Commit graph

209 commits

Author SHA1 Message Date
David van Moolenbroek
895850b8cf move timers code to libsys 2010-07-09 12:58:18 +00:00
Thomas Veerman
34a2864e27 Fix a few compile time warnings 2010-07-02 12:41:19 +00:00
Erik van der Kouwe
23284ee7bd User-space scheduling for system processes 2010-07-01 08:32:33 +00:00
Arun Thomas
c0c8d25799 Rename mkfiles from minix.*.mk to bsd.*.mk
Makes things easier for pkgsrc
2010-06-25 18:29:09 +00:00
Erik van der Kouwe
498d7d8a4c Don't use kernel responses in servers 2010-06-24 07:37:26 +00:00
Erik van der Kouwe
11193f5fa4 Don't allow PM to sys_kill itself, this causes a race with RS calling waitpid during shutdown 2010-06-18 13:49:07 +00:00
Cristiano Giuffrida
ad5771aa28 Don't forget about pending signals coming from the kernel. 2010-06-18 12:04:20 +00:00
Arun Thomas
1bf6d23f34 Make exec() use entry point in a.out header 2010-06-10 14:59:10 +00:00
Arun Thomas
f0a158d8c1 More cleanup to remove MM and FS references 2010-06-10 14:04:46 +00:00
Arun Thomas
eec65ac664 Rename tell_fs to tell_vfs 2010-06-09 14:31:30 +00:00
Arun Thomas
4c10a31440 Remove legacy MM, FS, and FS_PROC_NR macros 2010-06-08 13:58:01 +00:00
Arun Thomas
b641afc78a VM: Remove legacy non-paging code paths 2010-06-05 14:39:40 +00:00
Cristiano Giuffrida
354d88f883 Put initialization code where it belongs. 2010-06-04 18:08:15 +00:00
Cristiano Giuffrida
332842295a Always skip signals for PM itself when broadcasting. 2010-06-03 11:18:43 +00:00
Kees van Reeuwijk
ed0b81c25c Removed some unused variables and functions. 2010-06-02 19:41:38 +00:00
Kees van Reeuwijk
ac14a989b3 Fixed some inconsistent strict typing declarations.
Better strict typing.
2010-05-25 07:23:24 +00:00
Erik van der Kouwe
1f11a57141 Oops, last commit included more than was intended 2010-05-20 08:07:47 +00:00
Erik van der Kouwe
5f15ec05b2 More system processes, this was not enough for the release script to run on some configurations 2010-05-20 08:05:07 +00:00
Ben Gras
bcdaf033b5 pm - fix sched interaction
For coredumping processes, PM forgets to inform SCHED that the
process has vanished, causing future fork()s to fail.
2010-05-19 13:22:29 +00:00
Tomas Hruby
b09bcf6779 Scheduling server (by Bjorn Swift)
In this second phase, scheduling is moved from PM to its own
scheduler (see r6557 for phase one). In the next phase we hope to a)
include useful information in the "out of quantum" message and b)
create some simple scheduling policy that makes use of that
information.

When the system starts up, PM will iterate over its process table and
ask SCHED to take over scheduling unprivileged processes. This is
done by sending a SCHEDULING_START message to SCHED. This message
includes the processes endpoint, the parent's endpoint and its nice
level. The scheduler adds this process to its schedproc table, issues
a schedctl, and returns its own endpoint to PM - as the endpoint of
the effective scheduler. When a process terminates, a SCHEDULING_STOP
message is sent to the scheduler.

The reason for this effective endpoint is for future compatibility.
Some day, we may have a scheduler that, instead of scheduling the
process itself, forwards the SCHEDULING_START message on to another
scheduler.

PM has information on who schedules whom. As such, scheduling
messages from user-land are sent through PM. An example is when
processes change their priority, using nice(). In that case, a
getsetpriority message is sent to PM, which then sends a
SCHEDULING_SET_NICE to the process's effective scheduler.

When a process is forked through PM, it inherits its parent's
scheduler, but is spawned with an empty quantum. As before, a request
to fork a process flows through VM before returning to PM, which then
wakes up the child process. This flow has been modified slightly so
that PM notifies the scheduler of the new process, before waking up
the child process. If the scheduler fails to take over scheduling,
the child process is torn down and the fork fails with an erroneous
value.

