* Removed startup code patches in lib/csu regarding kernel to userland
ABI.
* Aligned stack layout on NetBSD stack layout.
* Generate valid stack pointers instead of offsets by taking into account
_minix_kerninfo->kinfo->user_sp.
* Refactored stack generation, by moving part of execve in two
functions {minix_stack_params(), minix_stack_fill()} and using them
in execve(), rs and vm.
* Changed load offset of rtld (ld.so) to:
execi.args.stack_high - execi.args.stack_size - 0xa00000
which is 10MB below the main executable stack.
Change-Id: I839daf3de43321cded44105634102d419cb36cec
Implement getrusage.
These fields of struct rusage are not supported and always set to zero at this time
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* messages sent */
long ru_msgrcv; /* messages received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary context switches */
test75.c is the unit test for this new function
Change-Id: I3f1eb69de1fce90d087d76773b09021fc6106539
In libexec, split the memory allocation method into cleared and
non-cleared. Cleared gives zeroed memory, non-cleared gives 'junk'
memory (that will be overwritten anyway, and so needn't be cleared)
that is faster to get.
Also introduce the 'memmap' method that can be used, if available,
to map code and data from executables into a process using the
third-party mmap() mode.
Change-Id: I26694fd3c21deb8b97e01ed675dfc14719b0672b
if an exec() fails partway through reading in the sections, the target
process is already gone and a defunct process remains. sanity checking
the binary beforehand helps that.
test10 mutilates binaries and exec()s them on purpose; making an exec()
fail cleanly in such cases seems like acceptable behaviour.
fixes test10 on ARM.
Change-Id: I1ed9bb200ce469d4d349073cadccad5503b2fcb0
. ld.so is linked at 0 but it can relocate itself; we
wish to load ld.so higher though to trap NULL dereferences.
if we know we have to execute ld.so, vfs tells libexec to put it
higher.
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.
There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.
No static pre-allocated memory sizes exist any more.
Changes to booting:
. The pre_init.c leaves the kernel and modules exactly as
they were left by the bootloader in physical memory
. The kernel starts running using physical addressing,
loaded at a fixed location given in its linker script by the
bootloader. All code and data in this phase are linked to
this fixed low location.
. It makes a bootstrap pagetable to map itself to a
fixed high location (also in linker script) and jumps to
the high address. All code and data then use this high addressing.
. All code/data symbols linked at the low addresses is prefixed by
an objcopy step with __k_unpaged_*, so that that code cannot
reference highly-linked symbols (which aren't valid yet) or vice
versa (symbols that aren't valid any more).
. The two addressing modes are separated in the linker script by
collecting the unpaged_*.o objects and linking them with low
addresses, and linking the rest high. Some objects are linked
twice, once low and once high.
. The bootstrap phase passes a lot of information (e.g. free memory
list, physical location of the modules, etc.) using the kinfo
struct.
. After this bootstrap the low-linked part is freed.
. The kernel maps in VM into the bootstrap page table so that VM can
begin executing. Its first job is to make page tables for all other
boot processes. So VM runs before RS, and RS gets a fully dynamic,
VM-managed address space. VM gets its privilege info from RS as usual
but that happens after RS starts running.
. Both the kernel loading VM and VM organizing boot processes happen
using the libexec logic. This removes the last reason for VM to
still know much about exec() and vm/exec.c is gone.
Further Implementation:
. All segments are based at 0 and have a 4 GB limit.
. The kernel is mapped in at the top of the virtual address
space so as not to constrain the user processes.
. Processes do not use segments from the LDT at all; there are
no segments in the LDT any more, so no LLDT is needed.
. The Minix segments T/D/S are gone and so none of the
user-space or in-kernel copy functions use them. The copy
functions use a process endpoint of NONE to realize it's
a physical address, virtual otherwise.
. The umap call only makes sense to translate a virtual address
to a physical address now.
. Segments-related calls like newmap and alloc_segments are gone.
. All segments-related translation in VM is gone (vir2map etc).
. Initialization in VM is simpler as no moving around is necessary.
. VM and all other boot processes can be linked wherever they wish
and will be mapped in at the right location by the kernel and VM
respectively.
Other changes:
. The multiboot code is less special: it does not use mb_print
for its diagnostics any more but uses printf() as normal, saving
the output into the diagnostics buffer, only printing to the
screen using the direct print functions if a panic() occurs.
. The multiboot code uses the flexible 'free memory map list'
style to receive the list of free memory if available.
. The kernel determines the memory layout of the processes to
a degree: it tells VM where the kernel starts and ends and
where the kernel wants the top of the process to be. VM then
uses this entire range, i.e. the stack is right at the top,
and mmap()ped bits of memory are placed below that downwards,
and the break grows upwards.
Other Consequences:
. Every process gets its own page table as address spaces
can't be separated any more by segments.
. As all segments are 0-based, there is no distinction between
virtual and linear addresses, nor between userspace and
kernel addresses.
. Less work is done when context switching, leading to a net
performance increase. (8% faster on my machine for 'make servers'.)
. The layout and configuration of the GDT makes sysenter and syscall
possible.
. new mode for sys_memset: include process so memset can be
done in physical or virtual address space.
. add a mode to mmap() that lets a process allocate uninitialized
memory.
. this allows an exec()er (RS, VFS, etc.) to request uninitialized
memory from VM and selectively clear the ranges that don't come
from a file, leaving no uninitialized memory left for the process
to see.
. use callbacks for clearing the process, clearing memory in the
process, and copying into the process; so that the libexec code
can be used from rs, vfs, and in the future, kernel (to load vm)
and vm (to load boot-time processes)
. make exec() callers (i.e. vfs and rs) determine the
memory layout by explicitly reserving regions using
mmap() calls on behalf of the exec()ing process,
i.e. handling all of the exec logic, thereby eliminating
all special exec() knowledge from VM.
. the new procedure is: clear the exec()ing process
first, then call third-party mmap()s to reserve memory, then
copy the executable file section contents in, all using callbacks
tailored to the caller's way of starting an executable
. i.e. no more explicit EXEC_NEWMEM-style calls in PM or VM
as with rigid 2-section arguments
. this naturally allows generalizing exec() by simply loading
all ELF sections
. drop/merge of lots of duplicate exec() code into libexec
. not copying the code sections to vfs and into the executable
again is a measurable performance improvement (about 3.3% faster
for 'make' in src/servers/)
justification: soon we won't be able to execute sep I&D aouts at
all (because of the vanishing segments), which was the default mode
to generate them so most binaries will be sep I&D.
this makes the vfs/rs exec() unification work simpler.
after unification, common I&D aout could be added back quite simply.
. generalize libexec slightly to get some more necessary information
from ELF files, e.g. the interpreter
. execute dynamically linked executables when exec()ed by VFS
. switch to netbsd variant of elf32.h exclusively, solves some
conflicting headers