rs: New RS.

Change-Id: I46e335d5dac49104028d7cb0706b3e85de752bfe
This commit is contained in:
Cristiano Giuffrida 2014-10-27 22:36:25 +01:00 committed by David van Moolenbroek
parent d196e2c333
commit fb6bd596bf
14 changed files with 2424 additions and 566 deletions

View file

@ -55,6 +55,8 @@ disabled()
exec > /dev/console exec > /dev/console
echo "Arguments: $@" echo "Arguments: $@"
restarts=$(grep restarts /proc/service/$1 |cut -d: -f2)
restarts=$(( $restarts + 1 ))
service down "$1" service down "$1"
kill_by_name dhcpd kill_by_name dhcpd
kill_by_name nonamed kill_by_name nonamed
@ -64,10 +66,10 @@ kill_by_name syslogd
sleep 3 sleep 3
if [ X`/bin/sysenv lwip` = Xyes ] if [ X`/bin/sysenv lwip` = Xyes ]
then then
service up /service/lwip -script /etc/rs.inet -dev /dev/ip service up /service/lwip -script /etc/rs.inet -dev /dev/ip -restarts $restarts
dhcpd --lwip & dhcpd --lwip &
else else
service up /service/inet -script /etc/rs.inet -dev /dev/ip service up /service/inet -script /etc/rs.inet -dev /dev/ip -restarts $restarts
daemonize dhcpd daemonize dhcpd
fi fi
daemonize nonamed -L daemonize nonamed -L

View file

@ -84,7 +84,8 @@ static int known_request_types[] = {
#define OPT_REUSE "-r" /* reuse executable image */ #define OPT_REUSE "-r" /* reuse executable image */
#define OPT_NOBLOCK "-n" /* unblock caller immediately */ #define OPT_NOBLOCK "-n" /* unblock caller immediately */
#define OPT_REPLICA "-p" /* create replica for the service */ #define OPT_REPLICA "-p" /* create replica for the service */
#define OPT_BATCH "-b" /* batch mode */ #define OPT_NO_BIN_EXP "-b" /* no binary exponential backoff */
#define OPT_BATCH "-q" /* batch mode */
#define OPT_ASR_LU "-a" /* asr update */ #define OPT_ASR_LU "-a" /* asr update */
#define OPT_PREPARE_ONLY_LU "-o" /* prepare-only update */ #define OPT_PREPARE_ONLY_LU "-o" /* prepare-only update */
#define OPT_FORCE_SELF_LU "-s" /* force self update */ #define OPT_FORCE_SELF_LU "-s" /* force self update */
@ -134,6 +135,7 @@ static int known_request_types[] = {
#define ARG_TRG_LABELNAME "-trg-label" /* target label name */ #define ARG_TRG_LABELNAME "-trg-label" /* target label name */
#define ARG_LU_IPC_BL "-ipc_bl" /* IPC blacklist filter */ #define ARG_LU_IPC_BL "-ipc_bl" /* IPC blacklist filter */
#define ARG_LU_IPC_WL "-ipc_wl" /* IPC whitelist filter */ #define ARG_LU_IPC_WL "-ipc_wl" /* IPC whitelist filter */
#define ARG_RESTARTS "-restarts" /* number of restarts */
/* The function parse_arguments() verifies and parses the command line /* The function parse_arguments() verifies and parses the command line
* parameters passed to this utility. Request parameters that are needed * parameters passed to this utility. Request parameters that are needed
@ -154,6 +156,7 @@ static char *req_config = PATH_CONFIG;
static int custom_config_file = 0; static int custom_config_file = 0;
static int req_lu_state = DEFAULT_LU_STATE; static int req_lu_state = DEFAULT_LU_STATE;
static int req_lu_maxtime = DEFAULT_LU_MAXTIME; static int req_lu_maxtime = DEFAULT_LU_MAXTIME;
static int req_restarts = 0;
static long req_heap_prealloc = 0; static long req_heap_prealloc = 0;
static long req_map_prealloc = 0; static long req_map_prealloc = 0;
static int req_sysctl_type = 0; static int req_sysctl_type = 0;
@ -171,15 +174,16 @@ static void print_usage(char *app_name, char *problem)
fprintf(stderr, "Warning, %s\n", problem); fprintf(stderr, "Warning, %s\n", problem);
fprintf(stderr, "Usage:\n"); fprintf(stderr, "Usage:\n");
fprintf(stderr, fprintf(stderr,