Process priority is entirely decided upon using nice levels. PM
stores a copy of each process's nice level and when a child is
forked, its parent's nice level is sent in the SCHEDULING_START
message. How this level is mapped to a priority queue is up to the
scheduler. It should be noted that the nice level is used to
determine the max_priority and the parent could have been in a lower
priority when it was spawned. To prevent a CPU intensive process from
hawking the CPU by continuously forking children that get scheduled
in the max_priority, the scheduler should determine in which queue
the parent is currently scheduled, and schedule the child in that
same queue.

Other fixes: The USER_Q in kernel/proc.h was incorrectly defined as
NR_SCHED_QUEUES/2. That results in a "off by one" error when
converting priority->nice->priority for nice=0. This also had the
side effect that if someone were to set the MAX_USER_Q to something
else than 0, then USER_Q would be off.
2010-05-18 13:39:04 +00:00
Tomas Hruby
d3e991a7b6 PM signal handling check too strict
- this panic may be unnecessarily triggered if PM gets the delayed
  stop signal from kernel before it gets reply from VFS to the UNPAUSE
  call.

- after this change PM does not proceed to delivering the signal until
  the reply from VFS is received. Perhaps PM could deliver the signal
  straight away as it knows that the process does not run. Possibly
 i dangerous.

- the signal is deliverd immediately after the UNPAUSE reply as the
  pending signals are always checked at the moment.
2010-05-10 14:27:22 +00:00
Tomas Hruby
6e25ad8b0a Use of all NIL_* defines converted to NULL 2010-05-10 13:26:00 +00:00
Erik van der Kouwe
93f3bf5bda Fix wrong word 2010-04-28 20:37:08 +00:00
Tomas Hruby
86378ff645 PM remembers what it should schedule
- while PM implements fork also for RS it needs to remember what to
  schedule and what not. PM_SCHEDULED flag serves this purpose.

- PM only schedules processes that are descendaints of init, i.e. normal
  user processes

- after a process is forked PM schedules for the first time only
  processes that have PM_SCHEDULED set. The others are handled iether
  by kernel or some other scheduler
2010-04-13 10:45:08 +00:00
Tomas Hruby
9b599bac1d Quantum in fork
- This patch removes the time slice split between parent and child in
  fork.

- The time slice of the parent remains unchanged and the child does
  not have any.

- If the process has a scheduler, the scheduler must assign the
  quantum and priority of the new process and let it run.

- If the child does not inherit a scheduler, it is scheduled by the
  dummy default kernel policy. (servers, drivers, etc.)

- In theory, the scheduler can change the quantum even of the parent
  process and implement any policy for splitting the quantum as
  neither the parent nor the child are runnable.  Sending the
  out-of_quantum message on behalf of the processes may look like the
  right solution, however, the scheduler would probably handle the
  message before the whole fork protocol is finished. This way the
  scheduler has absolute control when the process should become
  runnable.
2010-04-10 15:27:38 +00:00
Tomas Hruby
1a31d158ad Restructure and simplyfycation of the scheduling code in PM a little bit.
- It introduces schedule_process() which makes a kernel call to set
  the scheduling parameters of a process. It is used in the next patch.
2010-04-10 15:24:49 +00:00
Cristiano Giuffrida
48c6bb79f4 Driver refactory for live update and crash recovery.
SYSLIB CHANGES:
- DS calls to publish / retrieve labels consider endpoints instead of u32_t.

VFS CHANGES:
- mapdriver() only adds an entry in the dmap table in VFS.
- dev_up() is only executed upon reception of a driver up event.

INET CHANGES:
- INET no longer searches for existing drivers instances at startup.
- A newtwork driver is (re)initialized upon reception of a driver up event.
- Networking startup is now race-free by design. No need to waste 5 seconds
at startup any more.

DRIVER CHANGES:
- Every driver publishes driver up events when starting for the first time or
in case of restart when recovery actions must be taken in the upper layers.
- Driver up events are published by drivers through DS. 
- For regular drivers, VFS is normally the only subscriber, but not necessarily.
For instance, when the filter driver is in use, it must subscribe to driver
up events to initiate recovery.
- For network drivers, inet is the only subscriber for now.
- Every VFS driver is statically linked with libdriver, every network driver
is statically linked with libnetdriver.

