- introduce new call numbers, names, and field aliases;
- initialize request messages to zero for all ABI calls;
- format callnr.h in the same way as com.h;
- redo call tables in both servers;
- remove param.h namespace pollution in the servers;
- make brk(2) go to VM directly, rather than through PM;
- remove obsolete BRK, UTIME, and WAIT calls;
- clean up path copying routine in VFS;
- move remaining system calls from libminlib to libc;
- correct some errno-related mistakes in libc routines.
Change-Id: I2d8ec5d061cd7e0b30c51ffd77aa72ebf84e2565
- move system calls for use by services from libminlib into libsys;
- move srv_fork(2) and srv_kill(2) from RS and into libsys;
- replace getprocnr(2) with sef_self(3);
- rename previous getnprocnr(2) to getprocnr(2);
- clean up getepinfo(2);
- change all libsys calls that used _syscall to use _taskcall, so as
to avoid going through errno to pass errors; this is already how
most calls work anyway, and many of the calls previously using
_syscall were already assumed to return the actual error;
- initialize request messages to zero, for future compatibility
(note that this does not include PCI calls, which are in need of a
much bigger overhaul, nor kernel calls);
- clean up more of dead DS code as a side effect.
Change-Id: I8788f54c68598fcf58e23486e270c2d749780ebb
The original delayed reply functionality was there to support swapping
in processes as they are unblocked, but swap support is long gone.
These days, this code only incurs overhead and hides bugs.
Change-Id: I4aebcd80719daa1bec45ac91975ddc9a460d74d4
- introduce PROC_STOPPED flag, which tracks whether the process is
stopped on PROC_STOP in the kernel, rather than implicitly deriving
this from PM_SIG_PENDING;
- make the process resumption test based on current state rather than
state transitions;
- add and clarify several flag checks in the signal handling code;
- add test79 to test signal handling robustness.
Change-Id: Ic8c7527095035b300b56f2ab1b9dd190bd4bf001
NetBSD libc implements these as wrappers around setitimer(2),
sigsuspend(2), and getrusage(2), respectively.
Change-Id: I0c5e725b3e1316bddd3a3ff7ef65d57d30afd10d
* Renamed struct timer to struct minix_timer
* Renamed timer_t to minix_timer_t
* Ensured all the code uses the minix_timer_t typedef
* Removed ifdef around _BSD_TIMER_T
* Removed include/timers.h and merged it into include/minix/timers.h
* Resolved prototype conflict by renaming kernel's (re)set_timer
to (re)set_kernel_timer.
Change-Id: I56f0f30dfed96e1a0575d92492294cf9a06468a5
* Removed startup code patches in lib/csu regarding kernel to userland
ABI.
* Aligned stack layout on NetBSD stack layout.
* Generate valid stack pointers instead of offsets by taking into account
_minix_kerninfo->kinfo->user_sp.
* Refactored stack generation, by moving part of execve in two
functions {minix_stack_params(), minix_stack_fill()} and using them
in execve(), rs and vm.
* Changed load offset of rtld (ld.so) to:
execi.args.stack_high - execi.args.stack_size - 0xa00000
which is 10MB below the main executable stack.
Change-Id: I839daf3de43321cded44105634102d419cb36cec
Implement getrusage.
These fields of struct rusage are not supported and always set to zero at this time
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* messages sent */
long ru_msgrcv; /* messages received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary context switches */
test75.c is the unit test for this new function
Change-Id: I3f1eb69de1fce90d087d76773b09021fc6106539
This also adds the sys_settime() kernel call which allows for the adjusting
of the clock named realtime in the kernel. The existing sys_stime()
function is still needed for a separate job (setting the boottime). The
boottime is set in the readclock driver. The sys_settime() interface is
meant to be flexible and will support both clock_settime() and adjtime()
when adjtime() is implemented later.
settimeofday() was adjusted to use the clock_settime() interface.
One side note discovered during testing: uptime(1) (part of the last(1)),
uses wtmp to determine boottime (not Minix's times(2)). This leads `uptime`
to report odd results when you set the time to a time prior to boottime.
This isn't a new bug introduced by my changes. It's been there for a while.
In order to make it more clear that ticks should be used for timers
and realtime should be used for timestamps / displaying the date/time,
getuptime() was renamed to getticks() and getuptime2() was renamed to
getuptime().
Servers, drivers, libraries, tests, etc that use getuptime()/getuptime2()
have been updated. In instances where a realtime was calculated, the
calculation was changed to use realtime.
System calls clock_getres() and clock_gettime() were added to PM/libc.