" %s [%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s] (up|run|edit|update) <binary|%s> [%s <args>] [%s <special>] [%s <major_nr>] [%s <dev_id>] [%s <ticks>] [%s <path>] [%s <name>] [%s <path>] [%s <state value|eval_expression>] [%s <time>] [%s <bytes>] [%s <bytes>] [%s <name>] [(%s|%s <src_label1,src_type1:src_label2,:,src_type3:...>)*]\n", " %s [%s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s %s] (up|run|edit|update) <binary|%s> [%s <args>] [%s <special>] [%s <major_nr>] [%s <dev_id>] [%s <ticks>] [%s <path>] [%s <name>] [%s <path>] [%s <state value|eval_expression>] [%s <time>] [%s <bytes>] [%s <bytes>] [%s <name>] [(%s|%s <src_label1,src_type1:src_label2,:,src_type3:...>)*] [%s <restarts>]\n",
app_name, OPT_COPY, OPT_REUSE, OPT_NOBLOCK, OPT_REPLICA, app_name, OPT_COPY, OPT_REUSE, OPT_NOBLOCK, OPT_REPLICA, OPT_NO_BIN_EXP,
OPT_BATCH, OPT_ASR_LU, OPT_PREPARE_ONLY_LU, OPT_FORCE_SELF_LU, OPT_BATCH, OPT_ASR_LU, OPT_PREPARE_ONLY_LU, OPT_FORCE_SELF_LU,
OPT_FORCE_INIT_CRASH, OPT_FORCE_INIT_FAIL, OPT_FORCE_INIT_TIMEOUT, OPT_FORCE_INIT_CRASH, OPT_FORCE_INIT_FAIL, OPT_FORCE_INIT_TIMEOUT,
OPT_FORCE_INIT_DEFCB, OPT_UNSAFE_LU, OPT_NOMMAP_LU, OPT_DETACH, OPT_FORCE_INIT_DEFCB, OPT_UNSAFE_LU, OPT_NOMMAP_LU, OPT_DETACH,
OPT_NORESTART, OPT_FORCE_INIT_ST, SELF_BINARY, OPT_NORESTART, OPT_FORCE_INIT_ST, SELF_BINARY,
ARG_ARGS, ARG_DEV, ARG_MAJOR, ARG_DEVMANID, ARG_PERIOD, ARG_ARGS, ARG_DEV, ARG_MAJOR, ARG_DEVMANID, ARG_PERIOD,
ARG_SCRIPT, ARG_LABELNAME, ARG_CONFIG, ARG_LU_STATE, ARG_LU_MAXTIME, ARG_SCRIPT, ARG_LABELNAME, ARG_CONFIG, ARG_LU_STATE, ARG_LU_MAXTIME,
ARG_HEAP_PREALLOC, ARG_MAP_PREALLOC, ARG_TRG_LABELNAME, ARG_LU_IPC_BL, ARG_LU_IPC_WL); ARG_HEAP_PREALLOC, ARG_MAP_PREALLOC, ARG_TRG_LABELNAME, ARG_LU_IPC_BL, ARG_LU_IPC_WL,
ARG_RESTARTS);
fprintf(stderr, " %s down <label>\n", app_name); fprintf(stderr, " %s down <label>\n", app_name);
fprintf(stderr, " %s refresh <label>\n", app_name); fprintf(stderr, " %s refresh <label>\n", app_name);
fprintf(stderr, " %s restart <label>\n", app_name); fprintf(stderr, " %s restart <label>\n", app_name);
@ -627,6 +631,14 @@ static int parse_arguments(int argc, char **argv, u32_t *rss_flags)
exit(r); exit(r);
} }
} }
else if (strcmp(argv[i], ARG_RESTARTS)==0) {
errno=0;
req_restarts = strtol(argv[i+1], &buff, 10);
if(errno || strcmp(buff, "") || req_restarts<0) {
print_usage(argv[ARG_NAME], "bad number of restarts");
exit(EINVAL);
}
}
else { else {
print_usage(argv[ARG_NAME], "unknown optional argument given"); print_usage(argv[ARG_NAME], "unknown optional argument given");
exit(EINVAL); exit(EINVAL);
@ -726,6 +738,8 @@ int main(int argc, char **argv)
memset(&config, 0, sizeof(config)); memset(&config, 0, sizeof(config));
if(!parse_config(progname, custom_config_file, req_config, &config)) if(!parse_config(progname, custom_config_file, req_config, &config))
errx(1, "couldn't parse config"); errx(1, "couldn't parse config");
assert(config.rs_start.rss_priority < NR_SCHED_QUEUES);
assert(config.rs_start.rss_quantum > 0);
} }
/* Set specifics */ /* Set specifics */
@ -734,6 +748,7 @@ int main(int argc, char **argv)
config.rs_start.rss_major= req_major; config.rs_start.rss_major= req_major;
config.rs_start.rss_period= req_period; config.rs_start.rss_period= req_period;
config.rs_start.rss_script= req_script; config.rs_start.rss_script= req_script;
config.rs_start.rss_restarts= req_restarts;
config.rs_start.devman_id= devman_id; config.rs_start.devman_id= devman_id;
config.rs_start.rss_heap_prealloc_bytes= req_heap_prealloc; config.rs_start.rss_heap_prealloc_bytes= req_heap_prealloc;
config.rs_start.rss_map_prealloc_bytes= req_map_prealloc; config.rs_start.rss_map_prealloc_bytes= req_map_prealloc;
@ -757,9 +772,6 @@ int main(int argc, char **argv)
else else
config.rs_start.rss_scriptlen= 0; config.rs_start.rss_scriptlen= 0;
assert(config.rs_start.rss_priority < NR_SCHED_QUEUES);
assert(config.rs_start.rss_quantum > 0);
/* State-related data. */ /* State-related data. */
config.rs_start.rss_state_data.size = config.rs_start.rss_state_data.size =
sizeof(config.rs_start.rss_state_data); sizeof(config.rs_start.rss_state_data);

