- there are cycles wasted in the IPC call due to a fairly compliacted
way of copying messages from userland to kernel. Sometimes this
complicated way (generic though) is used even for copying within the
kernel address space, sometimes it is used for copying in case _no_
copying is necessary. The goal of this patch is to improve this a
little bit.
- the places where a copy is from user to kernel use the
copy_msg_from_user() kernel-kernel copies are turned into
assignments and BuildNotifyMessage uses the delivery buffers to
avoid copying.
- copy_msg_from_user() was introduced when removing the system task
and is about 2/3 faster then using the current mechanism
(phys_copy). It also avoids the PHYS_COPY_CATCH macro. Assignment is
also faster and no copy is the fastest ;-) so perhaps there will be
some hardly noticable performance gain besides the clean up.
- cotributed by Bjorn Swift
- In this first phase, scheduling is moved from the kernel to the PM
server. The next steps are to a) moving scheduling to its own server
and b) include useful information in the "out of quantum" message,
so that the scheduler can make use of this information.
- The kernel process table now keeps record of who is responsible for
scheduling each process (p_scheduler). When this pointer is NULL,
the process will be scheduled by the kernel. If such a process runs
out of quantum, the kernel will simply renew its quantum an requeue
it.
- When PM loads, it will take over scheduling of all running
processes, except system processes, using sys_schedctl().
Essentially, this only results in taking over init. As children
inherit a scheduler from their parent, user space programs forked by
init will inherit PM (for now) as their scheduler.
- Once a process has been assigned a scheduler, and runs out of
quantum, its RTS_NO_QUANTUM flag will be set and the process
dequeued. The kernel will send a message to the scheduler, on the
process' behalf, informing the scheduler that it has run out of
quantum. The scheduler can take what ever action it pleases, based
on its policy, and then reschedule the process using the
sys_schedule() system call.
- Balance queues does not work as before. While the old in-kernel
function used to renew the quantum of processes in the highest
priority run queue, the user-space implementation only acts on
processes that have been bumped down to a lower priority queue.
This approach reacts slower to changes than the old one, but saves
us sending a sys_schedule message for each process every time we
balance the queues. Currently, when processes are moved up a
priority queue, their quantum is also renewed, but this can be
fiddled with.
- do_nice has been removed from kernel. PM answers to get- and
setpriority calls, updates it's own nice variable as well as the
max_run_queue. This will be refactored once scheduling is moved to a
separate server. We will probably have PM update it's local nice
value and then send a message to whoever is scheduling the process.
- changes to fix an issue in do_fork() where processes could run out
of quantum but bypassing the code path that handles it correctly.
The future plan is to remove the policy from do_fork() and implement
it in userspace too.
Currently a sequence of messages between a sender A and a receiver B of the
form: A.asynsend(M1, B); A.send(M2, B) may result in the receiver receiving
M1 first and then M2 or viceversa. This patch makes sure that the original
order M1, M2 is always preserved.
Note that the order of a hypotetical sequence A.asynsend(M1, B);
A.asynsend(M2, B) is already guaranteed by the implementation of
asynsend by design. Other senda-based wrappers can define their own
semantics.
- ack assumes that the direction flag in eflags is clear when
assigning two structures. It is implemented by a call to a built-in
function which is like memcpy but needs the flag to be clear
otherwise rubish is copied. This patch fixes the kernel entries.
- When the cpu halts, the interrupts are enable so the cpu may be
woken up. When the interrupt handler returns but another interrupt
is available it is also serviced immediately. This is not a problem
per-se. It only slightly breaks time accounting as idle accounted is
for the kernel time in the interrupt handler.
- As the big kernel lock is lock/unlocked in the smp branch in the
time acounting functions as they are called exactly at the places
we need to take the lock) this leads to a deadlock.
- we make sure that once the interrupt handler returns from the nested
trap, the interrupts are disabled. This means that only one
interrupt is serviced after idle is interrupted.
- this requires the loop in apic timer calibration to keep reenabling
the interrupts. I admit it is a little bit hackish (one line),
however, this code is a stupid corner case at the boot time.
Hopefully it does not matter too much.
IPC changes:
- receive() is changed to take an additional parameter, which is a pointer to
a status code.
- The status code is filled in by the kernel to provide additional information
to the caller. For now, the kernel only fills in the IPC call used by the
sender.
