- enabling writing in COW once phys block is reference only once is racy if VM
is preemptible. original memory location may get overwritten before COW copies
the memory
- problem when DEBUG_RACE is on and a big problem for SMP
- Remove unused includes.
- Add include guards to headers.
- Use unsigned variables in case they're never going to hold a negative
value. This causes GCC's complaints to disappear and should make flexelint
a lot happier, too.
- Make functions private when they're used only within a module.
- Remove unused variables.
- Add casts where appropriate.
- Currently the cpu time quantum is timer-ticks based. Thus the
remaining quantum is decreased only if the processes is interrupted
by a timer tick. As processes block a lot this typically does not
happen for normal user processes. Also the quantum depends on the
frequency of the timer.
- This change makes the quantum miliseconds based. Internally the
miliseconds are translated into cpu cycles. Everytime userspace
execution is interrupted by kernel the cycles just consumed by the
current process are deducted from the remaining quantum.
- It makes the quantum system timer frequency independent.
- The boot processes quantum is loosely derived from the tick-based
quantas and 60Hz timer and subject to future change
- the 64bit arithmetics is a little ugly, will be changes once we have
compiler support for 64bit integers (soon)
-Makefile updates
-Update mkdep
-Build fixes/warning cleanups for some programs
-Restore leading underscores on global syms in kernel asm files
-Increase ramdisk size
In this second phase, scheduling is moved from PM to its own
scheduler (see r6557 for phase one). In the next phase we hope to a)
include useful information in the "out of quantum" message and b)
create some simple scheduling policy that makes use of that
information.
When the system starts up, PM will iterate over its process table and
ask SCHED to take over scheduling unprivileged processes. This is
done by sending a SCHEDULING_START message to SCHED. This message
includes the processes endpoint, the parent's endpoint and its nice
level. The scheduler adds this process to its schedproc table, issues
a schedctl, and returns its own endpoint to PM - as the endpoint of
the effective scheduler. When a process terminates, a SCHEDULING_STOP
message is sent to the scheduler.
The reason for this effective endpoint is for future compatibility.
Some day, we may have a scheduler that, instead of scheduling the
process itself, forwards the SCHEDULING_START message on to another
scheduler.
PM has information on who schedules whom. As such, scheduling
messages from user-land are sent through PM. An example is when
processes change their priority, using nice(). In that case, a
getsetpriority message is sent to PM, which then sends a
SCHEDULING_SET_NICE to the process's effective scheduler.
When a process is forked through PM, it inherits its parent's
scheduler, but is spawned with an empty quantum. As before, a request
to fork a process flows through VM before returning to PM, which then
wakes up the child process. This flow has been modified slightly so
that PM notifies the scheduler of the new process, before waking up
the child process. If the scheduler fails to take over scheduling,
the child process is torn down and the fork fails with an erroneous
value.
Process priority is entirely decided upon using nice levels. PM
stores a copy of each process's nice level and when a child is
forked, its parent's nice level is sent in the SCHEDULING_START
message. How this level is mapped to a priority queue is up to the
scheduler. It should be noted that the nice level is used to
determine the max_priority and the parent could have been in a lower
priority when it was spawned. To prevent a CPU intensive process from
hawking the CPU by continuously forking children that get scheduled
in the max_priority, the scheduler should determine in which queue
the parent is currently scheduled, and schedule the child in that
same queue.
Other fixes: The USER_Q in kernel/proc.h was incorrectly defined as
NR_SCHED_QUEUES/2. That results in a "off by one" error when
converting priority->nice->priority for nice=0. This also had the
side effect that if someone were to set the MAX_USER_Q to something
else than 0, then USER_Q would be off.
model to an instance-based model. Each ethernet driver instance is now
responsible for exactly one network interface card. The port field in
/etc/inet.conf now acts as an instance field instead.
This patch also updates the data link protocol. This update:
- eliminates the concept of ports entirely;
- eliminates DL_GETNAME entirely;
- standardizes on using m_source for IPC and DL_ENDPT for safecopies;
- removes error codes from TASK/STAT replies, as they were unused;
- removes a number of other old or unused fields;
- names and renames a few other fields.
All ethernet drivers have been changed to:
- conform to the new protocol, and exactly that;
- take on an instance number based on a given "instance" argument;
- skip that number of PCI devices in probe iterations;
- use config tables and environment variables based on that number;
- no longer be limited to a predefined maximum of cards in any way;
- get rid of any leftover non-safecopy support and other ancient junk;
- have a correct banner protocol figure, or none at all.
Other changes:
* Inet.conf is now taken to be line-based, and supports #-comments.
