Commit graph

19 commits

Author SHA1 Message Date
Ben Gras
11084d94e6 kernel: clean up objects
. objects left over from libraries are left around
2012-07-28 22:21:53 +02:00
Ben Gras
50e2064049 No more intel/minix segments.
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.

There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.

No static pre-allocated memory sizes exist any more.

Changes to booting:
        . The pre_init.c leaves the kernel and modules exactly as
          they were left by the bootloader in physical memory
        . The kernel starts running using physical addressing,
          loaded at a fixed location given in its linker script by the
          bootloader.  All code and data in this phase are linked to
          this fixed low location.
        . It makes a bootstrap pagetable to map itself to a
          fixed high location (also in linker script) and jumps to
          the high address. All code and data then use this high addressing.
        . All code/data symbols linked at the low addresses is prefixed by
          an objcopy step with __k_unpaged_*, so that that code cannot
          reference highly-linked symbols (which aren't valid yet) or vice
          versa (symbols that aren't valid any more).
        . The two addressing modes are separated in the linker script by
          collecting the unpaged_*.o objects and linking them with low
          addresses, and linking the rest high. Some objects are linked
          twice, once low and once high.
        . The bootstrap phase passes a lot of information (e.g. free memory
          list, physical location of the modules, etc.) using the kinfo
          struct.
        . After this bootstrap the low-linked part is freed.
        . The kernel maps in VM into the bootstrap page table so that VM can
          begin executing. Its first job is to make page tables for all other
          boot processes. So VM runs before RS, and RS gets a fully dynamic,
          VM-managed address space. VM gets its privilege info from RS as usual
          but that happens after RS starts running.
        . Both the kernel loading VM and VM organizing boot processes happen
	  using the libexec logic. This removes the last reason for VM to
	  still know much about exec() and vm/exec.c is gone.

Further Implementation:
        . All segments are based at 0 and have a 4 GB limit.
        . The kernel is mapped in at the top of the virtual address
          space so as not to constrain the user processes.
        . Processes do not use segments from the LDT at all; there are
          no segments in the LDT any more, so no LLDT is needed.
        . The Minix segments T/D/S are gone and so none of the
          user-space or in-kernel copy functions use them. The copy
          functions use a process endpoint of NONE to realize it's
          a physical address, virtual otherwise.
        . The umap call only makes sense to translate a virtual address
          to a physical address now.
        . Segments-related calls like newmap and alloc_segments are gone.
        . All segments-related translation in VM is gone (vir2map etc).
        . Initialization in VM is simpler as no moving around is necessary.
        . VM and all other boot processes can be linked wherever they wish
          and will be mapped in at the right location by the kernel and VM
          respectively.

Other changes:
        . The multiboot code is less special: it does not use mb_print
          for its diagnostics any more but uses printf() as normal, saving
          the output into the diagnostics buffer, only printing to the
          screen using the direct print functions if a panic() occurs.
        . The multiboot code uses the flexible 'free memory map list'
          style to receive the list of free memory if available.
        . The kernel determines the memory layout of the processes to
          a degree: it tells VM where the kernel starts and ends and
          where the kernel wants the top of the process to be. VM then
          uses this entire range, i.e. the stack is right at the top,
          and mmap()ped bits of memory are placed below that downwards,
          and the break grows upwards.

Other Consequences:
        . Every process gets its own page table as address spaces
          can't be separated any more by segments.
        . As all segments are 0-based, there is no distinction between
          virtual and linear addresses, nor between userspace and
          kernel addresses.
        . Less work is done when context switching, leading to a net
          performance increase. (8% faster on my machine for 'make servers'.)
	. The layout and configuration of the GDT makes sysenter and syscall
	  possible.
2012-07-15 22:30:15 +02:00
Thomas Veerman
f09c2e014f Use MACHINE_ARCH instead of ARCH 2012-06-18 10:53:35 +00:00
Ben Gras
910a0e1093 kernel: make sure mpx.S is linked early
. for qemu multiboot detection
2012-06-01 16:58:00 +02:00
Ben Gras
3803c55856 kernel: neater arch-dependent split in Makefiles
. files in kernel/ references in kernel/Makefile, but
	  in kernel/arch/i386/ in kernel/arch/i386/Makefile.inc
2012-05-31 01:06:19 +02:00
Ben Gras
b41df2eb0d kernel: mon_return cleanup
cleanup of boot monitor related code.
2012-04-25 17:59:43 +02:00
Ben Gras
8c4cdbd3c5 import genassym and use it for sconst.h in kernel 2012-03-31 15:29:53 +02:00
Ben Gras
2fe8fb192f Full switch to clang/ELF. Drop ack. Simplify.
There is important information about booting non-ack images in
docs/UPDATING. ack/aout-format images can't be built any more, and
booting clang/ELF-format ones is a little different. Updating to the
new boot monitor is recommended.

