building defaults to off until clang is updated.
current clang does not handle -shared, necessary to change the ld
invocation to build shared libraries properly. a new clang should be
installed and MKPIC defaults to no unless the newer clang is detected.
changes:
. mainly small imports of a Makefile or two and small fixes
(turning things back on that were turned off in Makefiles)
. e.g.: dynamic librefuse now depends on dynamic
libpuffs, so libpuffs has to be built dynamically too
and a make dependency barrier is needed in lib/Makefile
. all library objects now have a PIC (for .so) and non-PIC
version, so everything is built twice.
. generate PIC versions of the compat (un-RENAMEd) jump files,
include function type annotation in generated assembly
. build progs with -static by default for now
. also build ld.elf_so
. also import NetBSD ldd
TTY has no way of keeping track of multiple readers for a tty minor
device. Instead, it stores a read request for the last reader only.
Consequently, the first ("overwritten") reader gets stuck on a read
request that's never going to be finished. Also, the overwriting
causes a grant mismatch in VFS when TTY returns a reply for the
second reader.
This patch is a work around for the actual problem (i.e., keeping track
of multiple readers). It checks whether there is a read operation in
progress and returns an error if it is --preventing that reader from
getting overwritten and stuck. It fixes a bug triggered by executing
'top | more' and pressing the space bar for a while (easily reproducable
in a VM, not on hardware).
- add files needed for acpi, ahci, fbd, vfs to libminc
- remove "-lc" from their respective makefiles
- remove setenv from libminc (requires initialization)
- remove PCI tables where system.conf suffices
- remove drivers' ability to mess up NIC order
- fix dp8390 PCI enumeration
- convert ti1225 to instance model
- add system.conf entry for ti1225
- if an operation (R, W, IOCTL) is non blocking, a flag is set
and sent to the device.
- nothing changes for sync devices
- asyn devices should reply asap if an operation is non-blocking.
We must trust the devices, but we had to trust them anyway to
reply to CANCEL correctly
- we safe sending CANCEL commands to asyn devices. This greatly
simplifies the protocol. Asynchronous devices can always reply
when a reply is ready and do not need to deal with other
situations
- currently, none of our drivers use the flags since they drive
virtual devices which do not block
There is important information about booting non-ack images in
docs/UPDATING. ack/aout-format images can't be built any more, and
booting clang/ELF-format ones is a little different. Updating to the
new boot monitor is recommended.
Changes in this commit:
. drop boot monitor -> allowing dropping ack support
. facility to copy ELF boot files to /boot so that old boot monitor
can still boot fairly easily, see UPDATING
. no more ack-format libraries -> single-case libraries
. some cleanup of OBJECT_FMT, COMPILER_TYPE, etc cases
. drop several ack toolchain commands, but not all support
commands (e.g. aal is gone but acksize is not yet).
. a few libc files moved to netbsd libc dir
. new /bin/date as minix date used code in libc/
. test compile fix
. harmonize includes
. /usr/lib is no longer special: without ack, /usr/lib plays no
kind of special bootstrapping role any more and bootstrapping
is done exclusively through packages, so releases depend even
less on the state of the machine making them now.
. rename nbsd_lib* to lib*
. reduce mtree
Instead of using rootdev= or ramimagedev= in the boot monitor
which are changed to numbers and cannot be used with other
loaders, rootdevname= or ramimagename= are (MINIX-style)
device names always stored as strings.
Patch by Antoine Leca.
- change AcpiOsRemoveInterruptHandler() to print a warning
instead of panic.
- we do the same in AcpiOsInstallInterruptHandler().
Signed-off-by: Tomas Hruby <thruby@few.vu.nl>
. pre-cleanflag ("old") mkfs generates without CLEAN flag,
causing boot not working because imgrd disappears after 1st
close
. fixed sanity check for this situation
. disable imgrd disappearing in memory driver so
readonly mount succeeds in case it happens anyway
. also implement now-possible fsck -p option
. allows unconditional fsck -p invocation at startup,
only checking each filesystem if not marked clean
. mounting unclean is allowed but is forced readonly
. updating the superblock while mounted is now not
allowed by mfs - must be done (e.g. by fsck.mfs)
on an unmounted fs
. clean flag is unset by mfs on mounting, and set by
mfs on clean unmounting (if clean flag was set at
mount time)
Signed-off-by: Ben Gras <ben@minix3.org>
- if no IRQ table is found, we report that ACPI cannot map IRQ
correctly
- fixes mapping of IRQs in KVM because in this case we just fall
through and use the IRQ configured by BIOS. PCI still reports
that it failed to use ACPI. It is a hint if things go wrong.
This driver can be loaded as an overlay on top of a real block
device, and can then be used to generate block-level failures for
certain transfer requests. Specifically, a rule-based system allows
the user to introduce (overt and silent) data corruption and errors.
It exposes itself through /dev/fbd, and a file system can be mounted
on top of it. The new fbdctl(8) tool can be used to control the
driver; see ``man fbdctl'' for details. It also comes with a test
set, located in test/fbdtest.
This removes a race condition when the block driver performs a
complete restart after a crash (the new default). If any user of
the driver finds out its new endpoint and sends a request to the
new driver instance before this instance has had the chance to
initialize, then its initialization would clear all IPC state and
thereby erroneously cancel the incoming request. Clearing IPC
state is only desired upon a stateful restart (where the driver's
endpoint is retained). This information is now passed to and used
by libblockdriver accordingly.
This stops the printer driver from hanging the entire system when
/dev/lp is opened on systems that do not have a parallel port. With
this change, the printer driver shuts down immediately after loading
on such systems.
Each block driver now gets to specify whether it is a disk block
driver, which implies it wants the library to handle getting and
setting partitions for it.
This patch separates the character and block driver communication
protocols. The old character protocol remains the same, but a new
block protocol is introduced. The libdriver library is replaced by
two new libraries: libchardriver and libblockdriver. Their exposed
API, and drivers that use them, have been updated accordingly.
Together, libbdev and libblockdriver now completely abstract away
the message format used by the block protocol. As the memory driver
is both a character and a block device driver, it now implements its
own message loop.
The most important semantic change made to the block protocol is that
it is no longer possible to return both partial results and an error
for a single transfer. This simplifies the interaction between the
caller and the driver, as the I/O vector no longer needs to be copied
back. Also, drivers are now no longer supposed to decide based on the
layout of the I/O vector when a transfer should be cut short. Put
simply, transfers are now supposed to either succeed completely, or
result in an error.
After this patch, the state of the various pieces is as follows:
- block protocol: stable
- libbdev API: stable for synchronous communication
- libblockdriver API: needs slight revision (the drvlib/partition API
in particular; the threading API will also change shortly)
- character protocol: needs cleanup
- libchardriver API: needs cleanup accordingly
- driver restarts: largely unsupported until endpoint changes are
reintroduced
As a side effect, this patch eliminates several bugs, hacks, and gcc
-Wall and -W warnings all over the place. It probably introduces a
few new ones, too.
Update warning: this patch changes the protocol between MFS and disk
drivers, so in order to use old/new images, the MFS from the ramdisk
must be used to mount all file systems.