View file

@ -114,6 +114,7 @@ struct rs_start
long rss_period; long rss_period;
char *rss_script; char *rss_script;
size_t rss_scriptlen; size_t rss_scriptlen;
long rss_restarts;
long rss_heap_prealloc_bytes; long rss_heap_prealloc_bytes;
long rss_map_prealloc_bytes; long rss_map_prealloc_bytes;
int rss_nr_irq; int rss_nr_irq;
@ -191,9 +192,10 @@ struct rprocpub {
#define SF_USE_SCRIPT 0x200 /* set when process has restart script */ #define SF_USE_SCRIPT 0x200 /* set when process has restart script */
#define SF_DET_RESTART 0x400 /* set when process detaches on restart */ #define SF_DET_RESTART 0x400 /* set when process detaches on restart */
#define SF_NORESTART 0x800 /* set when process should not be restarted */ #define SF_NORESTART 0x800 /* set when process should not be restarted */
#define SF_NO_BIN_EXP 0x1000 /* set when we should ignore binary exp. offset */
#define IMM_SF \ #define IMM_SF \
(SF_CORE_SRV | SF_SYNCH_BOOT | SF_NEED_COPY | SF_NEED_REPL) /* immutable */ (SF_NO_BIN_EXP | SF_CORE_SRV | SF_SYNCH_BOOT | SF_NEED_COPY | SF_NEED_REPL) /* immutable */
int minix_rs_lookup(const char *name, endpoint_t *value); int minix_rs_lookup(const char *name, endpoint_t *value);

View file

@ -2,7 +2,11 @@
# Makefile for Reincarnation Server (RS) # Makefile for Reincarnation Server (RS)
PROG= rs PROG= rs
SRCS= exec.c main.c request.c manager.c table.c utility.c error.c SRCS= exec.c main.c request.c manager.c table.c utility.c error.c update.c
.if ${USE_PCI} != "no"
CPPFLAGS+= -DUSE_PCI
.endif
.if ${USE_PCI} != "no" .if ${USE_PCI} != "no"
CPPFLAGS+= -DUSE_PCI CPPFLAGS+= -DUSE_PCI

