at the low addresses is prefixed by
an objcopy step with __k_unpaged_*, so that that code cannot
reference highly-linked symbols (which aren't valid yet) or vice
versa (symbols that aren't valid any more).
. The two addressing modes are separated in the linker script by
collecting the unpaged_*.o objects and linking them with low
addresses, and linking the rest high. Some objects are linked
twice, once low and once high.
. The bootstrap phase passes a lot of information (e.g. free memory
list, physical location of the modules, etc.) using the kinfo
struct.
. After this bootstrap the low-linked part is freed.
. The kernel maps in VM into the bootstrap page table so that VM can
begin executing. Its first job is to make page tables for all other
boot processes. So VM runs before RS, and RS gets a fully dynamic,
VM-managed address space. VM gets its privilege info from RS as usual
but that happens after RS starts running.
. Both the kernel loading VM and VM organizing boot processes happen
using the libexec logic. This removes the last reason for VM to
still know much about exec() and vm/exec.c is gone.
Further Implementation:
. All segments are based at 0 and have a 4 GB limit.
. The kernel is mapped in at the top of the virtual address
space so as not to constrain the user processes.
. Processes do not use segments from the LDT at all; there are
no segments in the LDT any more, so no LLDT is needed.
. The Minix segments T/D/S are gone and so none of the
user-space or in-kernel copy functions use them. The copy
functions use a process endpoint of NONE to realize it's
a physical address, virtual otherwise.
. The umap call only makes sense to translate a virtual address
to a physical address now.
. Segments-related calls like newmap and alloc_segments are gone.
. All segments-related translation in VM is gone (vir2map etc).
. Initialization in VM is simpler as no moving around is necessary.
. VM and all other boot processes can be linked wherever they wish
and will be mapped in at the right location by the kernel and VM
respectively.
Other changes:
. The multiboot code is less special: it does not use mb_print
for its diagnostics any more but uses printf() as normal, saving
the output into the diagnostics buffer, only printing to the
screen using the direct print functions if a panic() occurs.
. The multiboot code uses the flexible 'free memory map list'
style to receive the list of free memory if available.
. The kernel determines the memory layout of the processes to
a degree: it tells VM where the kernel starts and ends and
where the kernel wants the top of the process to be. VM then
uses this entire range, i.e. the stack is right at the top,
and mmap()ped bits of memory are placed below that downwards,
and the break grows upwards.
Other Consequences:
. Every process gets its own page table as address spaces
can't be separated any more by segments.
. As all segments are 0-based, there is no distinction between
virtual and linear addresses, nor between userspace and
kernel addresses.
. Less work is done when context switching, leading to a net
performance increase. (8% faster on my machine for 'make servers'.)
. The layout and configuration of the GDT makes sysenter and syscall
possible.
. all invocations were S or D, so can safely be dropped
to prepare for the segmentless world
. still assign D to the SCP_SEG field in the message
to make previous kernels usable
building defaults to off until clang is updated.
current clang does not handle -shared, necessary to change the ld
invocation to build shared libraries properly. a new clang should be
installed and MKPIC defaults to no unless the newer clang is detected.
changes:
. mainly small imports of a Makefile or two and small fixes
(turning things back on that were turned off in Makefiles)
. e.g.: dynamic librefuse now depends on dynamic
libpuffs, so libpuffs has to be built dynamically too
and a make dependency barrier is needed in lib/Makefile
. all library objects now have a PIC (for .so) and non-PIC
version, so everything is built twice.
. generate PIC versions of the compat (un-RENAMEd) jump files,
include function type annotation in generated assembly
. build progs with -static by default for now
. also build ld.elf_so
. also import NetBSD ldd
TTY has no way of keeping track of multiple readers for a tty minor
device. Instead, it stores a read request for the last reader only.
Consequently, the first ("overwritten") reader gets stuck on a read
request that's never going to be finished. Also, the overwriting
causes a grant mismatch in VFS when TTY returns a reply for the
second reader.
This patch is a work around for the actual problem (i.e., keeping track
of multiple readers). It checks whether there is a read operation in
progress and returns an error if it is --preventing that reader from
getting overwritten and stuck. It fixes a bug triggered by executing
'top | more' and pressing the space bar for a while (easily reproducable
in a VM, not on hardware).