DRIVER LIBRARIES CHANGES:
- Libdriver is extended to provide generic receive() and ds_publish() interfaces
for VFS drivers.
- driver_receive() is a wrapper for sef_receive() also used in driver_task()
to discard spurious messages that were meant to be delivered to a previous
version of the driver.
- driver_receive_mq() is the same as driver_receive() but integrates support
for queued messages.
- driver_announce() publishes a driver up event for VFS drivers and marks
the driver as initialized and expecting a DEV_OPEN message.
- Libnetdriver is introduced to provide similar receive() and ds_publish()
interfaces for network drivers (netdriver_announce() and netdriver_receive()).
- Network drivers all support live update with no state transfer now.

KERNEL CHANGES:
- Added kernel call statectl for state management. Used by driver_announce() to
unblock eventual callers sendrecing to the driver.
2010-04-08 13:41:35 +00:00
Arun Thomas
4ed3a0cf3a Convert kernel over to bsdmake 2010-04-01 22:22:33 +00:00
Kees van Reeuwijk
fc7dced1fa Fix printfs with too few or too many parms, remove unused vars, fix incorrect flag tests, other code cleanup. 2010-04-01 13:25:05 +00:00
Cristiano Giuffrida
d8b42a755d Move kernel signal SIGKNDELAY to system signal SIGSNDELAY and fix broken ptrace. 2010-03-31 08:55:12 +00:00
Tomas Hruby
5b52c5aa02 A reliable way for userspace to check if a msg is from kernel
- IPC_FLG_MSG_FROM_KERNEL status flag is returned to userspace if the
  receive was satisfied by s message which was sent by the kernel on
  behalf of a process. This perfectly reliale information.

- MF_SENDING_FROM_KERNEL flag added to processes to be able to set
  IPC_FLG_MSG_FROM_KERNEL when finishing receive if the receiver
  wasn't ready to receive immediately.

- PM is changed to use this information to confirm that the scheduling
  messages are indeed from the kernel and not faked by a process.

  PM uses sef_receive_status()

- get_work() is removed from PM to make the changes simpler
2010-03-29 11:25:01 +00:00
Tomas Hruby
b4cf88a04f Userspace scheduling
- cotributed by Bjorn Swift

- In this first phase, scheduling is moved from the kernel to the PM
  server. The next steps are to a) moving scheduling to its own server
  and b) include useful information in the "out of quantum" message,
  so that the scheduler can make use of this information.

- The kernel process table now keeps record of who is responsible for
  scheduling each process (p_scheduler). When this pointer is NULL,
  the process will be scheduled by the kernel. If such a process runs
  out of quantum, the kernel will simply renew its quantum an requeue
  it.

- When PM loads, it will take over scheduling of all running
  processes, except system processes, using sys_schedctl().
  Essentially, this only results in taking over init. As children
  inherit a scheduler from their parent, user space programs forked by
  init will inherit PM (for now) as their scheduler.

 - Once a process has been assigned a scheduler, and runs out of
   quantum, its RTS_NO_QUANTUM flag will be set and the process
   dequeued. The kernel will send a message to the scheduler, on the
   process' behalf, informing the scheduler that it has run out of
   quantum. The scheduler can take what ever action it pleases, based
   on its policy, and then reschedule the process using the
   sys_schedule() system call.

- Balance queues does not work as before. While the old in-kernel
  function used to renew the quantum of processes in the highest
  priority run queue, the user-space implementation only acts on
  processes that have been bumped down to a lower priority queue.
  This approach reacts slower to changes than the old one, but saves
  us sending a sys_schedule message for each process every time we
  balance the queues. Currently, when processes are moved up a
  priority queue, their quantum is also renewed, but this can be
  fiddled with.

- do_nice has been removed from kernel. PM answers to get- and
  setpriority calls, updates it's own nice variable as well as the
  max_run_queue. This will be refactored once scheduling is moved to a
  separate server. We will probably have PM update it's local nice
  value and then send a message to whoever is scheduling the process.