View file

@ -22,6 +22,7 @@
#define MAX_IPC_LIST 256 /* Max size of list for IPC target #define MAX_IPC_LIST 256 /* Max size of list for IPC target
* process names * process names
*/ */
#define MAX_DET_RESTART 10 /* maximum number of detached restarts. */
/* Flag values. */ /* Flag values. */
#define RS_IN_USE 0x001 /* set when process slot is in use */ #define RS_IN_USE 0x001 /* set when process slot is in use */
@ -32,17 +33,16 @@
#define RS_LATEREPLY 0x020 /* no reply sent to RS_DOWN caller yet */ #define RS_LATEREPLY 0x020 /* no reply sent to RS_DOWN caller yet */
#define RS_INITIALIZING 0x040 /* set when init is in progress */ #define RS_INITIALIZING 0x040 /* set when init is in progress */
#define RS_UPDATING 0x080 /* set when update is in progress */ #define RS_UPDATING 0x080 /* set when update is in progress */
#define RS_ACTIVE 0x100 /* set for the active instance of a service */ #define RS_PREPARE_DONE 0x100 /* set when updating and preparation is done */
#define RS_REINCARNATE 0x200 /* after exit, restart with a new endpoint */ #define RS_INIT_DONE 0x200 /* set when updating and init is done */
#define RS_INIT_PENDING 0x400 /* set when updating and init is pending */
#define RS_ACTIVE 0x800 /* set for the active instance of a service */
#define RS_DEAD 0x1000 /* set for an instance ready to be cleaned up */
#define RS_CLEANUP_DETACH 0x2000 /* detach at cleanup time */
#define RS_CLEANUP_SCRIPT 0x4000 /* run script at cleanup time */
#define RS_REINCARNATE 0x8000 /* after exit, restart with a new endpoint */
/* Sys flag values. */ #define RS_SRV_IS_IDLE(S) (((S)->r_flags & RS_DEAD) || ((S)->r_flags & ~(RS_IN_USE|RS_ACTIVE|RS_CLEANUP_DETACH|RS_CLEANUP_SCRIPT)) == 0)
#define SF_CORE_SRV 0x001 /* set for core system services */
#define SF_SYNCH_BOOT 0X002 /* set when process needs synch boot init */
#define SF_NEED_COPY 0x004 /* set when process needs copy to start */
#define SF_USE_COPY 0x008 /* set when process has a copy in memory */
#define SF_NEED_REPL 0x010 /* set when process needs replica to start */
#define SF_USE_REPL 0x020 /* set when process has a replica */
#define SF_NO_BIN_EXP 0x040 /* set when we should ignore binary exp. offset */
/* Constants determining RS period and binary exponential backoff. */ /* Constants determining RS period and binary exponential backoff. */
#define RS_INIT_T (system_hz * 10) /* allow T ticks for init */ #define RS_INIT_T (system_hz * 10) /* allow T ticks for init */
@ -56,8 +56,6 @@
/* Constants for live update. */ /* Constants for live update. */
#define RS_DEFAULT_PREPARE_MAXTIME 2*RS_DELTA_T /* default prepare max time */ #define RS_DEFAULT_PREPARE_MAXTIME 2*RS_DELTA_T /* default prepare max time */
#define RS_MAX_PREPARE_MAXTIME 20*RS_DELTA_T /* max prepare max time */
/* Definitions for boot info tables. */ /* Definitions for boot info tables. */
#define NULL_BOOT_NR NR_BOOT_PROCS /* marks a null boot entry */ #define NULL_BOOT_NR NR_BOOT_PROCS /* marks a null boot entry */
@ -75,10 +73,54 @@
/* Reply flags. */ /* Reply flags. */
#define RS_DONTREPLY 0 #define RS_DONTREPLY 0
#define RS_REPLY 1 #define RS_REPLY 1
#define RS_CANCEL 2
/* Swap flags. */ /* Swap flags. */
#define RS_DONTSWAP 0 #define RS_DONTSWAP 0
#define RS_SWAP 1 #define RS_SWAP 1
/* Configuration constants */
#define RS_VM_DEFAULT_MAP_PREALLOC_LEN (1024*1024*8)
#define RS_USE_PAGING 0
/* Update macros. */
#define RUPDATE_INIT() memset(&rupdate, 0, sizeof(rupdate))
#define RUPDATE_CLEAR() RUPDATE_INIT()
#define RUPDATE_ITER(HEAD, RPUPD_PREV, RPUPD, B) do { \
RPUPD = HEAD; \
RPUPD_PREV = NULL; \
while(RPUPD) { \
B \
RPUPD_PREV = RPUPD; \
RPUPD = RPUPD->next_rpupd; \
} \
} while(0)
#define RUPDATE_REV_ITER(TAIL, RPUPD_PREV, RPUPD, B) do { \
RPUPD = TAIL; \
while(RPUPD) { \
RPUPD_PREV = RPUPD->prev_rpupd; \
B \
RPUPD = RPUPD->prev_rpupd; \
} \
} while(0)
#define RUPDATE_IS_UPDATING() (rupdate.flags & RS_UPDATING)
#define RUPDATE_IS_VM_UPDATING() ((rupdate.flags & RS_UPDATING) && rupdate.vm_rpupd)
#define RUPDATE_IS_VM_INIT_DONE() (rproc_ptr[_ENDPOINT_P(VM_PROC_NR)]->r_flags & RS_INIT_DONE)
#define RUPDATE_IS_RS_UPDATING() ((rupdate.flags & RS_UPDATING) && rupdate.rs_rpupd)
#define RUPDATE_IS_RS_INIT_DONE() (rproc_ptr[_ENDPOINT_P(RS_PROC_NR)]->r_flags & RS_INIT_DONE)
#define RUPDATE_IS_INITIALIZING() (rupdate.flags & RS_INITIALIZING)
#define RUPDATE_IS_UPD_SCHEDULED() (rupdate.num_rpupds > 0 && !RUPDATE_IS_UPDATING())
#define RUPDATE_IS_UPD_MULTI() (rupdate.num_rpupds > 1)
#define RUPDATE_IS_UPD_VM_MULTI() (rupdate.vm_rpupd && RUPDATE_IS_UPD_MULTI())
#define SRV_IS_UPDATING(RP) ((RP)->r_flags & RS_UPDATING)
#define SRV_IS_UPDATING_AND_INITIALIZING(RP) (((RP)->r_flags & (RS_UPDATING|RS_INITIALIZING)) == (RS_UPDATING|RS_INITIALIZING))
#define UPD_INIT_MAXTIME(RPUPD) ((RPUPD)->prepare_maxtime != RS_DEFAULT_PREPARE_MAXTIME ? (RPUPD)->prepare_maxtime : RS_INIT_T)
#define UPD_IS_PREPARING_ONLY(RPUPD) ((RPUPD)->lu_flags & SEF_LU_PREPARE_ONLY)
#define SRV_IS_PREPARING_ONLY(RP) ((RP)->r_upd.rp && UPD_IS_PREPARING_ONLY(&(RP)->r_upd))
#define UPD_IS_UPD_SCHEDULED(RPUPD) (RUPDATE_IS_UPD_SCHEDULED() && (RPUPD)->rp)
#define SRV_IS_UPD_SCHEDULED(RP) UPD_IS_UPD_SCHEDULED(&(RP)->r_upd)
#endif /* RS_CONST_H */ #endif /* RS_CONST_H */

