. MAP_SHARED was used to implement sysv shared memory
. used to signal shareable memory region to VM
. assumptions about this situation break when processes
use MAP_SHARED for its normal, standardised meaning
* VFS and installed MFSes must be in sync before and after this change *
Use struct stat from NetBSD. It requires adding new STAT, FSTAT and LSTAT
syscalls. Libc modification is both backward and forward compatible.
Also new struct stat uses modern field sizes to avoid ABI
incompatibility, when we update uid_t, gid_t and company.
Exceptions are ino_t and off_t in old libc (though paddings added).
1. ack, a.out, minix headers (moved to /usr/include.ack),
minix libc
2. gcc/clang, elf, netbsd headers (moved to /usr/include),
netbsd libc (moved to /usr/lib)
So this obsoletes the /usr/netbsd hierarchy.
No special invocation for netbsd libc necessary - it's always used
for gcc/clang.
. remove a few asserts in the kernel and 64bi library
that are not compatible with the timing code
. change the TIME_BLOCKS code a little to work in-kernel
This patch moves more includes (most of them, to tell the truth) to
common/include directory. This completes the list of includes needed
to compile current trunk with the new libc (but to do that you need
more patches in queue).
This patch also contains some modification (for compilation with new
headers) to the common includes under __NBSD_LIBC, the define used
in mk script to specialize compilation with new includes.
This patch moves further includes (the network part and lib.h) in common/.
It is the last part to get the netbsd libc to compile under minix. Further moves will be needed as we get the netbsd libc to compile minix itself.
Also, this patch add #ifndef's to termios.h, as it create problems with netbsd's namespace.h.
Headers that will be shared between old includes and NetBSD-like includes
are moved into common/include tree. They are still copied in /usr/include
in 'make includes', so compilation and programs aren't be affected.
M include/Makefile
A include/minix/input.h
M include/minix/com.h
M drivers/tty/keyboard.c
M drivers/tty/tty.c
M drivers/tty/tty.h
M include/minix/syslib.h
M lib/libsys/Makefile
A lib/libsys/input.c
- kernel maintains a cpu_info array which contains various
information about each cpu as filled when each cpu boots
- the information contains idetification, features etc.
- every pci device which implements _PRT acpi method is considered to
be a pci-to-pci bridge
- acpi driver constructs a hierarchy of pci-to-pci bridges
- when pci driver identifies a pci-to-pci bridge it tells acpi driver
what is the primary and the secondary bus for this device
- when pci requests IRQ routing information from acpi, it passes the
bus number too to be able to identify the device accurately
With this change, suggested by Gautam Tirumala, ports for pkgin and
pkg_install are cleaner and so easier to upstream. Presumably other
ports will be smoother too.
There doesn't seem to be a reason SSIZE_MAX was so small to begin with.
Before, the 'main thread' of a process was never taken into account anywhere in
the library, causing mutexes not to work properly (and consequently, neither
did the condition variables). For example, if the 'main thread' (that is, the
thread which is started at the beginning of a process; not a spawned thread by
the library) would lock a mutex, it wasn't actually locked.
- sometimes the system needs to know precisely on what type of cpu is
running. The cpu type id detected during arch specific
initialization and kept in the machine structure for later use.
- as a side-effect the information is exported to userland
- profile --nmi | --rtc sets the profiling mode
- --rtc is default, uses BIOS RTC, cannot profile kernel the presetted
frequency values apply
- --nmi is only available in APIC mode as it uses the NMI watchdog, -f
allows any frequency in Hz
- both modes use compatible data structures
- when kernel profiles a process for the first time it saves an entry
describing the process [endpoint|name]
- every profile sample is only [endpoint|pc]
- profile utility creates a table of endpoint <-> name relations and
translates endpoints of samples into names and writing out the
results to comply with the processing tools
- "task" endpoints like KERNEL are negative thus we must cast it to
unsigned when hashing