. make exec() callers (i.e. vfs and rs) determine the
memory layout by explicitly reserving regions using
mmap() calls on behalf of the exec()ing process,
i.e. handling all of the exec logic, thereby eliminating
all special exec() knowledge from VM.
. the new procedure is: clear the exec()ing process
first, then call third-party mmap()s to reserve memory, then
copy the executable file section contents in, all using callbacks
tailored to the caller's way of starting an executable
. i.e. no more explicit EXEC_NEWMEM-style calls in PM or VM
as with rigid 2-section arguments
. this naturally allows generalizing exec() by simply loading
all ELF sections
. drop/merge of lots of duplicate exec() code into libexec
. not copying the code sections to vfs and into the executable
again is a measurable performance improvement (about 3.3% faster
for 'make' in src/servers/)
. generalize libexec slightly to get some more necessary information
from ELF files, e.g. the interpreter
. execute dynamically linked executables when exec()ed by VFS
. switch to netbsd variant of elf32.h exclusively, solves some
conflicting headers
In this second phase, scheduling is moved from PM to its own
scheduler (see r6557 for phase one). In the next phase we hope to a)
include useful information in the "out of quantum" message and b)
create some simple scheduling policy that makes use of that
information.
When the system starts up, PM will iterate over its process table and
ask SCHED to take over scheduling unprivileged processes. This is
done by sending a SCHEDULING_START message to SCHED. This message
includes the processes endpoint, the parent's endpoint and its nice
level. The scheduler adds this process to its schedproc table, issues
a schedctl, and returns its own endpoint to PM - as the endpoint of
the effective scheduler. When a process terminates, a SCHEDULING_STOP
message is sent to the scheduler.
The reason for this effective endpoint is for future compatibility.
Some day, we may have a scheduler that, instead of scheduling the
process itself, forwards the SCHEDULING_START message on to another
scheduler.
PM has information on who schedules whom. As such, scheduling
messages from user-land are sent through PM. An example is when
processes change their priority, using nice(). In that case, a
getsetpriority message is sent to PM, which then sends a
SCHEDULING_SET_NICE to the process's effective scheduler.
When a process is forked through PM, it inherits its parent's
scheduler, but is spawned with an empty quantum. As before, a request
to fork a process flows through VM before returning to PM, which then
wakes up the child process. This flow has been modified slightly so
that PM notifies the scheduler of the new process, before waking up
the child process. If the scheduler fails to take over scheduling,
the child process is torn down and the fork fails with an erroneous
value.
Process priority is entirely decided upon using nice levels. PM
stores a copy of each process's nice level and when a child is
forked, its parent's nice level is sent in the SCHEDULING_START
message. How this level is mapped to a priority queue is up to the
scheduler. It should be noted that the nice level is used to
determine the max_priority and the parent could have been in a lower
priority when it was spawned. To prevent a CPU intensive process from
hawking the CPU by continuously forking children that get scheduled
in the max_priority, the scheduler should determine in which queue
the parent is currently scheduled, and schedule the child in that
same queue.
Other fixes: The USER_Q in kernel/proc.h was incorrectly defined as
NR_SCHED_QUEUES/2. That results in a "off by one" error when
converting priority->nice->priority for nice=0. This also had the
side effect that if someone were to set the MAX_USER_Q to something
else than 0, then USER_Q would be off.
- cotributed by Bjorn Swift
- In this first phase, scheduling is moved from the kernel to the PM
server. The next steps are to a) moving scheduling to its own server
and b) include useful information in the "out of quantum" message,
so that the scheduler can make use of this information.
- The kernel process table now keeps record of who is responsible for
scheduling each process (p_scheduler). When this pointer is NULL,
the process will be scheduled by the kernel. If such a process runs
out of quantum, the kernel will simply renew its quantum an requeue
it.
- When PM loads, it will take over scheduling of all running
processes, except system processes, using sys_schedctl().
Essentially, this only results in taking over init. As children
inherit a scheduler from their parent, user space programs forked by
init will inherit PM (for now) as their scheduler.
- Once a process has been assigned a scheduler, and runs out of
quantum, its RTS_NO_QUANTUM flag will be set and the process
dequeued. The kernel will send a message to the scheduler, on the
process' behalf, informing the scheduler that it has run out of
quantum. The scheduler can take what ever action it pleases, based
on its policy, and then reschedule the process using the
sys_schedule() system call.
- Balance queues does not work as before. While the old in-kernel
function used to renew the quantum of processes in the highest
priority run queue, the user-space implementation only acts on
processes that have been bumped down to a lower priority queue.
