Commit graph

19 commits

Author SHA1 Message Date
Ben Gras
565f13088f make vfs & filesystems use failable copying
Change the kernel to add features to vircopy and safecopies so that
transparent copy fixing won't happen to avoid deadlocks, and such copies
fail with EFAULT.

Transparently making copying work from filesystems (as normally done by
the kernel & VM when copying fails because of missing/readonly memory)
is problematic as it can happen that, for file-mapped ranges, that that
same filesystem that is blocked on the copy request is needed to satisfy
the memory range, leading to deadlock. Dito for VFS itself, if done with
a blocking call.

This change makes the copying done from a filesystem fail in such cases
with EFAULT by VFS adding the CPF_TRY flag to the grants. If a FS call
fails with EFAULT, VFS will then request the range to be made available
to VM after the FS is unblocked, allowing it to be used to satisfy the
range if need be in another VFS thread.

Similarly, for datacopies that VFS itself does, it uses the failable
vircopy variant and callers use a wrapper that talk to VM if necessary
to get the copy to work.

	. kernel: add CPF_TRY flag to safecopies
	. kernel: only request writable ranges to VM for the
	  target buffer when copying fails
	. do copying in VFS TRY-first
	. some fixes in VM to build SANITYCHECK mode
	. add regression test for the cases where
	  - a FS system call needs memory mapped in a process that the
	    FS itself must map.
	  - such a range covers more than one file-mapped region.
	. add 'try' mode to vircopy, physcopy
	. add flags field to copy kernel call messages
	. if CP_FLAG_TRY is set, do not transparently try
	  to fix memory ranges
	. for use by VFS when accessing user buffers to avoid
	  deadlock
	. remove some obsolete backwards compatability assignments
        . VFS: let thread scheduling work for VM requests too
          Allows VFS to make calls to VM while suspending and resuming
          the currently running thread. Does currently not work for the
          main thread.
        . VM: add fix memory range call for use by VFS

Change-Id: I295794269cea51a3163519a9cfe5901301d90b32
2014-07-28 17:05:14 +02:00
Antoine Leca
da82f9b2e8 <a.out.h>, MINIX style: remove as obsolete
Change-Id: Icc8b7210d60a93ac9cc4610d676dcba270756410
2013-08-06 11:43:35 +02:00
Ben Gras
49b9165251 vm: mmap support
. test74 for mmap functionality
	. vm: add a mem_file memory type that specifies an mmap()ped
	  memory range, backed by a file
	. add fdref, an object that keeps track of FD references within
	  VM per process and so knows how to de-duplicate the use of FD's
	  by various mmap()ped ranges; there can be many more than there can
	  be FD's
	. turned off for now, enable with 'filemap=1' as boot option

Change-Id: I640b1126cdaa522a0560301cf6732b7661555672
2013-05-31 15:42:01 +00:00
Ben Gras
49eb1f4806 vm: new secondary cache code
Primary purpose of change: to support the mmap implementation, VM must
know both (a) about some block metadata for FS cache blocks, i.e.
inode numbers and inode offsets where applicable; and (b) know about
*all* cache blocks, i.e.  also of the FS primary caches and not just
the blocks that spill into the secondary one. This changes the
interface and VM data structures.

This change is only for the interface (libminixfs) and VM data
structures; the filesystem code is unmodified, so although the
secondary cache will be used as normal, blocks will not be annotated
with inode information until the FS is modified to provide this
information. Until it is modified, mmap of files will fail gracefully
on such filesystems.

This is indicated to VFS/VM by returning ENOSYS for REQ_PEEK.

Change-Id: I1d2df6c485e6c5e89eb28d9055076cc02629594e
2013-04-24 10:18:16 +00:00
Ben Gras
d343041caa VM: make mapping types explicit
Introduce explicit abstractions for different mapping types,
handling the instantiation, forking, pagefaults and freeing of
anonymous memory, direct physical mappings, shared memory and
physically contiguous anonymous memory as separate types, making
region.c more generic.

Also some other genericification like merging the 3 munmap cases
into one.

