- Remove unused includes.
- Add include guards to headers.
- Use unsigned variables in case they're never going to hold a negative
value. This causes GCC's complaints to disappear and should make flexelint
a lot happier, too.
- Make functions private when they're used only within a module.
- Remove unused variables.
- Add casts where appropriate.
-Makefile updates
-Update mkdep
-Build fixes/warning cleanups for some programs
-Restore leading underscores on global syms in kernel asm files
-Increase ramdisk size
In this second phase, scheduling is moved from PM to its own
scheduler (see r6557 for phase one). In the next phase we hope to a)
include useful information in the "out of quantum" message and b)
create some simple scheduling policy that makes use of that
information.
When the system starts up, PM will iterate over its process table and
ask SCHED to take over scheduling unprivileged processes. This is
done by sending a SCHEDULING_START message to SCHED. This message
includes the processes endpoint, the parent's endpoint and its nice
level. The scheduler adds this process to its schedproc table, issues
a schedctl, and returns its own endpoint to PM - as the endpoint of
the effective scheduler. When a process terminates, a SCHEDULING_STOP
message is sent to the scheduler.
The reason for this effective endpoint is for future compatibility.
Some day, we may have a scheduler that, instead of scheduling the
process itself, forwards the SCHEDULING_START message on to another
scheduler.
PM has information on who schedules whom. As such, scheduling
messages from user-land are sent through PM. An example is when
processes change their priority, using nice(). In that case, a
getsetpriority message is sent to PM, which then sends a
SCHEDULING_SET_NICE to the process's effective scheduler.
When a process is forked through PM, it inherits its parent's
scheduler, but is spawned with an empty quantum. As before, a request
to fork a process flows through VM before returning to PM, which then
wakes up the child process. This flow has been modified slightly so
that PM notifies the scheduler of the new process, before waking up
the child process. If the scheduler fails to take over scheduling,
the child process is torn down and the fork fails with an erroneous
value.
Process priority is entirely decided upon using nice levels. PM
stores a copy of each process's nice level and when a child is
forked, its parent's nice level is sent in the SCHEDULING_START
message. How this level is mapped to a priority queue is up to the
scheduler. It should be noted that the nice level is used to
determine the max_priority and the parent could have been in a lower
priority when it was spawned. To prevent a CPU intensive process from
hawking the CPU by continuously forking children that get scheduled
in the max_priority, the scheduler should determine in which queue
the parent is currently scheduled, and schedule the child in that
same queue.
Other fixes: The USER_Q in kernel/proc.h was incorrectly defined as
NR_SCHED_QUEUES/2. That results in a "off by one" error when
converting priority->nice->priority for nice=0. This also had the
side effect that if someone were to set the MAX_USER_Q to something
else than 0, then USER_Q would be off.
model to an instance-based model. Each ethernet driver instance is now
responsible for exactly one network interface card. The port field in
/etc/inet.conf now acts as an instance field instead.
This patch also updates the data link protocol. This update:
- eliminates the concept of ports entirely;
- eliminates DL_GETNAME entirely;
- standardizes on using m_source for IPC and DL_ENDPT for safecopies;
- removes error codes from TASK/STAT replies, as they were unused;
- removes a number of other old or unused fields;
- names and renames a few other fields.
All ethernet drivers have been changed to:
- conform to the new protocol, and exactly that;
- take on an instance number based on a given "instance" argument;
- skip that number of PCI devices in probe iterations;
- use config tables and environment variables based on that number;
- no longer be limited to a predefined maximum of cards in any way;
- get rid of any leftover non-safecopy support and other ancient junk;
- have a correct banner protocol figure, or none at all.
Other changes:
* Inet.conf is now taken to be line-based, and supports #-comments.
No existing installations are expected to be affected by this.
* A new, select-based asynchio library replaces the old one.
Kindly contributed by Kees J. Bot.
* Inet now supports use of select() on IP devices.
Combined, the last two changes together speed up dhcpd
considerably in the presence of multiple interfaces.
* A small bug has been fixed in nonamed.
A new call to vm lets processes yield a part of their memory to vm,
together with an id, getting newly allocated memory in return. vm is
allowed to forget about it if it runs out of memory. processes can ask
for it back using the same id. (These two operations are normally
combined in a single call.)
It can be used as a as-big-as-memory-will-allow block cache for
filesystems, which is how mfs now uses it.
RS CHANGES:
- Crash recovery is now implemented like live update. Two instances are kept
side by side and the dead version is live updated into the new one. The endpoint
doesn't change and the failure is not exposed (by default) to other system
services.
- The new instance can be created reactively (when a crash is detected) or
proactively. In the latter case, RS can be instructed to keep a replica of
the system service to perform a hot swap when the service fails. The flag
SF_USE_REPL is set in that case.
- The new flag SF_USE_REPL is supported for services in the boot image and
dynamically started services through the RS interface (i.e. -p option in the
service utility).
- Fixed a free unallocated memory bug for core system services.
this patch changes the way pagefaults are delivered to VM. It adopts
the same model as the out-of-quantum messages sent by kernel to a
scheduler.
- everytime a userspace pagefault occurs, kernel creates a message
which is sent to VM on behalf of the faulting process
- the process is blocked on delivery to VM in the standard IPC code
instead of waiting in a spacial in-kernel queue (stack) and is not
runnable until VM tell kernel that the pagefault is resolved and is
free to clear the RTS_PAGEFAULT flag.
- VM does not need call kernel and poll the pagefault information
which saves many (1/2?) calls and kernel calls that return "no more
data"
- VM notification by kernel does not need to use signals
- each entry in proc table is by 12 bytes smaller (~3k save)