. only use for single-page invalidations initially
. shows tiny but statistically significant performance
improvement; will be more helpful in certain VM debug
modes
- flush TLB of processes only if the page tables has been changed and
the page tables of this process are already loaded on this cpu which
means that there might be stale entries in TLB. Until now SMP was
always flushing TLB to make sure everything is consistent.
- the Intel architecture cycle counter (performance counter) does not
count when the CPU is idle therefore we use busy loop instead of
halting the cpu when there is nothing to schedule
- the downside is that handling interrupts may be accounted as idle
time if a sample is taken before we get out of the nested trap and
pick a new process
- this makes sure that each process always run with updated TLB
- this is the simplest way how to achieve the consistency. As it means
significant performace degradation when not require, this is nto the
final solution and will be refined
- APs configure local timers
- while configuring local APIC timer the CPUs fiddle with the interrupt
handlers. As the interrupt table is shared the BSP must not run
- to isolate execution inside kernel we use a big kernel lock
implemented as a spinlock
- the lock is acquired asap after entering kernel mode and released as
late as possible. Only one CPU as a time can execute the core kernel
code
- measurement son real hw show that the overhead of this lock is close
to 0% of kernel time for the currnet system
- the overhead of this lock may be as high as 45% of kernel time in
virtual machines depending on the ratio between physical CPUs
available and emulated CPUs. The performance degradation is
significant
- kernel detects CPUs by searching ACPI tables for local apic nodes
- each CPU has its own TSS that points to its own stack. All cpus boot
on the same boot stack (in sequence) but switch to its private stack
as soon as they can.
- final booting code in main() placed in bsp_finish_booting() which is
executed only after the BSP switches to its final stack
- apic functions to send startup interrupts
- assembler functions to handle CPU features not needed for single cpu
mode like memory barries, HT detection etc.
- new files kernel/smp.[ch], kernel/arch/i386/arch_smp.c and
kernel/arch/i386/include/arch_smp.h
- 16-bit trampoline code for the APs. It is executed by each AP after
receiving startup IPIs it brings up the CPUs to 32bit mode and let
them spin in an infinite loop so they don't do any damage.
- implementation of kernel spinlock
- CONFIG_SMP and CONFIG_MAX_CPUS set by the build system
- most global variables carry information which is specific to the
local CPU and each CPU must have its own copy
- cpu local variable must be declared in cpulocal.h between
DECLARE_CPULOCAL_START and DECLARE_CPULOCAL_END markers using
DECLARE_CPULOCAL macro
- to access the cpu local data the provided macros must be used
get_cpu_var(cpu, name)
get_cpu_var_ptr(cpu, name)
get_cpulocal_var(name)
get_cpulocal_var_ptr(name)
- using this macros makes future changes in the implementation
possible
- switching to ELF will make the declaration of cpu local data much
simpler, e.g.
CPULOCAL int blah;
anywhere in the kernel source code
- kernel turns on IO APICs if no_apic is _not_ set or is equal 0
- pci driver must use the acpi driver to setup IRQ routing otherwise
the system cannot work correctly except systems like KVM that use
only legacy (E)ISA IRQs 0-15
There seems to have been a broken assumption in the fpu context
restoring code. It restores the context of the running process, without
guarantee that the current process is the one that will be scheduled.
This caused fpu saving for a different process to be triggered without
fpu hardware being enabled, causing an fpu exception in the kernel. This
practically only shows up with DEBUG_RACE on. Fix my thruby+me.
The fix
. is to only set the fpu-in-use-by-this-process flag in the
exception handler, and then take care of fpu restoring when
actually returning to userspace
And the patch
. translates fpu saving and restoring to c in arch_system.c,
getting rid of a juicy chunk of assembly
. makes osfxsr_feature private to arch_system.c
. removes most of the arch dependent code from do_sigsend
-Makefile updates
-Update mkdep
-Build fixes/warning cleanups for some programs
-Restore leading underscores on global syms in kernel asm files
-Increase ramdisk size