- changes to fix an issue in do_fork() where processes could run out
  of quantum but bypassing the code path that handles it correctly.
  The future plan is to remove the policy from do_fork() and implement
  it in userspace too.
2010-03-29 11:07:20 +00:00
Cristiano Giuffrida
ef95bf1bb9 Print stacktrace when a system service fails or when a core dump has to be generated for a user process. 2010-03-22 22:46:29 +00:00
Arun Thomas
436d6012a3 Convert drivers/ and servers/ over to bsdmake
-Move libdriver to lib/
-Install all boot image services on filesystem to aid restartability
2010-03-22 21:25:22 +00:00
Cristiano Giuffrida
cb176df60f New RS and new signal handling for system processes.
UPDATING INFO:
20100317:
        /usr/src/etc/system.conf updated to ignore default kernel calls: copy
        it (or merge it) to /etc/system.conf.
        The hello driver (/dev/hello) added to the distribution:
        # cd /usr/src/commands/scripts && make clean install
        # cd /dev && MAKEDEV hello

KERNEL CHANGES:
- Generic signal handling support. The kernel no longer assumes PM as a signal
manager for every process. The signal manager of a given process can now be
specified in its privilege slot. When a signal has to be delivered, the kernel
performs the lookup and forwards the signal to the appropriate signal manager.
PM is the default signal manager for user processes, RS is the default signal
manager for system processes. To enable ptrace()ing for system processes, it
is sufficient to change the default signal manager to PM. This will temporarily
disable crash recovery, though.
- sys_exit() is now split into sys_exit() (i.e. exit() for system processes,
which generates a self-termination signal), and sys_clear() (i.e. used by PM
to ask the kernel to clear a process slot when a process exits).
- Added a new kernel call (i.e. sys_update()) to swap two process slots and
implement live update.

PM CHANGES:
- Posix signal handling is no longer allowed for system processes. System
signals are split into two fixed categories: termination and non-termination
signals. When a non-termination signaled is processed, PM transforms the signal
into an IPC message and delivers the message to the system process. When a
termination signal is processed, PM terminates the process.
- PM no longer assumes itself as the signal manager for system processes. It now
makes sure that every system signal goes through the kernel before being
actually processes. The kernel will then dispatch the signal to the appropriate
signal manager which may or may not be PM.

SYSLIB CHANGES:
- Simplified SEF init and LU callbacks.
- Added additional predefined SEF callbacks to debug crash recovery and
live update.
- Fixed a temporary ack in the SEF init protocol. SEF init reply is now
completely synchronous.
- Added SEF signal event type to provide a uniform interface for system
processes to deal with signals. A sef_cb_signal_handler() callback is
available for system processes to handle every received signal. A
sef_cb_signal_manager() callback is used by signal managers to process
system signals on behalf of the kernel.
- Fixed a few bugs with memory mapping and DS.

VM CHANGES:
- Page faults and memory requests coming from the kernel are now implemented
using signals.
- Added a new VM call to swap two process slots and implement live update.
- The call is used by RS at update time and in turn invokes the kernel call
sys_update().

RS CHANGES:
- RS has been reworked with a better functional decomposition.
- Better kernel call masks. com.h now defines the set of very basic kernel calls
every system service is allowed to use. This makes system.conf simpler and
easier to maintain. In addition, this guarantees a higher level of isolation
for system libraries that use one or more kernel calls internally (e.g. printf).
- RS is the default signal manager for system processes. By default, RS
intercepts every signal delivered to every system process. This makes crash
recovery possible before bringing PM and friends in the loop.
- RS now supports fast rollback when something goes wrong while initializing
the new version during a live update.
- Live update is now implemented by keeping the two versions side-by-side and
swapping the process slots when the old version is ready to update.
- Crash recovery is now implemented by keeping the two versions side-by-side
and cleaning up the old version only when the recovery process is complete.

DS CHANGES:
- Fixed a bug when the process doing ds_publish() or ds_delete() is not known
by DS.
- Fixed the completely broken support for strings. String publishing is now
implemented in the system library and simply wraps publishing of memory ranges.
Ideally, we should adopt a similar approach for other data types as well.
- Test suite fixed.

