This patch moves further includes (the network part and lib.h) in common/.
It is the last part to get the netbsd libc to compile under minix. Further moves will be needed as we get the netbsd libc to compile minix itself.
Also, this patch add #ifndef's to termios.h, as it create problems with netbsd's namespace.h.
Headers that will be shared between old includes and NetBSD-like includes
are moved into common/include tree. They are still copied in /usr/include
in 'make includes', so compilation and programs aren't be affected.
M include/Makefile
A include/minix/input.h
M include/minix/com.h
M drivers/tty/keyboard.c
M drivers/tty/tty.c
M drivers/tty/tty.h
M include/minix/syslib.h
M lib/libsys/Makefile
A lib/libsys/input.c
- kernel maintains a cpu_info array which contains various
information about each cpu as filled when each cpu boots
- the information contains idetification, features etc.
- every pci device which implements _PRT acpi method is considered to
be a pci-to-pci bridge
- acpi driver constructs a hierarchy of pci-to-pci bridges
- when pci driver identifies a pci-to-pci bridge it tells acpi driver
what is the primary and the secondary bus for this device
- when pci requests IRQ routing information from acpi, it passes the
bus number too to be able to identify the device accurately
With this change, suggested by Gautam Tirumala, ports for pkgin and
pkg_install are cleaner and so easier to upstream. Presumably other
ports will be smoother too.
There doesn't seem to be a reason SSIZE_MAX was so small to begin with.
Before, the 'main thread' of a process was never taken into account anywhere in
the library, causing mutexes not to work properly (and consequently, neither
did the condition variables). For example, if the 'main thread' (that is, the
thread which is started at the beginning of a process; not a spawned thread by
the library) would lock a mutex, it wasn't actually locked.
- sometimes the system needs to know precisely on what type of cpu is
running. The cpu type id detected during arch specific
initialization and kept in the machine structure for later use.
- as a side-effect the information is exported to userland
- profile --nmi | --rtc sets the profiling mode
- --rtc is default, uses BIOS RTC, cannot profile kernel the presetted
frequency values apply
- --nmi is only available in APIC mode as it uses the NMI watchdog, -f
allows any frequency in Hz
- both modes use compatible data structures
- when kernel profiles a process for the first time it saves an entry
describing the process [endpoint|name]
- every profile sample is only [endpoint|pc]
- profile utility creates a table of endpoint <-> name relations and
translates endpoints of samples into names and writing out the
results to comply with the processing tools
- "task" endpoints like KERNEL are negative thus we must cast it to
unsigned when hashing
- contributed by Bjorn Swift
- adds process accounting, for example counting the number of messages
sent, how often the process was preemted and how much time it spent
in the run queue. These statistics, along with the current cpu load,
are sent back to the user-space scheduler in the Out Of Quantum
message.
- the user-space scheduler may choose to make use of these statistics
when making scheduling decisions. For isntance the cpu load becomes
especially useful when scheduling on multiple cores.
- EBADCPU is returned is scheduler tries to run a process on a CPU
that either does not exist or isn't booted
- this change was originally meant to deal with stupid cpuid
instruction which provides totally useless information about
hyper-threading and MPS which does not deal with ht at all. ACPI
provides correct information. If ht is turned off it looks like some
CPUs failed to boot. Nevertheless this patch may be handy for
testing/benchmarking in the future.
- RTS_VMINHIBIT flag is used to stop process while VM is fiddling with
its pagetables
- more generic way of sending synchronous scheduling events among cpus
- do the x-cpu smp sched calls only if the target process is runnable.
If it is not, it cannot be running and it cannot become runnable
this CPU holds the BKL
- sys_schedule can change only selected values, -1 means that the
current value should be kept unchanged. For instance we mostly want
to change the scheduling quantum and priority but we want to keep
the process at the current cpu
- RS can hand off its processes to scheduler
- service can read the destination cpu from system.conf
- RS can pass the information farther
- machine information contains the number of cpus and the bsp id
- a dummy SMP scheduler which keeps all system processes on BSP and
all other process on APs. The scheduler remembers how many processes
are assigned to each CPU and always picks the one with the least
processes for a new process.
- kernel detects CPUs by searching ACPI tables for local apic nodes
- each CPU has its own TSS that points to its own stack. All cpus boot
on the same boot stack (in sequence) but switch to its private stack
as soon as they can.
- final booting code in main() placed in bsp_finish_booting() which is
executed only after the BSP switches to its final stack
- apic functions to send startup interrupts
- assembler functions to handle CPU features not needed for single cpu
mode like memory barries, HT detection etc.
- new files kernel/smp.[ch], kernel/arch/i386/arch_smp.c and
kernel/arch/i386/include/arch_smp.h
- 16-bit trampoline code for the APs. It is executed by each AP after
receiving startup IPIs it brings up the CPUs to 32bit mode and let
them spin in an infinite loop so they don't do any damage.
- implementation of kernel spinlock
- CONFIG_SMP and CONFIG_MAX_CPUS set by the build system
- most global variables carry information which is specific to the
local CPU and each CPU must have its own copy
- cpu local variable must be declared in cpulocal.h between
DECLARE_CPULOCAL_START and DECLARE_CPULOCAL_END markers using
DECLARE_CPULOCAL macro
- to access the cpu local data the provided macros must be used
get_cpu_var(cpu, name)
get_cpu_var_ptr(cpu, name)
get_cpulocal_var(name)
get_cpulocal_var_ptr(name)
- using this macros makes future changes in the implementation
possible
- switching to ELF will make the declaration of cpu local data much
simpler, e.g.
CPULOCAL int blah;
anywhere in the kernel source code