Syslib changes:
- sef_receive() has been split into sef_receive() (with the original semantics)
and sef_receive_status() which exposes the status code to userland.
- Ideally, every sys process should gradually switch to sef_receive_status()
and use is_ipc_notify() as a dependable way to check for notify.
- SEF has been modified to use is_ipc_notify() and demonstrate how to use the
new status code.
- before enabling paging VM asks kernel to resize its segments. This
may cause kernel to segfault if APIC is used and an interrupt
happens between this and paging enabled. As these are 2 separate
vmctl calls it is not atomic. This patch fixes this problem. VM does
not ask kernel to resize the segments in a separate call anymore.
The new segments limit is part of the "enable paging" call. It
generalizes this call in such a way that more information can be
passed as need be or the information may be completely different if
another architecture requires this.
- if an exception occurs in kernel and this exception is not handled
in an sane way and the kernel crashes, it also dumps what was loaded
in the general purpose registers exactly at the time of the
exception to help to debug the problem
the kernel. They are not used atm, but having them in trunk allows them
to be easily used when needed. To set a breakpoint that triggers when
the variable foo is written to (the most common use case), one calls:
breakpoint_set(vir2phys((vir_bytes) &foo), 0,
BREAKPOINT_FLAG_MODE_GLOBAL |
BREAKPOINT_FLAG_RW_WRITE |
BREAKPOINT_FLAG_LEN_4);
It can later be disabled using:
breakpoint_set(vir2phys((vir_bytes) &foo), 0,
BREAKPOINT_FLAG_MODE_OFF);
There are some limitations:
- There are at most four breakpoints (hardware limit); the index of the
breakpoint (0-3) is specified as the second parameter of
breakpoint_set.
- The breakpoint exception in the kernel is not handled and causes a
panic; it would be reasonably easy to change this by inspecing DR6,
printing a message, disabling the breakpoint and continuing. However,
in my experience even just a panic can be very useful.
- Breakpoints can be set only in the part of the address space that is
in every page table. It is useful for the kernel, but to use this for
user processes would require saving and restoring the debug registers
as part of the context switch. Although the CPU provides support for
local breakpoints (I implemened this as BREAKPOINT_FLAG_LOCAL) they
only work if task switching is used.
forget about the dirtypde bitmap and WIPEPDE/DONEPDE macros too.
check if mapping happens to already be in place, and if so, don't
reload cr3 (on the account of that mapping, that is).
don't reload cr3 unconditionally.
UPDATING INFO:
20100317:
/usr/src/etc/system.conf updated to ignore default kernel calls: copy
it (or merge it) to /etc/system.conf.
The hello driver (/dev/hello) added to the distribution:
# cd /usr/src/commands/scripts && make clean install
# cd /dev && MAKEDEV hello
KERNEL CHANGES:
- Generic signal handling support. The kernel no longer assumes PM as a signal
manager for every process. The signal manager of a given process can now be
specified in its privilege slot. When a signal has to be delivered, the kernel
performs the lookup and forwards the signal to the appropriate signal manager.
PM is the default signal manager for user processes, RS is the default signal
manager for system processes. To enable ptrace()ing for system processes, it
is sufficient to change the default signal manager to PM. This will temporarily
disable crash recovery, though.
- sys_exit() is now split into sys_exit() (i.e. exit() for system processes,
which generates a self-termination signal), and sys_clear() (i.e. used by PM
to ask the kernel to clear a process slot when a process exits).
- Added a new kernel call (i.e. sys_update()) to swap two process slots and
implement live update.
PM CHANGES:
- Posix signal handling is no longer allowed for system processes. System
signals are split into two fixed categories: termination and non-termination
signals. When a non-termination signaled is processed, PM transforms the signal
into an IPC message and delivers the message to the system process. When a
termination signal is processed, PM terminates the process.
- PM no longer assumes itself as the signal manager for system processes. It now
makes sure that every system signal goes through the kernel before being
actually processes. The kernel will then dispatch the signal to the appropriate
signal manager which may or may not be PM.
SYSLIB CHANGES:
- Simplified SEF init and LU callbacks.
- Added additional predefined SEF callbacks to debug crash recovery and
live update.
- Fixed a temporary ack in the SEF init protocol. SEF init reply is now
completely synchronous.