COW and SMAP safemap code is still implicit in region.c.
2012-10-12 14:52:01 +02:00
Ben Gras
8a3b6ca3bb remove unused <tools.h> 2012-09-20 12:24:22 +02:00
Ben Gras
19e6dad47b VM: only single page chunks
. only reference single pages in process data structures
   to simplify page faults, copy-on-write, etc.
 . this breaks the secondary cache for objects that are
   not one-page-sized; restored in a next commit
2012-09-18 13:17:49 +02:00
Ben Gras
6d7b770761 VM: static data structure for mem allocation
. allocate physical memory using a fixed, pre-allocated bitmap so there
   are no call cycles and it's avilable earlier
2012-09-18 13:17:48 +02:00
Ben Gras
cbcdb838f1 various coverity-inspired fixes
. some strncpy/strcpy to strlcpy conversions
	. new <minix/param.h> to avoid including other minix headers
	  that have colliding definitions with library and commands code,
	  causing parse warnings
	. removed some dead code / assignments
2012-07-16 14:00:56 +02:00
Ben Gras
50e2064049 No more intel/minix segments.
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.

There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.

No static pre-allocated memory sizes exist any more.

Changes to booting:
        . The pre_init.c leaves the kernel and modules exactly as
          they were left by the bootloader in physical memory
        . The kernel starts running using physical addressing,
          loaded at a fixed location given in its linker script by the
          bootloader.  All code and data in this phase are linked to
          this fixed low location.
        . It makes a bootstrap pagetable to map itself to a
          fixed high location (also in linker script) and jumps to
          the high address. All code and data then use this high addressing.
        . All code/data symbols linked at the low addresses is prefixed by
          an objcopy step with __k_unpaged_*, so that that code cannot
          reference highly-linked symbols (which aren't valid yet) or vice
          versa (symbols that aren't valid any more).
        . The two addressing modes are separated in the linker script by
          collecting the unpaged_*.o objects and linking them with low
          addresses, and linking the rest high. Some objects are linked
          twice, once low and once high.
        . The bootstrap phase passes a lot of information (e.g. free memory
          list, physical location of the modules, etc.) using the kinfo
          struct.
        . After this bootstrap the low-linked part is freed.
        . The kernel maps in VM into the bootstrap page table so that VM can
          begin executing. Its first job is to make page tables for all other
          boot processes. So VM runs before RS, and RS gets a fully dynamic,
          VM-managed address space. VM gets its privilege info from RS as usual
          but that happens after RS starts running.
        . Both the kernel loading VM and VM organizing boot processes happen
	  using the libexec logic. This removes the last reason for VM to
	  still know much about exec() and vm/exec.c is gone.

Further Implementation:
        . All segments are based at 0 and have a 4 GB limit.
        . The kernel is mapped in at the top of the virtual address
          space so as not to constrain the user processes.
        . Processes do not use segments from the LDT at all; there are
          no segments in the LDT any more, so no LLDT is needed.
        . The Minix segments T/D/S are gone and so none of the
          user-space or in-kernel copy functions use them. The copy
          functions use a process endpoint of NONE to realize it's
          a physical address, virtual otherwise.
        . The umap call only makes sense to translate a virtual address
          to a physical address now.
        . Segments-related calls like newmap and alloc_segments are gone.
        . All segments-related translation in VM is gone (vir2map etc).
        . Initialization in VM is simpler as no moving around is necessary.
        . VM and all other boot processes can be linked wherever they wish
          and will be mapped in at the right location by the kernel and VM
          respectively.

Other changes:
        . The multiboot code is less special: it does not use mb_print
          for its diagnostics any more but uses printf() as normal, saving
          the output into the diagnostics buffer, only printing to the
          screen using the direct print functions if a panic() occurs.
        . The multiboot code uses the flexible 'free memory map list'
          style to receive the list of free memory if available.
        . The kernel determines the memory layout of the processes to
          a degree: it tells VM where the kernel starts and ends and
          where the kernel wants the top of the process to be. VM then
          uses this entire range, i.e. the stack is right at the top,
          and mmap()ped bits of memory are placed below that downwards,
          and the break grows upwards.