DRIVER CHANGES:
- The hello driver has been added to the Minix distribution to demonstrate basic
live update and crash recovery functionalities.
- Other drivers have been adapted to conform the new SEF interface.
2010-03-17 01:15:29 +00:00
Thomas Veerman
bef0e3eb63 - Add support for the ucontext system calls (getcontext, setcontext,
swapcontext, and makecontext).
- Fix VM to not erroneously think the stack segment and data segment have
  collided when a user-space thread invokes brk().
- Add test51 to test ucontext functionality.
- Add man pages for ucontext system calls.
2010-03-12 15:58:41 +00:00
Arun Thomas
1f9ce647cf Move archtypes.h, fpu.h, and stackframe.h
Move archtypes.h to include/ dir, since several servers require it. Move
fpu.h and stackframe.h to arch-specific header directory. Make source
files and makefiles aware of the new header locations.
2010-03-09 09:41:14 +00:00
Ben Gras
35a108b911 panic() cleanup.
this change
   - makes panic() variadic, doing full printf() formatting -
     no more NO_NUM, and no more separate printf() statements
     needed to print extra info (or something in hex) before panicing
   - unifies panic() - same panic() name and usage for everyone -
     vm, kernel and rest have different names/syntax currently
     in order to implement their own luxuries, but no longer
   - throws out the 1st argument, to make source less noisy.
     the panic() in syslib retrieves the server name from the kernel
     so it should be clear enough who is panicing; e.g.
         panic("sigaction failed: %d", errno);
     looks like:
         at_wini(73130): panic: sigaction failed: 0
         syslib:panic.c: stacktrace: 0x74dc 0x2025 0x100a
   - throws out report() - printf() is more convenient and powerful
   - harmonizes/fixes the use of panic() - there were a few places
     that used printf-style formatting (didn't work) and newlines
     (messes up the formatting) in panic()
   - throws out a few per-server panic() functions
   - cleans up a tie-in of tty with panic()

merging printf() and panic() statements to be done incrementally.
2010-03-05 15:05:11 +00:00
Arun Thomas
b706112487 Incorporate bsdmake into buildsystem and reorganize libs 2010-02-16 14:41:33 +00:00
David van Moolenbroek
c7f1b547cb Statistical profiling fixes:
- PM: get rid of umap warning
- sprofalyze.pl: update with recently added servers and drivers
- sprofalyze.pl: properly truncate process names for sample matching
2010-02-03 12:27:52 +00:00
Erik van der Kouwe
c107dbe1d0 Man-pages on mkdep, cdprobe, loadramdisk and newroot; thanks to Antoine Leca 2010-02-02 15:10:00 +00:00
Erik van der Kouwe
310876dcec Kill processes which ignore signals thatshould not be ignored 2010-01-31 19:13:20 +00:00
Kees van Reeuwijk
2ba237cd4e Fixed a number of uses of uninitialized variables by adding assertions
or other sanity checks, code reshuffling, or fixing broken behavior.
2010-01-27 10:23:58 +00:00
Cristiano Giuffrida
d1fd04e72a Initialization protocol for system services.
SYSLIB CHANGES:
- SEF framework now supports a new SEF Init request type from RS. 3 different
callbacks are available (init_fresh, init_lu, init_restart) to specify
initialization code when a service starts fresh, starts after a live update,
or restarts.

SYSTEM SERVICE CHANGES:
- Initialization code for system services is now enclosed in a callback SEF will
automatically call at init time. The return code of the callback will
tell RS whether the initialization completed successfully.
- Each init callback can access information passed by RS to initialize. As of
now, each system service has access to the public entries of RS's system process
table to gather all the information required to initialize. This design
eliminates many existing or potential races at boot time and provides a uniform
initialization interface to system services. The same interface will be reused
for the upcoming publish/subscribe model to handle dynamic 
registration / deregistration of system services.

VM CHANGES:
- Uniform privilege management for all system services. Every service uses the
same call mask format. For boot services, VM copies the call mask from init
data. For dynamic services, VM still receives the call mask via rs_set_priv
call that will be soon replaced by the upcoming publish/subscribe model.