Changes in this commit:

	. drop boot monitor -> allowing dropping ack support
	. facility to copy ELF boot files to /boot so that old boot monitor
	  can still boot fairly easily, see UPDATING
	. no more ack-format libraries -> single-case libraries
	. some cleanup of OBJECT_FMT, COMPILER_TYPE, etc cases
	. drop several ack toolchain commands, but not all support
	  commands (e.g. aal is gone but acksize is not yet).
	. a few libc files moved to netbsd libc dir
	. new /bin/date as minix date used code in libc/
	. test compile fix
	. harmonize includes
	. /usr/lib is no longer special: without ack, /usr/lib plays no
	  kind of special bootstrapping role any more and bootstrapping
	  is done exclusively through packages, so releases depend even
	  less on the state of the machine making them now.
	. rename nbsd_lib* to lib*
	. reduce mtree
2012-02-14 14:52:02 +01:00
Arun Thomas
40592de32d Optionally disable kernel debug code 2011-08-16 17:18:55 +02:00
Arun Thomas
ae561b8f12 Add MKAPIC and MKACPI options 2011-07-31 16:22:43 +02:00
Arun Thomas
1a8cf59d04 Add MKWATCHDOG option 2011-07-29 20:37:39 +02:00
Tomas Hruby
62c666566e SMP - We boot APs
- kernel detects CPUs by searching ACPI tables for local apic nodes

- each CPU has its own TSS that points to its own stack. All cpus boot
  on the same boot stack (in sequence) but switch to its private stack
  as soon as they can.

- final booting code in main() placed in bsp_finish_booting() which is
  executed only after the BSP switches to its final stack

- apic functions to send startup interrupts

- assembler functions to handle CPU features not needed for single cpu
  mode like memory barries, HT detection etc.

- new files kernel/smp.[ch], kernel/arch/i386/arch_smp.c and
  kernel/arch/i386/include/arch_smp.h

- 16-bit trampoline code for the APs. It is executed by each AP after
  receiving startup IPIs it brings up the CPUs to 32bit mode and let
  them spin in an infinite loop so they don't do any damage.

- implementation of kernel spinlock

- CONFIG_SMP and CONFIG_MAX_CPUS set by the build system
2010-09-15 14:09:52 +00:00
Tomas Hruby
45badf4c05 ACPI in kernel
- the ability for kernel to use ACPI tables to detect IO APICs. It is
  the bare minimum the kernel needs to know about ACPI tables.

- it will be used to find out about processors as the MPS tables are
  deprecated by ACPI and not all vendorsprovide them.
2010-09-02 15:43:51 +00:00
Tomas Hruby
58654acf08 both ack and gcc can compile klib16.S 2010-08-06 12:46:44 +00:00
Erik van der Kouwe
df0ba02a38 Multiboot support (contributed by Feiran "Fam" Zheng);
keep in mind that GRUB needs to be patched to read MFS for now;
use /boot/image_latest to boot the last compiled image in GRUB
2010-07-23 14:24:34 +00:00
Erik van der Kouwe
f389ad2655 Move sensitive instructions from libc into kernel 2010-07-23 07:12:47 +00:00
Arun Thomas
c0c8d25799 Rename mkfiles from minix.*.mk to bsd.*.mk
Makes things easier for pkgsrc
2010-06-25 18:29:09 +00:00
Ben Gras
9ba760e603 kernel: oxpcie serial card support.
ask to map in oxpcie i/o memory and support serial i/o for it in the
kernel. set oxpcie=<address> in boot monitor (retrieve address using
pci_debug=1 output). (no sanity checking is done on the address
currently.) disabled by default.

The change also contains some other minor cleanup (a new serial.h to set
register info common to UART and the OXPCIe card, in-kernel memory
mapping a little more structured and env_get() to get sysenv variables
without knowing about the params_buffer).
2010-05-19 10:00:02 +00:00
Arun Thomas
4ed3a0cf3a Convert kernel over to bsdmake 2010-04-01 22:22:33 +00:00