- Added SEF signal event type to provide a uniform interface for system
processes to deal with signals. A sef_cb_signal_handler() callback is
available for system processes to handle every received signal. A
sef_cb_signal_manager() callback is used by signal managers to process
system signals on behalf of the kernel.
- Fixed a few bugs with memory mapping and DS.
VM CHANGES:
- Page faults and memory requests coming from the kernel are now implemented
using signals.
- Added a new VM call to swap two process slots and implement live update.
- The call is used by RS at update time and in turn invokes the kernel call
sys_update().
RS CHANGES:
- RS has been reworked with a better functional decomposition.
- Better kernel call masks. com.h now defines the set of very basic kernel calls
every system service is allowed to use. This makes system.conf simpler and
easier to maintain. In addition, this guarantees a higher level of isolation
for system libraries that use one or more kernel calls internally (e.g. printf).
- RS is the default signal manager for system processes. By default, RS
intercepts every signal delivered to every system process. This makes crash
recovery possible before bringing PM and friends in the loop.
- RS now supports fast rollback when something goes wrong while initializing
the new version during a live update.
- Live update is now implemented by keeping the two versions side-by-side and
swapping the process slots when the old version is ready to update.
- Crash recovery is now implemented by keeping the two versions side-by-side
and cleaning up the old version only when the recovery process is complete.
DS CHANGES:
- Fixed a bug when the process doing ds_publish() or ds_delete() is not known
by DS.
- Fixed the completely broken support for strings. String publishing is now
implemented in the system library and simply wraps publishing of memory ranges.
Ideally, we should adopt a similar approach for other data types as well.
- Test suite fixed.
DRIVER CHANGES:
- The hello driver has been added to the Minix distribution to demonstrate basic
live update and crash recovery functionalities.
- Other drivers have been adapted to conform the new SEF interface.
swapcontext, and makecontext).
- Fix VM to not erroneously think the stack segment and data segment have
collided when a user-space thread invokes brk().
- Add test51 to test ucontext functionality.
- Add man pages for ucontext system calls.
Move archtypes.h to include/ dir, since several servers require it. Move
fpu.h and stackframe.h to arch-specific header directory. Make source
files and makefiles aware of the new header locations.
-Convert the include directory over to using bsdmake
syntax
-Update/add mkfiles
-Modify install(1) so that it can create symlinks
-Update makefiles to use new install(1) options
-Rename /usr/include/ibm to /usr/include/i386
-Create /usr/include/machine symlink to arch header files
-Move vm_i386.h to its new home in the /usr/include/i386
-Update source files to #include the header files at their
new homes.
-Add new gnu-includes target for building GCC headers
this change
- makes panic() variadic, doing full printf() formatting -
no more NO_NUM, and no more separate printf() statements
needed to print extra info (or something in hex) before panicing
- unifies panic() - same panic() name and usage for everyone -
vm, kernel and rest have different names/syntax currently
in order to implement their own luxuries, but no longer
- throws out the 1st argument, to make source less noisy.
the panic() in syslib retrieves the server name from the kernel
so it should be clear enough who is panicing; e.g.
panic("sigaction failed: %d", errno);
looks like:
at_wini(73130): panic: sigaction failed: 0
syslib:panic.c: stacktrace: 0x74dc 0x2025 0x100a
- throws out report() - printf() is more convenient and powerful
- harmonizes/fixes the use of panic() - there were a few places
that used printf-style formatting (didn't work) and newlines
(messes up the formatting) in panic()
- throws out a few per-server panic() functions
- cleans up a tie-in of tty with panic()
merging printf() and panic() statements to be done incrementally.
process waiting for" logic, which is duplicated a few times in the
kernel. (For a new feature for top.)
Introducing it and throwing out ESRCDIED and EDSTDIED (replaced by
EDEADSRCDST - so we don't have to care which part of the blocking is
failing in system.c) simplifies some code in the kernel and callers that
check for E{DEADSRCDST,ESRCDIED,EDSTDIED}, but don't care about the
difference, a fair bit, and more significantly doesn't duplicate the
'blocked-on' logic.
- as thre are still KERNEL and IDLE entries, time accounting for
kernel and idle time works the same as for any other process
- everytime we stop accounting for the currently running process,
kernel or idle, we read the TSC counter and increment the p_cycles
entry.