RS CHANGES:
- The system process table has been reorganized and split into private entries
and public entries. Only the latter ones are exposed to system services.
- VM call masks are now entirely configured in rs/table.c
- RS has now its own slot in the system process table. Only kernel tasks and
user processes not included in the boot image are now left out from the system
process table.
- RS implements the initialization protocol for system services.
- For services in the boot image, RS blocks till initialization is complete and
panics when failure is reported back. Services are initialized in their order of
appearance in the boot image priv table and RS blocks to implements synchronous
initialization for every system service having the flag SF_SYNCH_BOOT set.
- For services started dynamically, the initialization protocol is implemented
as though it were the first ping for the service. In this case, if the
system service fails to report back (or reports failure), RS brings the service
down rather than trying to restart it.
2010-01-08 01:20:42 +00:00
David van Moolenbroek
ac9ab099c8 General cleanup:
- clean up kernel section of minix/com.h somewhat
- remove ALLOCMEM and VM_ALLOCMEM calls
- remove non-safecopy and minix-vmd support from Inet
- remove SYS_VIRVCOPY and SYS_PHYSVCOPY calls
- remove obsolete segment encoding in SYS_SAFECOPY*
- remove DEVCTL call, svrctl(FSDEVUNMAP), map_driverX
- remove declarations of unimplemented svrctl requests
- remove everything related to swapping to disk
- remove floppysetup.sh
- remove traces of rescue device
- update DESCRIBE.sh with new devices
- some other small changes
2010-01-05 19:39:27 +00:00
David van Moolenbroek
0dcf5b7aa8 add ptrace(2) TO_NOEXEC flag 2010-01-05 09:30:28 +00:00
David van Moolenbroek
e423c86009 ptrace(2) modifications:
- add T_GETRANGE/T_SETRANGE to get/set ranges of values
- change EIO error code to EFAULT
- move common-I&D text-to-data translation to umap_local
2009-12-29 21:32:15 +00:00
Cristiano Giuffrida
1f5841c8ed Basic System Event Framework (SEF) with ping and live update.
SYSLIB CHANGES:
- SEF must be used by every system process and is thereby part of the system
library.
- The framework provides a receive() interface (sef_receive) for system
processes to automatically catch known system even messages and process them.
- SEF provides a default behavior for each type of system event, but allows
system processes to register callbacks to override the default behavior.
- Custom (local to the process) or predefined (provided by SEF) callback
implementations can be registered to SEF.
- SEF currently includes support for 2 types of system events:
  1. SEF Ping. The event occurs every time RS sends a ping to figure out
  whether a system process is still alive. The default callback implementation
  provided by SEF is to notify RS back to let it know the process is alive
  and kicking.
  2. SEF Live update. The event occurs every time RS sends a prepare to update
  message to let a system process know an update is available and to prepare
  for it. The live update support is very basic for now. SEF only deals with
  verifying if the prepare state can be supported by the process, dumping the
  state for debugging purposes, and providing an event-driven programming
  model to the process to react to state changes check-in when ready to update.
- SEF should be extended in the future to integrate support for more types of
system events. Ideally, all the cross-cutting concerns should be integrated into
SEF to avoid duplicating code and ease extensibility. Examples include:
  * PM notify messages primarily used at shutdown.
  * SYSTEM notify messages primarily used for signals.
  * CLOCK notify messages used for system alarms.
  * Debug messages. IS could still be in charge of fkey handling but would
  forward the debug message to the target process (e.g. PM, if the user
  requested debug information about PM). SEF would then catch the message and
  do nothing unless the process has registered an appropriate callback to
  deal with the event. This simplifies the programming model to print debug
  information, avoids duplicating code, and reduces the effort to print
  debug information.

SYSTEM PROCESSES CHANGES:
- Every system process registers SEF callbacks it needs to override the default
system behavior and calls sef_startup() right after being started.
- sef_startup() does almost nothing now, but will be extended in the future to
support callbacks of its own to let RS control and synchronize with every
system process at initialization time.
- Every system process calls sef_receive() now rather than receive() directly,
to let SEF handle predefined system events.

