Previously, user processes could cause a kernel panic upon FPU state
restore, by passing bogus FPU state to the kernel (through e.g.
sigreturn). With this patch, the process is now sent a SIGFPE signal
instead.
- kernel detects CPUs by searching ACPI tables for local apic nodes
- each CPU has its own TSS that points to its own stack. All cpus boot
on the same boot stack (in sequence) but switch to its private stack
as soon as they can.
- final booting code in main() placed in bsp_finish_booting() which is
executed only after the BSP switches to its final stack
- apic functions to send startup interrupts
- assembler functions to handle CPU features not needed for single cpu
mode like memory barries, HT detection etc.
- new files kernel/smp.[ch], kernel/arch/i386/arch_smp.c and
kernel/arch/i386/include/arch_smp.h
- 16-bit trampoline code for the APs. It is executed by each AP after
receiving startup IPIs it brings up the CPUs to 32bit mode and let
them spin in an infinite loop so they don't do any damage.
- implementation of kernel spinlock
- CONFIG_SMP and CONFIG_MAX_CPUS set by the build system
- FPU context is stored only if conflict between 2 FPU users or while
exporting context of a process to userspace while it is the active
user of FPU
- FPU has its owner (fpu_owner) which points to the process whose
state is currently loaded in FPU
- the FPU exception is only turned on when scheduling a process which
is not the owner of FPU
- FPU state is restored for the process that generated the FPU
exception. This process runs immediately without letting scheduler
to pick a new process to resolve the FPU conflict asap, to minimize
the FPU thrashing and FPU exception hadler execution
- faster all non-FPU-exception kernel entries as FPU state is not
checked nor saved
- removed MF_USED_FPU flag, only MF_FPU_INITIALIZED remains to signal
that a process has used FPU in the past
There seems to have been a broken assumption in the fpu context
restoring code. It restores the context of the running process, without
guarantee that the current process is the one that will be scheduled.
This caused fpu saving for a different process to be triggered without
fpu hardware being enabled, causing an fpu exception in the kernel. This
practically only shows up with DEBUG_RACE on. Fix my thruby+me.
The fix
. is to only set the fpu-in-use-by-this-process flag in the
exception handler, and then take care of fpu restoring when
actually returning to userspace
And the patch
. translates fpu saving and restoring to c in arch_system.c,
getting rid of a juicy chunk of assembly
. makes osfxsr_feature private to arch_system.c
. removes most of the arch dependent code from do_sigsend
-Makefile updates
-Update mkdep
-Build fixes/warning cleanups for some programs
-Restore leading underscores on global syms in kernel asm files
-Increase ramdisk size
- this patch only renames schedcheck() to switch_to_user(),
cycles_accounting_stop() to context_stop() and restart() to
+restore_user_context()
- the motivation is that since the introduction of schedcheck() it has
been abused for many things. It deserves a better name. It should
express the fact that from the moment we call the function we are in
the process of switching to user.
- cycles_accounting_stop() was originally a single purpose function.
As this function is called at were convenient places it is used in
for other things too, e.g. (un)locking the kernel. Thus it deserves
a better name too.
- using the old name, restart() does not call schedcheck(), however
calls to restart are replaced by calls to schedcheck()
[switch_to_user] and it calls restart() [restore_user_context]
this patch does not add or change any functionality of do_ipc(), it
only makes things a little cleaner (hopefully).
Until now do_ipc() was responsible for handling all ipc calls. The
catch is that SENDA is fairly different which results in some ugly
code like this typecasting and variables naming which does not make
much sense for SENDA and makes the code hard to read.
result = mini_senda(caller_ptr, (asynmsg_t *)m_ptr, (size_t)src_dst_e);
As it is called directly from assembly, the new do_ipc() takes as
input values of 3 registers in reg_t variables (it used to be 4,
however, bit_map wasn't used so I removed it), does the checks common
to all ipc calls and call the appropriate handler either for
do_sync_ipc() (all except SENDA) or mini_senda() (for SENDA) while
typecasting the reg_t values correctly. As a result, handling SENDA
differences in do_sync_ipc() is no more needed. Also the code that
uses msg_size variable is improved a little bit.
arch_do_syscall() is simplified too.