Other Consequences:
        . Every process gets its own page table as address spaces
          can't be separated any more by segments.
        . As all segments are 0-based, there is no distinction between
          virtual and linear addresses, nor between userspace and
          kernel addresses.
        . Less work is done when context switching, leading to a net
          performance increase. (8% faster on my machine for 'make servers'.)
	. The layout and configuration of the GDT makes sysenter and syscall
	  possible.
2012-07-15 22:30:15 +02:00
Arun Thomas
b641afc78a VM: Remove legacy non-paging code paths 2010-06-05 14:39:40 +00:00
Ben Gras
f78d8e74fd secondary cache feature in vm.
A new call to vm lets processes yield a part of their memory to vm,
together with an id, getting newly allocated memory in return. vm is
allowed to forget about it if it runs out of memory. processes can ask
for it back using the same id. (These two operations are normally
combined in a single call.)

It can be used as a as-big-as-memory-will-allow block cache for
filesystems, which is how mfs now uses it.
2010-05-05 11:35:04 +00:00
Ben Gras
c78250332d let vm use physically fragmented memory for allocations.
map_copy_ph_block is replaced by map_clone_ph_block, which can
replace a single physical block by multiple physical blocks.

also,
 . merge map_mem.c with region.c, as they manipulate the same
   data structures
 . NOTRUNNABLE removed as sanity check
 . use direct functions for ALLOC_MEM and FREE_MEM again
 . add some checks to shared memory mapping code
 . fix for data structure integrity when using shared memory
 . fix sanity checks
2010-04-12 11:25:24 +00:00
David van Moolenbroek
61bb82a44b VM information interface 2010-01-19 21:00:20 +00:00
Ben Gras
32fbbd370c - pages that points to page directory values of all processes,
shared with the kernel, mapped into kernel address space; 
   kernel is notified of its location. kernel segment size is
   increased to make it fit.
 - map in kernel and other processes that don't have their
   own page table using single 4MB (global) mapping.
 - new sanity check facility: objects that are allocated with
   the slab allocator are, when running with sanity checking on,
   marked readonly until they are explicitly unlocked using the USE()
   macro.
 - another sanity check facility: collect all uses of memory and
   see if they don't overlap with (a) eachother and (b) free memory
 - own munmap() and munmap_text() functions.
 - exec() recovers from out-of-memory conditions properly now; this
   solves some weird exec() behaviour
 - chew off memory from the same side of the chunk as where we
   start scanning, solving some memory fragmentation issues
 - use avl trees for freelist and phys_ranges in regions
 - implement most useful part of munmap()
 - remap() stuff is GQ's for shared memory
2009-09-21 14:49:49 +00:00
Ben Gras
2dd02cc560 mark pages whose refcount were >1 and drop to 1 and are
read/write writable in the pagetable right away instead of waiting for
a pagefault. minor optimization.

some a sanity check of SLAB-allocated pointers.

vm gets its own _exit and __exit like PM, so the stock (library) panic works.
2009-04-22 12:39:29 +00:00
Ben Gras
3121eec6bd . map text (kernel's and processes') in readonly
. map kernel in non-user
 . don't map in first pages of kernel code and data
   if possible

these first pages could actually be freed but as the
kernel isn't allowed to touch them either we can't reuse
them until VM has totally taken over page table management
and kernel doesn't rely on identity mapping any more.
2008-12-18 15:35:22 +00:00
Ben Gras
68d0c4defe - code shared with exec() letting boot-time processes have
their own fully fledged virtual address space and freeing
   their pre-allocated heap+stack area (necessary to let memory
   driver map in arbitrary areas of memory for /dev/mem without
   sys_vm_map)
 - small optimization preallocating memory on exec
 - finished VR_DIRECT physical mapping code
2008-12-08 16:43:20 +00:00
Ben Gras
c078ec0331 Basic VM and other minor improvements.
Not complete, probably not fully debugged or optimized.
2008-11-19 12:26:10 +00:00