RS CHANGES:
- RS supports a basic single-component live update protocol now, as follows:
  * When an update command is issued (via "service update *"), RS notifies the
  target system process to prepare for a specific update state.
  * If the process doesn't respond back in time, the update is aborted.
  * When the process responds back, RS kills it and marks it for refreshing.
  * The process is then automatically restarted as for a buggy process and can
  start running again.
  * Live update is currently prototyped as a controlled failure.
2009-12-21 14:12:21 +00:00
Thomas Veerman
958b25be50 - Introduce support for sticky bit.
- Revise VFS-FS protocol and update VFS/MFS/ISOFS accordingly.
- Clean up MFS by removing old, dead code (backwards compatibility is broken by
  the new VFS-FS protocol, anyway) and rewrite other parts. Also, make sure all
  functions have proper banners and prototypes.
- VFS should always provide a (syntactically) valid path to the FS; no need for
  the FS to do sanity checks when leaving/entering mount points.
- Fix several bugs in MFS:
  - Several path lookup bugs in MFS.
  - A link can be too big for the path buffer.
  - A mountpoint can become inaccessible when the creation of a new inode
    fails, because the inode already exists and is a mountpoint.
- Introduce support for supplemental groups.
- Add test 46 to test supplemental group functionality (and removed obsolete
  suppl. tests from test 2).
- Clean up VFS (not everything is done yet).
- ISOFS now opens device read-only. This makes the -r flag in the mount command
  unnecessary (but will still report to be mounted read-write).
- Introduce PipeFS. PipeFS is a new FS that handles all anonymous and
  named pipes. However, named pipes still reside on the (M)FS, as they are part
  of the file system on disk. To make this work VFS now has a concept of
  'mapped' inodes, which causes read, write, truncate and stat requests to be
  redirected to the mapped FS, and all other requests to the original FS.
2009-12-20 20:27:14 +00:00
Cristiano Giuffrida
f4574783dc Rewrite of boot process
KERNEL CHANGES:
- The kernel only knows about privileges of kernel tasks and the root system
process (now RS).
- Kernel tasks and the root system process are the only processes that are made
schedulable by the kernel at startup. All the other processes in the boot image
don't get their privileges set at startup and are inhibited from running by the
RTS_NO_PRIV flag.
- Removed the assumption on the ordering of processes in the boot image table.
System processes can now appear in any order in the boot image table.
- Privilege ids can now be assigned both statically or dynamically. The kernel
assigns static privilege ids to kernel tasks and the root system process. Each
id is directly derived from the process number.
- User processes now all share the static privilege id of the root user
process (now INIT).
- sys_privctl split: we have more calls now to let RS set privileges for system
processes. SYS_PRIV_ALLOW / SYS_PRIV_DISALLOW are only used to flip the
RTS_NO_PRIV flag and allow / disallow a process from running. SYS_PRIV_SET_SYS /
SYS_PRIV_SET_USER are used to set privileges for a system / user process.
- boot image table flags split: PROC_FULLVM is the only flag that has been
moved out of the privilege flags and is still maintained in the boot image
table. All the other privilege flags are out of the kernel now.

RS CHANGES:
- RS is the only user-space process who gets to run right after in-kernel
startup.
- RS uses the boot image table from the kernel and three additional boot image
info table (priv table, sys table, dev table) to complete the initialization
of the system.
- RS checks that the entries in the priv table match the entries in the boot
image table to make sure that every process in the boot image gets schedulable.
- RS only uses static privilege ids to set privileges for system services in
the boot image.
- RS includes basic memory management support to allocate the boot image buffer
dynamically during initialization. The buffer shall contain the executable
image of all the system services we would like to restart after a crash.
- First step towards decoupling between resource provisioning and resource
requirements in RS: RS must know what resources it needs to restart a process
and what resources it has currently available. This is useful to tradeoff
reliability and resource consumption. When required resources are missing, the
process cannot be restarted. In that case, in the future, a system flag will
tell RS what to do. For example, if CORE_PROC is set, RS should trigger a
system-wide panic because the system can no longer function correctly without
a core system process.

PM CHANGES:
- The process tree built at initialization time is changed to have INIT as root
with pid 0, RS child of INIT and all the system services children of RS. This
is required to make RS in control of all the system services.
- PM no longer registers labels for system services in the boot image. This is
now part of RS's initialization process.
2009-12-11 00:08:19 +00:00