View file

@ -13,7 +13,8 @@ struct errentry {
/* Initialization errors. */ /* Initialization errors. */
static struct errentry init_errlist[] = { static struct errentry init_errlist[] = {
{ ENOSYS, "service does not support the requested initialization type" } { ENOSYS, "service does not support the requested initialization type" },
{ ERESTART, "service requested an initialization reset" }
}; };
static const int init_nerr = sizeof(init_errlist) / sizeof(init_errlist[0]); static const int init_nerr = sizeof(init_errlist) / sizeof(init_errlist[0]);

View file

@ -24,6 +24,10 @@ static void get_work(message *m_ptr, int *status_ptr);
/* SEF functions and variables. */ /* SEF functions and variables. */
static void sef_local_startup(void); static void sef_local_startup(void);
static int sef_cb_init_fresh(int type, sef_init_info_t *info); static int sef_cb_init_fresh(int type, sef_init_info_t *info);
static int sef_cb_init_restart(int type, sef_init_info_t *info);
static int sef_cb_init_lu(int type, sef_init_info_t *info);
static int sef_cb_init_response(message *m_ptr);
static int sef_cb_lu_response(message *m_ptr);
static void sef_cb_signal_handler(int signo); static void sef_cb_signal_handler(int signo);
static int sef_cb_signal_manager(endpoint_t target, int signo); static int sef_cb_signal_manager(endpoint_t target, int signo);
@ -54,6 +58,8 @@ int main(void)
/* Main loop - get work and do it, forever. */ /* Main loop - get work and do it, forever. */
while (TRUE) { while (TRUE) {
/* Perform sensitive background operations when RS is idle. */
rs_idle_period();
/* Wait for request message. */ /* Wait for request message. */
get_work(&m, &ipc_status); get_work(&m, &ipc_status);
@ -103,8 +109,10 @@ int main(void)
case RS_SHUTDOWN: result = do_shutdown(&m); break; case RS_SHUTDOWN: result = do_shutdown(&m); break;
case RS_UPDATE: result = do_update(&m); break; case RS_UPDATE: result = do_update(&m); break;
case RS_CLONE: result = do_clone(&m); break; case RS_CLONE: result = do_clone(&m); break;
case RS_UNCLONE: result = do_unclone(&m); break;
case RS_EDIT: result = do_edit(&m); break; case RS_EDIT: result = do_edit(&m); break;
case RS_GETSYSINFO: result = do_getsysinfo(&m); break; case RS_SYSCTL: result = do_sysctl(&m); break;
case RS_GETSYSINFO: result = do_getsysinfo(&m); break;
case RS_LOOKUP: result = do_lookup(&m); break; case RS_LOOKUP: result = do_lookup(&m); break;
/* Ready messages. */ /* Ready messages. */
case RS_INIT: result = do_init_ready(&m); break; case RS_INIT: result = do_init_ready(&m); break;
@ -130,12 +138,15 @@ int main(void)
static void sef_local_startup() static void sef_local_startup()
{ {
/* Register init callbacks. */ /* Register init callbacks. */
sef_setcb_init_response(do_init_ready);
sef_setcb_init_fresh(sef_cb_init_fresh); sef_setcb_init_fresh(sef_cb_init_fresh);
sef_setcb_init_restart(sef_cb_init_fail); sef_setcb_init_restart(sef_cb_init_restart);
sef_setcb_init_lu(sef_cb_init_lu);
/* Register live update callbacks. */ /* Register response callbacks. */
sef_setcb_lu_response(do_upd_ready); sef_setcb_init_response(sef_cb_init_response);
sef_setcb_lu_response(sef_cb_lu_response);
/* No live update support for now. */
/* Register signal callbacks. */ /* Register signal callbacks. */
sef_setcb_signal_handler(sef_cb_signal_handler); sef_setcb_signal_handler(sef_cb_signal_handler);
@ -155,11 +166,14 @@ static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
int s,i; int s,i;
int nr_image_srvs, nr_image_priv_srvs, nr_uncaught_init_srvs; int nr_image_srvs, nr_image_priv_srvs, nr_uncaught_init_srvs;
struct rproc *rp; struct rproc *rp;
struct rproc *replica_rp;
struct rprocpub *rpub; struct rprocpub *rpub;
struct boot_image image[NR_BOOT_PROCS]; struct boot_image image[NR_BOOT_PROCS];
struct boot_image_priv *boot_image_priv; struct boot_image_priv *boot_image_priv;
struct boot_image_sys *boot_image_sys; struct boot_image_sys *boot_image_sys;
struct boot_image_dev *boot_image_dev; struct boot_image_dev *boot_image_dev;
int pid, replica_pid;
endpoint_t replica_endpoint;
int ipc_to; int ipc_to;
int *calls; int *calls;
int all_c[] = { ALL_C, NULL_C }; int all_c[] = { ALL_C, NULL_C };
@ -179,7 +193,7 @@ static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
} }
/* Initialize some global variables. */ /* Initialize some global variables. */
rupdate.flags = 0; RUPDATE_INIT();
shutting_down = FALSE; shutting_down = FALSE;
/* Get a copy of the boot image table. */ /* Get a copy of the boot image table. */
@ -219,8 +233,11 @@ static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
/* Reset the system process table. */ /* Reset the system process table. */
for (rp=BEG_RPROC_ADDR; rp<END_RPROC_ADDR; rp++) { for (rp=BEG_RPROC_ADDR; rp<END_RPROC_ADDR; rp++) {
rp->r_flags = 0; rp->r_flags = 0;
rp->r_init_err = ERESTART;
rp->r_pub = &rprocpub[rp - rproc]; rp->r_pub = &rprocpub[rp - rproc];
rp->r_pub->in_use = FALSE; rp->r_pub->in_use = FALSE;
rp->r_pub->old_endpoint = NONE;
rp->r_pub->new_endpoint = NONE;
} }
/* Initialize the system process table in 4 steps, each of them following /* Initialize the system process table in 4 steps, each of them following
@ -254,6 +271,7 @@ static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
/* Initialize privilege bitmaps and signal manager. */ /* Initialize privilege bitmaps and signal manager. */
rp->r_priv.s_flags = boot_image_priv->flags; /* priv flags */ rp->r_priv.s_flags = boot_image_priv->flags; /* priv flags */
rp->r_priv.s_init_flags = SRV_OR_USR(rp, SRV_I, USR_I); /* init flags */
rp->r_priv.s_trap_mask= SRV_OR_USR(rp, SRV_T, USR_T); /* traps */ rp->r_priv.s_trap_mask= SRV_OR_USR(rp, SRV_T, USR_T); /* traps */
ipc_to = SRV_OR_USR(rp, SRV_M, USR_M); /* targets */ ipc_to = SRV_OR_USR(rp, SRV_M, USR_M); /* targets */
fill_send_mask(&rp->r_priv.s_ipc_to, ipc_to == ALL_M); fill_send_mask(&rp->r_priv.s_ipc_to, ipc_to == ALL_M);
@ -345,7 +363,7 @@ static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
/* RS/VM are already running as we speak. */ /* RS/VM are already running as we speak. */
if(boot_image_priv->endpoint == RS_PROC_NR || if(boot_image_priv->endpoint == RS_PROC_NR ||
boot_image_priv->endpoint == VM_PROC_NR) { boot_image_priv->endpoint == VM_PROC_NR) {
if ((s = init_service(rp, SEF_INIT_FRESH)) != OK) { if ((s = init_service(rp, SEF_INIT_FRESH, rp->r_priv.s_init_flags)) != OK) {
panic("unable to initialize %d: %d", boot_image_priv->endpoint, s); panic("unable to initialize %d: %d", boot_image_priv->endpoint, s);
} }
/* VM will still send an RS_INIT message, though. */ /* VM will still send an RS_INIT message, though. */
@ -367,7 +385,7 @@ static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
* back to us here at boot time. * back to us here at boot time.
*/ */
if(boot_image_priv->flags & SYS_PROC) { if(boot_image_priv->flags & SYS_PROC) {
