The main motivation for this change is that only Loris supports
multithreading, and Loris supports dynamic thread allocation, so the
number of supported threads can be implemented as a bit flag (i.e.,
either 1 or "at least as many as VFS has"). The ABI break obviates the
need to support file system versioning at this time, and several
other aspects are better implemented as flags as well. Other changes:
- replace peek/bpeek test upon mount with FS flag as well;
- mark libsffs as 64-bit file size capable;
- remove old (3.2.1) getdents support.
Change-Id: I313eace9c50ed816656c31cd47d969033d952a03
Add primary cache management feature to libminixfs as mfs and ext2
currently do separately, remove cache code from mfs and ext2, and make
them use the libminixfs interface. This makes all fields of the buf
struct private to libminixfs and FS clients aren't supposed to access
them at all. Only the opaque 'void *data' field (the FS block contents,
used to be called bp) is to be accessed by the FS client.
The main purpose is to implement the interface to the 2ndary vm cache
just once, get rid of some code duplication, and add a little
abstraction to reduce the code inertia of the whole caching business.
Some minor sanity checking and prohibition done by mfs in this code
as removed from the generic primary cache code as a result:
- checking all inodes are not in use when allocating/resizing
the cache
- checking readonly filesystems aren't written to
- checking the superblock isn't written to on mounted filesystems
The minixfslib code relies on fs_blockstats() in the client filesystem to
return some FS usage information.
. all invocations were S or D, so can safely be dropped
to prepare for the segmentless world
. still assign D to the SCP_SEG field in the message
to make previous kernels usable
. also implement now-possible fsck -p option
. allows unconditional fsck -p invocation at startup,
only checking each filesystem if not marked clean
. mounting unclean is allowed but is forced readonly
. updating the superblock while mounted is now not
allowed by mfs - must be done (e.g. by fsck.mfs)
on an unmounted fs
. clean flag is unset by mfs on mounting, and set by
mfs on clean unmounting (if clean flag was set at
mount time)
Signed-off-by: Ben Gras <ben@minix3.org>
The "bdev" library provides basic primitives for file systems to talk
to block device drivers, hiding the details of the underlying protocol
and interaction model.
This version of libbdev is rather basic. It is planned to support the
following features in the long run:
- asynchronous requests and replies;
- recovery support for underlying block drivers;
- retrying of failed I/O requests.
The commit also changes our block-based file systems (mfs, ext2, isofs)
to make use of libbdev.
- Remove unused includes.
- Add include guards to headers.
- Use unsigned variables in case they're never going to hold a negative
value. This causes GCC's complaints to disappear and should make flexelint
a lot happier, too.
- Make functions private when they're used only within a module.
- Remove unused variables.
- Add casts where appropriate.
SYSLIB CHANGES:
- DS calls to publish / retrieve labels consider endpoints instead of u32_t.
VFS CHANGES:
- mapdriver() only adds an entry in the dmap table in VFS.
- dev_up() is only executed upon reception of a driver up event.
INET CHANGES:
- INET no longer searches for existing drivers instances at startup.
- A newtwork driver is (re)initialized upon reception of a driver up event.
- Networking startup is now race-free by design. No need to waste 5 seconds
at startup any more.
DRIVER CHANGES:
- Every driver publishes driver up events when starting for the first time or
in case of restart when recovery actions must be taken in the upper layers.
- Driver up events are published by drivers through DS.
- For regular drivers, VFS is normally the only subscriber, but not necessarily.
For instance, when the filter driver is in use, it must subscribe to driver
up events to initiate recovery.
- For network drivers, inet is the only subscriber for now.
- Every VFS driver is statically linked with libdriver, every network driver
is statically linked with libnetdriver.
DRIVER LIBRARIES CHANGES:
- Libdriver is extended to provide generic receive() and ds_publish() interfaces
for VFS drivers.
- driver_receive() is a wrapper for sef_receive() also used in driver_task()
to discard spurious messages that were meant to be delivered to a previous
version of the driver.
- driver_receive_mq() is the same as driver_receive() but integrates support
for queued messages.
- driver_announce() publishes a driver up event for VFS drivers and marks
the driver as initialized and expecting a DEV_OPEN message.
- Libnetdriver is introduced to provide similar receive() and ds_publish()
interfaces for network drivers (netdriver_announce() and netdriver_receive()).
- Network drivers all support live update with no state transfer now.
KERNEL CHANGES:
- Added kernel call statectl for state management. Used by driver_announce() to
unblock eventual callers sendrecing to the driver.
this change
- makes panic() variadic, doing full printf() formatting -
no more NO_NUM, and no more separate printf() statements
needed to print extra info (or something in hex) before panicing
- unifies panic() - same panic() name and usage for everyone -
vm, kernel and rest have different names/syntax currently
in order to implement their own luxuries, but no longer
- throws out the 1st argument, to make source less noisy.
the panic() in syslib retrieves the server name from the kernel
so it should be clear enough who is panicing; e.g.
panic("sigaction failed: %d", errno);
looks like:
at_wini(73130): panic: sigaction failed: 0
syslib:panic.c: stacktrace: 0x74dc 0x2025 0x100a
- throws out report() - printf() is more convenient and powerful
- harmonizes/fixes the use of panic() - there were a few places
that used printf-style formatting (didn't work) and newlines
(messes up the formatting) in panic()
- throws out a few per-server panic() functions
- cleans up a tie-in of tty with panic()
merging printf() and panic() statements to be done incrementally.
