size field. The TIOCSFON ioctl size (8192) didn't get encoded properly,
as there weren't enough bits for it (12) in the regular format.
The new format has only one type field, and an extra flag (_IOC_BIG)
turned on. FS checks for this flag and uses the alternative decoding
of the ioctl codes to determine the size when doing grants.
This unbreaks loadfont, although that still uses a phys copy in tty.
. don't loop doing a receive() after sendrec() - chance of recovering is not
high, and can lead to receive()ing a notify() (which can't happen in sendrec()),
which is terrible
. return status from device when DEV_CANCEL is done on a signal; hardcode EAGAIN to
become EINTR though
For character device i/o, FS does a so-called 'magic' grant to let the
driver copy from or to user space. As this is done in FS address space,
the driver is told to do this in FS address space. The redirection to
the right user process then happens at copy-time in the kernel, using the
FS grant table. This also happens for DEV_READ and DEV_WRITE on block
devices.
For other block device i/o, which happens from/to FS buffers, FS does
a 'direct' grant to its own address space for the driver.
After the i/o returns, this access has to be K-I-L-L-E-D, revoked.
Sometimes this is after a SUSPEND and DEV_REVIVE, in which case the
revoking happens in pipe.c.
This conversion happens in safe_io_conversion() in device.c, called
by dev_io and dev_bio.
FS has to pre-allocate its own space for these grant tables. This happens
in main.c.
. loops checked for PID_FREE
. exit broken down in exit and cleanup functions; when reboot happens,
cleanup is done but not exit (as processes have not actually exited),
this keeps drivers working
. fixed a few uninitialized and unused variables
scripts:
. new packaging system
'who', indicating caller number in pm and fs and some other servers, has
been removed in favour of 'who_e' (endpoint) and 'who_p' (proc nr.).
In both PM and FS, isokendpt() convert endpoints to process slot
numbers, returning OK if it was a valid and consistent endpoint number.
okendpt() does the same but panic()s if it doesn't succeed. (In PM,
this is pm_isok..)
pm and fs keep their own records of process endpoints in their proc tables,
which are needed to make kernel calls about those processes.
message field names have changed.
fs drivers are endpoints.
fs now doesn't try to get out of driver deadlock, as the protocol isn't
supposed to let that happen any more. (A warning is printed if ELOCKED
is detected though.)
fproc[].fp_task (indicating which driver the process is suspended on)
became an int.
PM and FS now get endpoint numbers of initial boot processes from the
kernel. These happen to be the same as the old proc numbers, to let
user processes reach them with the old numbers, but FS and PM don't know
that. All new processes after INIT, even after the generation number
wraps around, get endpoint numbers with generation 1 and higher, so
the first instances of the boot processes are the only processes ever
to have endpoint numbers in the old proc number range.
More return code checks of sys_* functions have been added.
IS has become endpoint-aware. Ditched the 'text' and 'data' fields
in the kernel dump (which show locations, not sizes, so aren't terribly
useful) in favour of the endpoint number. Proc number is still visible.
Some other dumps (e.g. dmap, rs) show endpoint numbers now too which got
the formatting changed.
PM reading segments using rw_seg() has changed - it uses other fields
in the message now instead of encoding the segment and process number and
fd in the fd field. For that it uses _read_pm() and _write_pm() which to
_taskcall()s directly in pm/misc.c.
PM now sys_exit()s itself on panic(), instead of sys_abort().
RS also talks in endpoints instead of process numbers.
. When drivers disappear that have pending select()s, wake up
those user processes with EAGAIN so that they can retry their
select() and won't hang forever on it.
. When drivers re-appear and are mapped into the dmap, run through
the list of mounted filesystems and re-dev_open() every one (for
partition tables and such). This can't happen before the driver
has exec()ced itself, so processes that have fork()ed but not
exec()ced yet are marked as DMAP_BABY in the dmap table if they
are dmapped before they are execced. If that happens, the above
procedure happens after the exec(). If the exec() happens before
the dmapping, it (the dev_open()ing) happens right away.
. unmap device drivers from dmap when PM signals they are dead
. new null-io function (no_dev_io) to fill in for io functions
of unmapped drivers
. driver (process number) of unmapped drivers is NONE instead of
0 (a valid process number)
IS:
. print mutable flag of dmap table too
FS changes require sync() to be done 'manually' (currently by
reboot/shutdown) at shutdown time; could be caught by SIGTERM in
the future.
and the new log driver if enabled.
new usyslogd is started from /usr/etc/rc. New device created by
MAKEDEV.sh. /var/log created by etc/mtree/minix.tree (on root for
now). Made select() slightly more generic, with less code duplication.
Added interface to select() for pipes (also named pipes), and select()
stubs for regular files.
Added timer library in FS that select() is the first customer of.
This is unfinished, but committed anyway to get a new release out to
Al and testers.
names. All system processes can now either use panic() or report() from
libutils, or redefine their own function. Assertions are done via the standard
<assert.h> functionality.