if ((s = init_service(rp, SEF_INIT_FRESH)) != OK) { if ((s = init_service(rp, SEF_INIT_FRESH, rp->r_priv.s_init_flags)) != OK) {
panic("unable to initialize service: %d", s); panic("unable to initialize service: %d", s);
} }
if(rpub->sys_flags & SF_SYNCH_BOOT) { if(rpub->sys_flags & SF_SYNCH_BOOT) {
@ -440,7 +458,7 @@ static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
/* New RS instance running. */ /* New RS instance running. */
/* Live update the old instance into the new one. */ /* Live update the old instance into the new one. */
s = update_service(&rp, &replica_rp, RS_SWAP); s = update_service(&rp, &replica_rp, RS_SWAP, 0);
if(s != OK) { if(s != OK) {
panic("unable to live update RS: %d", s); panic("unable to live update RS: %d", s);
} }
@ -450,7 +468,7 @@ static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
cleanup_service(rp); cleanup_service(rp);
/* Ask VM to pin memory for the new RS instance. */ /* Ask VM to pin memory for the new RS instance. */
if((s = vm_memctl(RS_PROC_NR, VM_RS_MEM_PIN)) != OK) { if((s = vm_memctl(RS_PROC_NR, VM_RS_MEM_PIN, 0, 0)) != OK) {
panic("unable to pin memory for the new RS instance: %d", s); panic("unable to pin memory for the new RS instance: %d", s);
} }
} }
@ -476,6 +494,138 @@ static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
return(OK); return(OK);
} }
/*===========================================================================*
* sef_cb_init_restart *
*===========================================================================*/
static int sef_cb_init_restart(int type, sef_init_info_t *info)
{
/* Restart the reincarnation server. */
int r;
struct rproc *old_rs_rp, *new_rs_rp;
assert(info->endpoint == RS_PROC_NR);
/* Perform default state transfer first. */
r = SEF_CB_INIT_RESTART_DEFAULT(type, info);
if(r != OK) {
printf("SEF_CB_INIT_RESTART_DEFAULT failed: %d\n", r);
return r;
}
/* New RS takes over. */
old_rs_rp = rproc_ptr[_ENDPOINT_P(RS_PROC_NR)];
new_rs_rp = rproc_ptr[_ENDPOINT_P(info->old_endpoint)];
if(rs_verbose)
printf("RS: %s is the new RS after restart\n", srv_to_string(new_rs_rp));
/* If an update was in progress, end it. */
if(SRV_IS_UPDATING(old_rs_rp)) {
end_update(ERESTART, RS_REPLY);
}
/* Update the service into the replica. */
r = update_service(&old_rs_rp, &new_rs_rp, RS_DONTSWAP, 0);
if(r != OK) {
printf("update_service failed: %d\n", r);
return r;
}
/* Initialize the new RS instance. */
r = init_service(new_rs_rp, SEF_INIT_RESTART, 0);
if(r != OK) {
printf("init_service failed: %d\n", r);
return r;
}
/* Reschedule a synchronous alarm for the next period. */
if (OK != (r=sys_setalarm(RS_DELTA_T, 0)))
panic("couldn't set alarm: %d", r);
return OK;
}
/*===========================================================================*
* sef_cb_init_lu *
*===========================================================================*/
static int sef_cb_init_lu(int type, sef_init_info_t *info)
{
/* Start a new version of the reincarnation server. */
int r;
struct rproc *old_rs_rp, *new_rs_rp;
assert(info->endpoint == RS_PROC_NR);
/* Perform default state transfer first. */
sef_setcb_init_restart(SEF_CB_INIT_RESTART_DEFAULT);
r = SEF_CB_INIT_LU_DEFAULT(type, info);
if(r != OK) {
printf("SEF_CB_INIT_LU_DEFAULT failed: %d\n", r);
return r;
}
/* New RS takes over. */
old_rs_rp = rproc_ptr[_ENDPOINT_P(RS_PROC_NR)];
new_rs_rp = rproc_ptr[_ENDPOINT_P(info->old_endpoint)];
if(rs_verbose)
printf("RS: %s is the new RS after live update\n",
srv_to_string(new_rs_rp));
/* Update the service into the replica. */
r = update_service(&old_rs_rp, &new_rs_rp, RS_DONTSWAP, 0);
if(r != OK) {
printf("update_service failed: %d\n", r);
return r;
}
/* Check if everything is as expected. */
assert(RUPDATE_IS_UPDATING());
assert(RUPDATE_IS_INITIALIZING());
assert(rupdate.num_rpupds > 0);
assert(rupdate.num_init_ready_pending > 0);
return OK;
}
/*===========================================================================*
* sef_cb_init_response *
*===========================================================================*/
int sef_cb_init_response(message *m_ptr)
{
int r;
/* Return now if RS initialization failed. */
r = m_ptr->m_rs_init.result;
if(r != OK) {
return r;
}
/* Simulate an RS-to-RS init message. */
r = do_init_ready(m_ptr);
/* Assume everything is OK if EDONTREPLY was returned. */
if(r == EDONTREPLY) {
r = OK;
}
return r;
}
/*===========================================================================*
* sef_cb_lu_response *
*===========================================================================*/
int sef_cb_lu_response(message *m_ptr)
{
int r;
/* Simulate an RS-to-RS update ready message. */
r = do_upd_ready(m_ptr);
/* If we get this far, we didn't get updated for some reason. Report error. */
if(r == EDONTREPLY) {
r = EGENERIC;
}
return r;
}
/*===========================================================================* /*===========================================================================*
* sef_cb_signal_handler * * sef_cb_signal_handler *
*===========================================================================*/ *===========================================================================*/
@ -500,7 +650,6 @@ static int sef_cb_signal_manager(endpoint_t target, int signo)
/* Process system signal on behalf of the kernel. */ /* Process system signal on behalf of the kernel. */
int target_p; int target_p;
struct rproc *rp; struct rproc *rp;
struct rprocpub *rpub;
message m; message m;
/* Lookup slot. */ /* Lookup slot. */
@ -511,7 +660,6 @@ static int sef_cb_signal_manager(endpoint_t target, int signo)
return OK; /* clear the signal */ return OK; /* clear the signal */
} }
rp = rproc_ptr[target_p]; rp = rproc_ptr[target_p];
rpub = rp->r_pub;
/* Don't bother if a termination signal has already been processed. */ /* Don't bother if a termination signal has already been processed. */
if((rp->r_flags & RS_TERMINATED) && !(rp->r_flags & RS_EXITING)) { if((rp->r_flags & RS_TERMINATED) && !(rp->r_flags & RS_EXITING)) {
@ -539,14 +687,19 @@ static int sef_cb_signal_manager(endpoint_t target, int signo)
if(SIGS_IS_TERMINATION(signo)) { if(SIGS_IS_TERMINATION(signo)) {
rp->r_flags |= RS_TERMINATED; rp->r_flags |= RS_TERMINATED;
terminate_service(rp); terminate_service(rp);
rs_idle_period();
return EDEADEPT; /* process is now gone */ return EDEADEPT; /* process is now gone */
} }
/* Never deliver signals to VM. */
if (rp->r_pub->endpoint == VM_PROC_NR) {
return OK;
}
/* Translate every non-termination signal into a message. */ /* Translate every non-termination signal into a message. */
m.m_type = SIGS_SIGNAL_RECEIVED; m.m_type = SIGS_SIGNAL_RECEIVED;
m.m_pm_lsys_sigs_signal.num = signo; m.m_pm_lsys_sigs_signal.num = signo;
asynsend3(rpub->endpoint, &m, AMF_NOREPLY); rs_asynsend(rp, &m, 1);
return OK; /* signal has been delivered */ return OK; /* signal has been delivered */
} }