Main changes:
- COW optimization for safecopy.
- safemap, a grant-based interface for sharing memory regions between processes.
- Integration with safemap and complete rework of DS, supporting new data types
natively (labels, memory ranges, memory mapped ranges).
- For further information:
http://wiki.minix3.org/en/SummerOfCode2009/MemoryGrants
Additional changes not included in the original Wu's branch:
- Fixed unhandled case in VM when using COW optimization for safecopy in case
of a block that has already been shared as SMAP.
- Better interface and naming scheme for sys_saferevmap and ds_retrieve_map
calls.
- Better input checking in syslib: check for page alignment when creating
memory mapping grants.
- DS notifies subscribers when an entry is deleted.
- Documented the behavior of indirect grants in case of memory mapping.
- Test suite in /usr/src/test/safeperf|safecopy|safemap|ds/* reworked
and extended.
- Minor fixes and general cleanup.
- TO-DO: Grant ids should be generated and managed the way endpoints are to make
sure grant slots are never misreused.
SYSLIB CHANGES:
- SEF framework now supports a new SEF Init request type from RS. 3 different
callbacks are available (init_fresh, init_lu, init_restart) to specify
initialization code when a service starts fresh, starts after a live update,
or restarts.
SYSTEM SERVICE CHANGES:
- Initialization code for system services is now enclosed in a callback SEF will
automatically call at init time. The return code of the callback will
tell RS whether the initialization completed successfully.
- Each init callback can access information passed by RS to initialize. As of
now, each system service has access to the public entries of RS's system process
table to gather all the information required to initialize. This design
eliminates many existing or potential races at boot time and provides a uniform
initialization interface to system services. The same interface will be reused
for the upcoming publish/subscribe model to handle dynamic
registration / deregistration of system services.
VM CHANGES:
- Uniform privilege management for all system services. Every service uses the
same call mask format. For boot services, VM copies the call mask from init
data. For dynamic services, VM still receives the call mask via rs_set_priv
call that will be soon replaced by the upcoming publish/subscribe model.
RS CHANGES:
- The system process table has been reorganized and split into private entries
and public entries. Only the latter ones are exposed to system services.
- VM call masks are now entirely configured in rs/table.c
- RS has now its own slot in the system process table. Only kernel tasks and
user processes not included in the boot image are now left out from the system
process table.
- RS implements the initialization protocol for system services.
- For services in the boot image, RS blocks till initialization is complete and
panics when failure is reported back. Services are initialized in their order of
appearance in the boot image priv table and RS blocks to implements synchronous
initialization for every system service having the flag SF_SYNCH_BOOT set.
- For services started dynamically, the initialization protocol is implemented
as though it were the first ping for the service. In this case, if the
system service fails to report back (or reports failure), RS brings the service
down rather than trying to restart it.
- Revise VFS-FS protocol and update VFS/MFS/ISOFS accordingly.
- Clean up MFS by removing old, dead code (backwards compatibility is broken by
the new VFS-FS protocol, anyway) and rewrite other parts. Also, make sure all
functions have proper banners and prototypes.
- VFS should always provide a (syntactically) valid path to the FS; no need for
the FS to do sanity checks when leaving/entering mount points.
- Fix several bugs in MFS:
- Several path lookup bugs in MFS.
- A link can be too big for the path buffer.
- A mountpoint can become inaccessible when the creation of a new inode
fails, because the inode already exists and is a mountpoint.
- Introduce support for supplemental groups.
- Add test 46 to test supplemental group functionality (and removed obsolete
suppl. tests from test 2).
- Clean up VFS (not everything is done yet).
- ISOFS now opens device read-only. This makes the -r flag in the mount command
unnecessary (but will still report to be mounted read-write).
- Introduce PipeFS. PipeFS is a new FS that handles all anonymous and
named pipes. However, named pipes still reside on the (M)FS, as they are part
of the file system on disk. To make this work VFS now has a concept of
'mapped' inodes, which causes read, write, truncate and stat requests to be
redirected to the mapped FS, and all other requests to the original FS.
- slight code cleanup
- neater exit procedure: exit when unmount
message received and kill signal (from RS 'down' or
reboot/shutdown) received (speed up unmount, but don't
confuse VFS by exiting before/during unmount msg)
. changed umount() and mount() to call 'service', so that it can include
a custom label, so that umount() works again (RS slot gets freed now).
merged umount() and mount() into one file to encode keep this label
knowledge in one file.
. removed obsolete RS_PID field and RS_RESCUE rescue command
. added label to RS_START struct
. vfs no longer does kill of fs process on unmount (which was failing
due to RS_PID request not working)
. don't assume that if error wasn't one of three errors, that no error
occured in vfs/request.c
mfs changes:
. added checks to copy statements to truncate copies at buffer sizes
(left in debug code for now)
. added checks for null-terminatedness, if less than NAME_MAX was copied
. added checks for copy function success
is changes:
. dump rs label
drivers.conf changes:
. added acl for mfs so that mfs can be started with 'service start',
so that a custom label can be provided