Add primary cache management feature to libminixfs as mfs and ext2
currently do separately, remove cache code from mfs and ext2, and make
them use the libminixfs interface. This makes all fields of the buf
struct private to libminixfs and FS clients aren't supposed to access
them at all. Only the opaque 'void *data' field (the FS block contents,
used to be called bp) is to be accessed by the FS client.
The main purpose is to implement the interface to the 2ndary vm cache
just once, get rid of some code duplication, and add a little
abstraction to reduce the code inertia of the whole caching business.
Some minor sanity checking and prohibition done by mfs in this code
as removed from the generic primary cache code as a result:
- checking all inodes are not in use when allocating/resizing
the cache
- checking readonly filesystems aren't written to
- checking the superblock isn't written to on mounted filesystems
The minixfslib code relies on fs_blockstats() in the client filesystem to
return some FS usage information.
. No functional change
. Only serves to get hooks to do checks in
. e.g. should things be marked dirty when we are
mounted readonly
Signed-off-by: Ben Gras <ben@minix3.org>
- Remove unused includes.
- Add include guards to headers.
- Use unsigned variables in case they're never going to hold a negative
value. This causes GCC's complaints to disappear and should make flexelint
a lot happier, too.
- Make functions private when they're used only within a module.
- Remove unused variables.
- Add casts where appropriate.
this change
- makes panic() variadic, doing full printf() formatting -
no more NO_NUM, and no more separate printf() statements
needed to print extra info (or something in hex) before panicing
- unifies panic() - same panic() name and usage for everyone -
vm, kernel and rest have different names/syntax currently
in order to implement their own luxuries, but no longer
- throws out the 1st argument, to make source less noisy.
the panic() in syslib retrieves the server name from the kernel
so it should be clear enough who is panicing; e.g.
panic("sigaction failed: %d", errno);
looks like:
at_wini(73130): panic: sigaction failed: 0
syslib:panic.c: stacktrace: 0x74dc 0x2025 0x100a
- throws out report() - printf() is more convenient and powerful
- harmonizes/fixes the use of panic() - there were a few places
that used printf-style formatting (didn't work) and newlines
(messes up the formatting) in panic()
- throws out a few per-server panic() functions
- cleans up a tie-in of tty with panic()
merging printf() and panic() statements to be done incrementally.
- VFS: check for negative sizes in all truncate calls
- VFS: update file size after truncating with fcntl(F_FREESP)
- VFS: move pos/len checks for F_FREESP with l_len!=0 from FS to VFS
- MFS: do not zero data block for small files when fully truncating
- MFS: do not write out freed indirect blocks after freeing space
- MFS: make truncate work correctly with differing zone/block sizes
- tests: add new test50 for truncate call family
- Revise VFS-FS protocol and update VFS/MFS/ISOFS accordingly.
- Clean up MFS by removing old, dead code (backwards compatibility is broken by
the new VFS-FS protocol, anyway) and rewrite other parts. Also, make sure all
functions have proper banners and prototypes.
- VFS should always provide a (syntactically) valid path to the FS; no need for
the FS to do sanity checks when leaving/entering mount points.
- Fix several bugs in MFS:
- Several path lookup bugs in MFS.
- A link can be too big for the path buffer.
- A mountpoint can become inaccessible when the creation of a new inode
fails, because the inode already exists and is a mountpoint.
- Introduce support for supplemental groups.
- Add test 46 to test supplemental group functionality (and removed obsolete
suppl. tests from test 2).
- Clean up VFS (not everything is done yet).
- ISOFS now opens device read-only. This makes the -r flag in the mount command
unnecessary (but will still report to be mounted read-write).
- Introduce PipeFS. PipeFS is a new FS that handles all anonymous and
named pipes. However, named pipes still reside on the (M)FS, as they are part
of the file system on disk. To make this work VFS now has a concept of
'mapped' inodes, which causes read, write, truncate and stat requests to be
redirected to the mapped FS, and all other requests to the original FS.