No existing installations are expected to be affected by this.
* A new, select-based asynchio library replaces the old one.
Kindly contributed by Kees J. Bot.
* Inet now supports use of select() on IP devices.
Combined, the last two changes together speed up dhcpd
considerably in the presence of multiple interfaces.
* A small bug has been fixed in nonamed.
- this panic may be unnecessarily triggered if PM gets the delayed
stop signal from kernel before it gets reply from VFS to the UNPAUSE
call.
- after this change PM does not proceed to delivering the signal until
the reply from VFS is received. Perhaps PM could deliver the signal
straight away as it knows that the process does not run. Possibly
i dangerous.
- the signal is deliverd immediately after the UNPAUSE reply as the
pending signals are always checked at the moment.
- rs does not assume hz==60
- rs adjusts its timeout ticks by the system clock frequency
- drivers have time to reply if hz is set too high (e.g. 1000+) for
instance when debugging
A new call to vm lets processes yield a part of their memory to vm,
together with an id, getting newly allocated memory in return. vm is
allowed to forget about it if it runs out of memory. processes can ask
for it back using the same id. (These two operations are normally
combined in a single call.)
It can be used as a as-big-as-memory-will-allow block cache for
filesystems, which is how mfs now uses it.
RS CHANGES:
- Crash recovery is now implemented like live update. Two instances are kept
side by side and the dead version is live updated into the new one. The endpoint
doesn't change and the failure is not exposed (by default) to other system
services.
- The new instance can be created reactively (when a crash is detected) or
proactively. In the latter case, RS can be instructed to keep a replica of
the system service to perform a hot swap when the service fails. The flag
SF_USE_REPL is set in that case.
- The new flag SF_USE_REPL is supported for services in the boot image and
dynamically started services through the RS interface (i.e. -p option in the
service utility).
- Fixed a free unallocated memory bug for core system services.
this patch changes the way pagefaults are delivered to VM. It adopts
the same model as the out-of-quantum messages sent by kernel to a
scheduler.
- everytime a userspace pagefault occurs, kernel creates a message
which is sent to VM on behalf of the faulting process
- the process is blocked on delivery to VM in the standard IPC code
instead of waiting in a spacial in-kernel queue (stack) and is not
runnable until VM tell kernel that the pagefault is resolved and is
free to clear the RTS_PAGEFAULT flag.
- VM does not need call kernel and poll the pagefault information
which saves many (1/2?) calls and kernel calls that return "no more
data"
- VM notification by kernel does not need to use signals
- each entry in proc table is by 12 bytes smaller (~3k save)
- while PM implements fork also for RS it needs to remember what to
schedule and what not. PM_SCHEDULED flag serves this purpose.
- PM only schedules processes that are descendaints of init, i.e. normal
user processes
- after a process is forked PM schedules for the first time only
processes that have PM_SCHEDULED set. The others are handled iether
by kernel or some other scheduler
map_copy_ph_block is replaced by map_clone_ph_block, which can
replace a single physical block by multiple physical blocks.
also,
. merge map_mem.c with region.c, as they manipulate the same
data structures
. NOTRUNNABLE removed as sanity check
. use direct functions for ALLOC_MEM and FREE_MEM again
. add some checks to shared memory mapping code
. fix for data structure integrity when using shared memory
. fix sanity checks
- This patch removes the time slice split between parent and child in
fork.
- The time slice of the parent remains unchanged and the child does
not have any.
- If the process has a scheduler, the scheduler must assign the
quantum and priority of the new process and let it run.
- If the child does not inherit a scheduler, it is scheduled by the
dummy default kernel policy. (servers, drivers, etc.)
- In theory, the scheduler can change the quantum even of the parent
process and implement any policy for splitting the quantum as
neither the parent nor the child are runnable. Sending the
out-of_quantum message on behalf of the processes may look like the
right solution, however, the scheduler would probably handle the
message before the whole fork protocol is finished. This way the
scheduler has absolute control when the process should become
runnable.
VFS CHANGES:
- dmap table no longer statically initialized in VFS
- Dropped FSSIGNON svrctl call no longer used by INET
INET CHANGES:
- INET announces its presence to VFS just like any other driver
RS CHANGES:
- The boot image dev table contains all the data to initialize VFS' dmap table
- RS interface supports asynchronous up and update operations now
- RS interface extended to support driver style and flags
SYSLIB CHANGES:
- DS calls to publish / retrieve labels consider endpoints instead of u32_t.
VFS CHANGES:
- mapdriver() only adds an entry in the dmap table in VFS.
- dev_up() is only executed upon reception of a driver up event.