View file

@ -13,6 +13,8 @@
#include "kernel/proc.h" #include "kernel/proc.h"
static int run_script(struct rproc *rp);
/*===========================================================================* /*===========================================================================*
* caller_is_root * * caller_is_root *
*===========================================================================*/ *===========================================================================*/
@ -102,9 +104,14 @@ struct rproc *rp;
if(call != RS_EDIT) return EPERM; if(call != RS_EDIT) return EPERM;
} }
/* Disallow the call if an update is in progress. */
if(RUPDATE_IS_UPDATING()) {
return EBUSY;
}
/* Disallow the call if another call is in progress for the service. */ /* Disallow the call if another call is in progress for the service. */
if((rp->r_flags & RS_LATEREPLY) if((rp->r_flags & RS_LATEREPLY)
|| (rp->r_flags & RS_INITIALIZING) || (rp->r_flags & RS_UPDATING)) { || (rp->r_flags & RS_INITIALIZING)) {
return EBUSY; return EBUSY;
} }
@ -161,6 +168,121 @@ size_t dst_len;
return OK; return OK;
} }
/*===========================================================================*
* init_state_data *
*===========================================================================*/
int init_state_data(endpoint_t src_e, int prepare_state,
struct rs_state_data *src_rs_state_data,
struct rs_state_data *dst_rs_state_data)
{
int s, i, j, num_ipc_filters = 0;
struct rs_ipc_filter_el (*rs_ipc_filter_els)[IPCF_MAX_ELEMENTS];
struct rs_ipc_filter_el rs_ipc_filter[IPCF_MAX_ELEMENTS];
size_t rs_ipc_filter_size = sizeof(rs_ipc_filter);
ipc_filter_el_t (*ipcf_els_buff)[IPCF_MAX_ELEMENTS];
size_t ipcf_els_buff_size;
dst_rs_state_data->size = 0;
dst_rs_state_data->eval_addr = NULL;
dst_rs_state_data->eval_len = 0;
dst_rs_state_data->ipcf_els = NULL;
dst_rs_state_data->ipcf_els_size = 0;
if(src_rs_state_data->size != sizeof(struct rs_state_data)) {
return E2BIG;
}
/* Initialize eval expression. */
if(prepare_state == SEF_LU_STATE_EVAL) {
if(src_rs_state_data->eval_len == 0 || !src_rs_state_data->eval_addr) {
return EINVAL;
}
dst_rs_state_data->eval_addr = malloc(src_rs_state_data->eval_len+1);
dst_rs_state_data->eval_len = src_rs_state_data->eval_len;
if(!dst_rs_state_data->eval_addr) {
return ENOMEM;
}
s = sys_datacopy(src_e, (vir_bytes) src_rs_state_data->eval_addr,
SELF, (vir_bytes) dst_rs_state_data->eval_addr,
dst_rs_state_data->eval_len);
if(s != OK) {
return s;
}
*((char*)dst_rs_state_data->eval_addr + dst_rs_state_data->eval_len) = '\0';
dst_rs_state_data->size = src_rs_state_data->size;
}
/* Initialize ipc filters. */
if(src_rs_state_data->ipcf_els_size % rs_ipc_filter_size) {
return E2BIG;
}
rs_ipc_filter_els = src_rs_state_data->ipcf_els;
num_ipc_filters = src_rs_state_data->ipcf_els_size / rs_ipc_filter_size;
if(!rs_ipc_filter_els) {
return OK;
}
ipcf_els_buff_size = sizeof(ipc_filter_el_t)*IPCF_MAX_ELEMENTS*num_ipc_filters;
if(src_e == VM_PROC_NR) {
ipcf_els_buff_size += sizeof(ipc_filter_el_t)*IPCF_MAX_ELEMENTS;
}
ipcf_els_buff = malloc(ipcf_els_buff_size);
if(!ipcf_els_buff) {
return ENOMEM;
}
memset(ipcf_els_buff, 0, ipcf_els_buff_size);
for(i=0;i<num_ipc_filters;i++) {
s = sys_datacopy(src_e, (vir_bytes) rs_ipc_filter_els[i],
SELF, (vir_bytes) rs_ipc_filter, rs_ipc_filter_size);
if(s != OK) {
return s;
}
for(j=0;j<IPCF_MAX_ELEMENTS && rs_ipc_filter[j].flags;j++) {
endpoint_t m_source = 0;
int m_type = 0;
int flags = rs_ipc_filter[j].flags;
if(flags & IPCF_MATCH_M_TYPE) {
m_type = rs_ipc_filter[j].m_type;
}
if(flags & IPCF_MATCH_M_SOURCE) {
if(ds_retrieve_label_endpt(rs_ipc_filter[j].m_label,&m_source) != OK) {
/* try to see if an endpoint was provided as label */
char *buff;
if(!strcmp("ANY_USR", rs_ipc_filter[j].m_label)) {
m_source = ANY_USR;
}
else if(!strcmp("ANY_SYS", rs_ipc_filter[j].m_label)) {
m_source = ANY_SYS;
}
else if(!strcmp("ANY_TSK", rs_ipc_filter[j].m_label)) {
m_source = ANY_TSK;
}
else {
errno=0;
m_source = strtol(rs_ipc_filter[j].m_label, &buff, 10);
if(errno || strcmp(buff, "")) {
return ESRCH;
}
}
}
}
ipcf_els_buff[i][j].flags = flags;
ipcf_els_buff[i][j].m_source = m_source;
ipcf_els_buff[i][j].m_type = m_type;
}
}
if(src_e == VM_PROC_NR) {
/* Make sure VM can still talk to us at update time. */
ipcf_els_buff[i][0].flags = (IPCF_EL_WHITELIST|IPCF_MATCH_M_SOURCE|IPCF_MATCH_M_TYPE);
ipcf_els_buff[i][0].m_source = RS_PROC_NR;
ipcf_els_buff[i][0].m_type = VM_RS_UPDATE;
}
dst_rs_state_data->size = src_rs_state_data->size;
dst_rs_state_data->ipcf_els = ipcf_els_buff;
dst_rs_state_data->ipcf_els_size = ipcf_els_buff_size;
return OK;
}
/*===========================================================================* /*===========================================================================*
* build_cmd_dep * * build_cmd_dep *
*===========================================================================*/ *===========================================================================*/
@ -213,122 +335,35 @@ void build_cmd_dep(struct rproc *rp)
} }
/*===========================================================================* /*===========================================================================*
* srv_update * * end_srv_init *
*===========================================================================*/ *===========================================================================*/
int srv_update(endpoint_t src_e, endpoint_t dst_e) void end_srv_init(struct rproc *rp)
{ {
int r;
int sys_upd_flags = 0;
/* Ask VM to swap the slots of the two processes and tell the kernel to
* do the same. If VM is the service being updated, only perform the kernel
* part of the call. The new instance of VM will do the rest at
* initialization time.
*/
if(src_e != VM_PROC_NR) {
r = vm_update(src_e, dst_e, sys_upd_flags);
}
else {
r = sys_update(src_e, dst_e, sys_upd_flags);
}
return r;
}
/*===========================================================================*
* update_period *
*===========================================================================*/
void update_period(message *m_ptr)
{
clock_t now = m_ptr->m_notify.timestamp;
short has_update_timed_out;
message m;
struct rprocpub *rpub; struct rprocpub *rpub;