This approach reacts slower to changes than the old one, but saves
us sending a sys_schedule message for each process every time we
balance the queues. Currently, when processes are moved up a
priority queue, their quantum is also renewed, but this can be
fiddled with.
- do_nice has been removed from kernel. PM answers to get- and
setpriority calls, updates it's own nice variable as well as the
max_run_queue. This will be refactored once scheduling is moved to a
separate server. We will probably have PM update it's local nice
value and then send a message to whoever is scheduling the process.
- changes to fix an issue in do_fork() where processes could run out
of quantum but bypassing the code path that handles it correctly.
The future plan is to remove the policy from do_fork() and implement
it in userspace too.
UPDATING INFO:
20100317:
/usr/src/etc/system.conf updated to ignore default kernel calls: copy
it (or merge it) to /etc/system.conf.
The hello driver (/dev/hello) added to the distribution:
# cd /usr/src/commands/scripts && make clean install
# cd /dev && MAKEDEV hello
KERNEL CHANGES:
- Generic signal handling support. The kernel no longer assumes PM as a signal
manager for every process. The signal manager of a given process can now be
specified in its privilege slot. When a signal has to be delivered, the kernel
performs the lookup and forwards the signal to the appropriate signal manager.
PM is the default signal manager for user processes, RS is the default signal
manager for system processes. To enable ptrace()ing for system processes, it
is sufficient to change the default signal manager to PM. This will temporarily
disable crash recovery, though.
- sys_exit() is now split into sys_exit() (i.e. exit() for system processes,
which generates a self-termination signal), and sys_clear() (i.e. used by PM
to ask the kernel to clear a process slot when a process exits).
- Added a new kernel call (i.e. sys_update()) to swap two process slots and
implement live update.
PM CHANGES:
- Posix signal handling is no longer allowed for system processes. System
signals are split into two fixed categories: termination and non-termination
signals. When a non-termination signaled is processed, PM transforms the signal
into an IPC message and delivers the message to the system process. When a
termination signal is processed, PM terminates the process.
- PM no longer assumes itself as the signal manager for system processes. It now
makes sure that every system signal goes through the kernel before being
actually processes. The kernel will then dispatch the signal to the appropriate
signal manager which may or may not be PM.
SYSLIB CHANGES:
- Simplified SEF init and LU callbacks.
- Added additional predefined SEF callbacks to debug crash recovery and
live update.
- Fixed a temporary ack in the SEF init protocol. SEF init reply is now
completely synchronous.
- Added SEF signal event type to provide a uniform interface for system
processes to deal with signals. A sef_cb_signal_handler() callback is
available for system processes to handle every received signal. A
sef_cb_signal_manager() callback is used by signal managers to process
system signals on behalf of the kernel.
- Fixed a few bugs with memory mapping and DS.
VM CHANGES:
- Page faults and memory requests coming from the kernel are now implemented
using signals.
- Added a new VM call to swap two process slots and implement live update.
- The call is used by RS at update time and in turn invokes the kernel call
sys_update().
RS CHANGES:
- RS has been reworked with a better functional decomposition.
- Better kernel call masks. com.h now defines the set of very basic kernel calls
every system service is allowed to use. This makes system.conf simpler and
easier to maintain. In addition, this guarantees a higher level of isolation
for system libraries that use one or more kernel calls internally (e.g. printf).
- RS is the default signal manager for system processes. By default, RS
intercepts every signal delivered to every system process. This makes crash
recovery possible before bringing PM and friends in the loop.
- RS now supports fast rollback when something goes wrong while initializing
the new version during a live update.
- Live update is now implemented by keeping the two versions side-by-side and
swapping the process slots when the old version is ready to update.
- Crash recovery is now implemented by keeping the two versions side-by-side
and cleaning up the old version only when the recovery process is complete.
DS CHANGES:
- Fixed a bug when the process doing ds_publish() or ds_delete() is not known
by DS.
- Fixed the completely broken support for strings. String publishing is now
implemented in the system library and simply wraps publishing of memory ranges.
Ideally, we should adopt a similar approach for other data types as well.
- Test suite fixed.
DRIVER CHANGES:
- The hello driver has been added to the Minix distribution to demonstrate basic
live update and crash recovery functionalities.
- Other drivers have been adapted to conform the new SEF interface.
swapcontext, and makecontext).
- Fix VM to not erroneously think the stack segment and data segment have
collided when a user-space thread invokes brk().
- Add test51 to test ucontext functionality.
- Add man pages for ucontext system calls.