INET CHANGES:
- INET no longer searches for existing drivers instances at startup.
- A newtwork driver is (re)initialized upon reception of a driver up event.
- Networking startup is now race-free by design. No need to waste 5 seconds
at startup any more.
DRIVER CHANGES:
- Every driver publishes driver up events when starting for the first time or
in case of restart when recovery actions must be taken in the upper layers.
- Driver up events are published by drivers through DS.
- For regular drivers, VFS is normally the only subscriber, but not necessarily.
For instance, when the filter driver is in use, it must subscribe to driver
up events to initiate recovery.
- For network drivers, inet is the only subscriber for now.
- Every VFS driver is statically linked with libdriver, every network driver
is statically linked with libnetdriver.
DRIVER LIBRARIES CHANGES:
- Libdriver is extended to provide generic receive() and ds_publish() interfaces
for VFS drivers.
- driver_receive() is a wrapper for sef_receive() also used in driver_task()
to discard spurious messages that were meant to be delivered to a previous
version of the driver.
- driver_receive_mq() is the same as driver_receive() but integrates support
for queued messages.
- driver_announce() publishes a driver up event for VFS drivers and marks
the driver as initialized and expecting a DEV_OPEN message.
- Libnetdriver is introduced to provide similar receive() and ds_publish()
interfaces for network drivers (netdriver_announce() and netdriver_receive()).
- Network drivers all support live update with no state transfer now.
KERNEL CHANGES:
- Added kernel call statectl for state management. Used by driver_announce() to
unblock eventual callers sendrecing to the driver.
- IPC_FLG_MSG_FROM_KERNEL status flag is returned to userspace if the
receive was satisfied by s message which was sent by the kernel on
behalf of a process. This perfectly reliale information.
- MF_SENDING_FROM_KERNEL flag added to processes to be able to set
IPC_FLG_MSG_FROM_KERNEL when finishing receive if the receiver
wasn't ready to receive immediately.
- PM is changed to use this information to confirm that the scheduling
messages are indeed from the kernel and not faked by a process.
PM uses sef_receive_status()
- get_work() is removed from PM to make the changes simpler
- cotributed by Bjorn Swift
- In this first phase, scheduling is moved from the kernel to the PM
server. The next steps are to a) moving scheduling to its own server
and b) include useful information in the "out of quantum" message,
so that the scheduler can make use of this information.
- The kernel process table now keeps record of who is responsible for
scheduling each process (p_scheduler). When this pointer is NULL,
the process will be scheduled by the kernel. If such a process runs
out of quantum, the kernel will simply renew its quantum an requeue
it.
- When PM loads, it will take over scheduling of all running
processes, except system processes, using sys_schedctl().
Essentially, this only results in taking over init. As children
inherit a scheduler from their parent, user space programs forked by
init will inherit PM (for now) as their scheduler.
- Once a process has been assigned a scheduler, and runs out of
quantum, its RTS_NO_QUANTUM flag will be set and the process
dequeued. The kernel will send a message to the scheduler, on the
process' behalf, informing the scheduler that it has run out of
quantum. The scheduler can take what ever action it pleases, based
on its policy, and then reschedule the process using the
sys_schedule() system call.
- Balance queues does not work as before. While the old in-kernel
function used to renew the quantum of processes in the highest
priority run queue, the user-space implementation only acts on
processes that have been bumped down to a lower priority queue.
This approach reacts slower to changes than the old one, but saves
us sending a sys_schedule message for each process every time we
balance the queues. Currently, when processes are moved up a
priority queue, their quantum is also renewed, but this can be
fiddled with.
- do_nice has been removed from kernel. PM answers to get- and
setpriority calls, updates it's own nice variable as well as the
max_run_queue. This will be refactored once scheduling is moved to a
separate server. We will probably have PM update it's local nice
value and then send a message to whoever is scheduling the process.
- changes to fix an issue in do_fork() where processes could run out
of quantum but bypassing the code path that handles it correctly.
The future plan is to remove the policy from do_fork() and implement
it in userspace too.
IPC changes:
- receive() is changed to take an additional parameter, which is a pointer to
a status code.
- The status code is filled in by the kernel to provide additional information
to the caller. For now, the kernel only fills in the IPC call used by the
sender.
Syslib changes:
- sef_receive() has been split into sef_receive() (with the original semantics)
and sef_receive_status() which exposes the status code to userland.
- Ideally, every sys process should gradually switch to sef_receive_status()
and use is_ipc_notify() as a dependable way to check for notify.
- SEF has been modified to use is_ipc_notify() and demonstrate how to use the
new status code.