- the process cycles inherently include some of the kernel cycles as
we can stop accounting for the process only after we save its
context and we start accounting just before we restore its context
- this assumes that the system does not scale the CPU frequency which
will be true for ... long time ;-)
- we don't need to test this in kernel as we always have interrupts
disabled
- if interrupts are enabled in kernel, it is only at very carefully
chosen places. There are no such places now.
- there are no tasks running, we don't need TASK_PRIVILEGE priviledge anymore
- as there is no ring 1 anymore, there is no need for level0() to call sensitive
code from ring 1 in ring 0
- 286 related macros removed as clean up
- no kernel tasks are runnable
- clock initialization moved to the end of main()
- the rest of the body of clock_task() is moved to bsp_timer_int_handler() as
for now we are going to handle this on the bootstrap cpu. A change later is
possible.
* Userspace change to use the new kernel calls
- _taskcall(SYSTASK...) changed to _kernel_call(...)
- int 32 reused for the kernel calls
- _do_kernel_call() to make the trap to kernel
- kernel_call() to make the actuall kernel call from C using
_do_kernel_call()
- unlike ipc call the kernel call always succeeds as kernel is
always available, however, kernel may return an error
* Kernel side implementation of kernel calls
- the SYSTEm task does not run, only the proc table entry is
preserved
- every data_copy(SYSTEM is no data_copy(KERNEL
- "locking" is an empty operation now as everything runs in
kernel
- sys_task() is replaced by kernel_call() which copies the
message into kernel, dispatches the call to its handler and
finishes by either copying the results back to userspace (if
need be) or by suspending the process because of VM
- suspended processes are later made runnable once the memory
issue is resolved, picked up by the scheduler and only at
this time the call is resumed (in fact restarted) which does
not need to copy the message from userspace as the message
is already saved in the process structure.
- no ned for the vmrestart queue, the scheduler will restart
the system calls
- no special case in do_vmctl(), all requests remove the
RTS_VMREQUEST flag
- copies a mesage from/to userspace without need of translating
addresses
- the assumption is that the address space is installed, i.e. ldt and
cr3 are loaded correctly
- if a pagefault or a general protection occurs while copying from
userland to kernel (or vice versa) and error is returned which gives
the caller a chance to respond in a proper way
- error happens _only_ because of a wrong user pointer if the function
is used correctly
- if the prerequisites of the function do no hold, the function will
most likely fail as the user address becomes random
- switch_address_space() implements a switch of the user address space
for the destination process
- this makes memory of this process easily accessible, e.g. a pointer
valid in the userspace can be used with a little complexity to
access the process's memory
- the switch does not happed only just before we return to userspace,
however, it happens right after we know which process we are going
to schedule. This happens before we start processing the misc flags
of this process so its memory is available
- if the process becomes not runnable while processing the mics flags
we pick a new process and we switch the address space again which
introduces possibly a little bit more overhead, however, it is
hopefully hidden by reducing the overheads when we actually access
the memory
- the syscalls are pretty much just ipc calls, however, sendrec() is
used to implement system task (sys) calls
- sendrec() won't be used anymore for this, therefore ipc calls will
become pure ipc calls
- the system task initialization code does not really need to be part
of the system task process. An earlier initialization in kernel is
cleaner as it does not only initialize the syscalls but also irq
hooks etc.
kernel (sys task). The main reason is that these would have to become
cpu local variables on SMP. Once the system task is not a task but a
genuine part of the kernel there is even less reason to have these
extra variables as proc_ptr will already contain all neccessary
information. In addition converting who_e to the process pointer and
back again all the time will be avoided.
Although proc_ptr will contain all important information, accessing it
as a cpu local variable will be fairly expensive, hence the value
would be assigned to some on stack local variable. Therefore it is
better to add the 'caller' argument to the syscall handlers to pass
the value on stack anyway. It also clearly denotes on who's behalf is
the syscall being executed.
This patch also ANSIfies the syscall function headers.
Last but not least, it also fixes a potential bug in virtual_copy_f()
in case the check is disabled. So far the function in case of a
failure could possible reuse an old who_p in case this function had
not been called from the system task.
virtual_copy_f() takes the caller as a parameter too. In case the
checking is disabled, the caller must be NULL and non NULL if it is
enabled as we must be able to suspend the caller.