- clean up kernel section of minix/com.h somewhat
- remove ALLOCMEM and VM_ALLOCMEM calls
- remove non-safecopy and minix-vmd support from Inet
- remove SYS_VIRVCOPY and SYS_PHYSVCOPY calls
- remove obsolete segment encoding in SYS_SAFECOPY*
- remove DEVCTL call, svrctl(FSDEVUNMAP), map_driverX
- remove declarations of unimplemented svrctl requests
- remove everything related to swapping to disk
- remove floppysetup.sh
- remove traces of rescue device
- update DESCRIBE.sh with new devices
- some other small changes
o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL
o PM signal handling logic should now work properly, even with debuggers
being present
o Asynchronous PM/VFS protocol, full IPC support for senda(), and
AMF_NOREPLY senda() flag
DETAILS
Process stop and delay call handling of PM:
o Added sys_runctl() kernel call with sys_stop() and sys_resume()
aliases, for PM to stop and resume a process
o Added exception for sending/syscall-traced processes to sys_runctl(),
and matching SIGKREADY pseudo-signal to PM
o Fixed PM signal logic to deal with requests from a process after
stopping it (so-called "delay calls"), using the SIGKREADY facility
o Fixed various PM panics due to race conditions with delay calls versus
VFS calls
o Removed special PRIO_STOP priority value
o Added SYS_LOCK RTS kernel flag, to stop an individual process from
running while modifying its process structure
Signal and debugger handling in PM:
o Fixed debugger signals being dropped if a second signal arrives when
the debugger has not retrieved the first one
o Fixed debugger signals being sent to the debugger more than once
o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR
protocol message
o Detached debugger signals from general signal logic and from being
blocked on VFS calls, meaning that even VFS can now be traced
o Fixed debugger being unable to receive more than one pending signal in
one process stop
o Fixed signal delivery being delayed needlessly when multiple signals
are pending
o Fixed wait test for tracer, which was returning for children that were
not waited for
o Removed second parallel pending call from PM to VFS for any process
o Fixed process becoming runnable between exec() and debugger trap
o Added support for notifying the debugger before the parent when a
debugged child exits
o Fixed debugger death causing child to remain stopped forever
o Fixed consistently incorrect use of _NSIG
Extensions to ptrace():
o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a
debugger to and from a process
o Added T_SYSCALL ptrace request, to trace system calls
o Added T_SETOPT ptrace request, to set trace options
o Added TO_TRACEFORK trace option, to attach automatically to children
of a traced process
o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon
a successful exec() of the tracee
o Extended T_GETUSER ptrace support to allow retrieving a process's priv
structure
o Removed T_STOP ptrace request again, as it does not help implementing
debuggers properly
o Added MINIX3-specific ptrace test (test42)
o Added proper manual page for ptrace(2)
Asynchronous PM/VFS interface:
o Fixed asynchronous messages not being checked when receive() is called
with an endpoint other than ANY
o Added AMF_NOREPLY senda() flag, preventing such messages from
satisfying the receive part of a sendrec()
o Added asynsend3() that takes optional flags; asynsend() is now a
#define passing in 0 as third parameter
o Made PM/VFS protocol asynchronous; reintroduced tell_fs()
o Made PM_BASE request/reply number range unique
o Hacked in a horrible temporary workaround into RS to deal with newly
revealed RS-PM-VFS race condition triangle until VFS is asynchronous
System signal handling:
o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal
o Removed is-superuser check from PM's do_procstat() (aka getsigset())
o Added sigset macros to allow system processes to deal with the full
signal set, rather than just the POSIX subset
Miscellaneous PM fixes:
o Split do_getset into do_get and do_set, merging common code and making
structure clearer
o Fixed setpriority() being able to put to sleep processes using an
invalid parameter, or revive zombie processes
o Made find_proc() global; removed obsolete proc_from_pid()
o Cleanup here and there
Also included:
o Fixed false-positive boot order kernel warning
o Removed last traces of old NOTIFY_FROM code
THINGS OF POSSIBLE INTEREST
o It should now be possible to run PM at any priority, even lower than
user processes
o No assumptions are made about communication speed between PM and VFS,
although communication must be FIFO
o A debugger will now receive incoming debuggee signals at kill time
only; the process may not yet be fully stopped
o A first step has been made towards making the SYSTEM task preemptible
library to the memory driver. Always put output from within TTY directly on
the console. Removed second include of driver.h from tty.c. Made tty_inrepcode
bigger. First step to move PM and FS calls that are not regular (API)
system calls out of callnr.h (renumbered them, and removed them from the
table.c files). Imported the Minix-vmd uname implementation. This provides
a more stable ABI than the current implementation. Added a bit of security
checking. Unfortunately not nearly enough to get a secure system. Fixed a
bug related to the sizes of the programs in the image (in PM patch_mem_chunks).