int r;
rpub = rupdate.rp->r_pub; rpub = rp->r_pub;
/* See if a timeout has occurred. */ /* See if a late reply has to be sent. */
has_update_timed_out = (now - rupdate.prepare_tm > rupdate.prepare_maxtime); late_reply(rp, OK);
/* If an update timed out, end the update process and notify /* If the service has completed initialization after a crash
* the old version that the update has been canceled. From now on, the old * make the new instance active and cleanup the old replica.
* version will continue executing. * If the service was part of a scheduled update, schedule the new
* replica for the same update.
*/ */
if(has_update_timed_out) { if(rp->r_prev_rp) {
printf("RS: update failed: maximum prepare time reached\n"); if(SRV_IS_UPD_SCHEDULED(rp->r_prev_rp)) {
end_update(EINTR, RS_DONTREPLY); rupdate_upd_move(rp->r_prev_rp, rp);
/* Prepare cancel request. */
m.m_type = RS_LU_PREPARE;
m.m_rs_update.state = SEF_LU_STATE_NULL;
if(rpub->endpoint == RS_PROC_NR) {
/* RS can process the request directly. */
do_sef_lu_request(&m);
}
else {
/* Send request message to the system service. */
asynsend(rpub->endpoint, &m);
} }
cleanup_service(rp->r_prev_rp);
rp->r_prev_rp = NULL;
rp->r_restarts += 1;
if(rs_verbose)
printf("RS: %s completed restart\n", srv_to_string(rp));
} }
} rp->r_next_rp = NULL;
/*===========================================================================*
* end_update *
*===========================================================================*/
void end_update(int result, int reply_flag)
{
/* End the update process. There are two possibilities:
* 1) the update succeeded. In that case, cleanup the old version and mark the
* new version as no longer under update.
* 2) the update failed. In that case, cleanup the new version and mark the old
* version as no longer under update. Eventual late ready to update
* messages (if any) will simply be ignored and the service can
* continue executing. In addition, reset the check timestamp, so that if the
* service has a period, a status request will be forced in the next period.
*/
struct rproc *old_rp, *new_rp, *exiting_rp, *surviving_rp;
struct rproc **rps;
int nr_rps, i;
old_rp = rupdate.rp;
new_rp = old_rp->r_new_rp;
if(rs_verbose)
printf("RS: ending update from %s to %s with result: %d\n",
srv_to_string(old_rp), srv_to_string(new_rp), result);
/* Decide which version has to die out and which version has to survive. */
surviving_rp = (result == OK ? new_rp : old_rp);
exiting_rp = (result == OK ? old_rp : new_rp);
/* End update. */
rupdate.flags &= ~RS_UPDATING;
rupdate.rp = NULL;
old_rp->r_new_rp = NULL;
new_rp->r_old_rp = NULL;
old_rp->r_check_tm = 0;
/* Send a late reply if necessary. */
late_reply(old_rp, result);
/* Mark the version that has to survive as no longer updating and
* reply when asked to.
*/
surviving_rp->r_flags &= ~RS_UPDATING;
if(reply_flag == RS_REPLY) {
message m;
m.m_type = result;
reply(surviving_rp->r_pub->endpoint, surviving_rp, &m);
}
/* Cleanup the version that has to die out. */
get_service_instances(exiting_rp, &rps, &nr_rps);
for(i=0;i<nr_rps;i++) {
cleanup_service(rps[i]);
}
if(rs_verbose)
printf("RS: %s ended the update\n", srv_to_string(surviving_rp));
} }
/*===========================================================================* /*===========================================================================*
@ -385,30 +420,120 @@ int line;
struct rproc *rp; struct rproc *rp;
{ {
struct rprocpub *rpub; struct rprocpub *rpub;
int detach, cleanup_script;
int s; int s;
rpub = rp->r_pub; rpub = rp->r_pub;
if(rs_verbose) if(!(rp->r_flags & RS_DEAD)) {
printf("RS: %s cleaned up at %s:%d\n", srv_to_string(rp), if(rs_verbose)
file, line); printf("RS: %s marked for cleanup at %s:%d\n", srv_to_string(rp),
file, line);
/* Tell scheduler this process is finished */ /* Unlink service the first time. */
if ((s = sched_stop(rp->r_scheduler, rpub->endpoint)) != OK) { if(rp->r_next_rp) {
printf("RS: warning: scheduler won't give up process: %d\n", s); rp->r_next_rp->r_prev_rp = NULL;
rp->r_next_rp = NULL;
}
if(rp->r_prev_rp) {
rp->r_prev_rp->r_next_rp = NULL;
rp->r_prev_rp = NULL;
}
if(rp->r_new_rp) {
rp->r_new_rp->r_old_rp = NULL;
rp->r_new_rp = NULL;
}
if(rp->r_old_rp) {
rp->r_old_rp->r_new_rp = NULL;
rp->r_old_rp = NULL;
}
rp->r_flags |= RS_DEAD;
/* Make sure the service can no longer run and unblock IPC callers. */
sys_privctl(rpub->endpoint, SYS_PRIV_DISALLOW, NULL);
sys_privctl(rpub->endpoint, SYS_PRIV_CLEAR_IPC_REFS, NULL);
rp->r_flags &= ~RS_ACTIVE;
/* Send a late reply if there is any pending. */
late_reply(rp, OK);
return;
} }
/* Ask PM to exit the service */ cleanup_script = rp->r_flags & RS_CLEANUP_SCRIPT;
if(rp->r_pid == -1) { detach = rp->r_flags & RS_CLEANUP_DETACH;
printf("RS: warning: attempt to kill pid -1!\n");
/* Cleanup the service when not detaching. */
if(!detach) {
if(rs_verbose)
printf("RS: %s cleaned up at %s:%d\n", srv_to_string(rp),
file, line);
/* Tell scheduler this process is finished */
if ((s = sched_stop(rp->r_scheduler, rpub->endpoint)) != OK) {
printf("RS: warning: scheduler won't give up process: %d\n", s);
}
/* Ask PM to exit the service */
if(rp->r_pid == -1) {
printf("RS: warning: attempt to kill pid -1!\n");
}
else {
srv_kill(rp->r_pid, SIGKILL);
}
}
/* See if we need to run a script now. */
if(cleanup_script) {
rp->r_flags &= ~RS_CLEANUP_SCRIPT;
s = run_script(rp);
if(s != OK) {
printf("RS: warning: cannot run cleanup script: %d\n", s);
}
}
if(detach) {
/* Detach service when asked to. */
detach_service(rp);
} }
else { else {
srv_kill(rp->r_pid, SIGKILL); /* Free slot otherwise, unless we're about to reuse it */
if (!(rp->r_flags & RS_REINCARNATE))
free_slot(rp);
} }
}
/* Free slot, unless we're about to reuse it */ /*===========================================================================*
if (!(rp->r_flags & RS_REINCARNATE)) * detach_service_debug *
free_slot(rp); *===========================================================================*/
void detach_service_debug(file, line, rp)
char *file;
int line;
struct rproc *rp;
{
/* Detach the given system service. */
static unsigned long detach_counter = 0;
char label[RS_MAX_LABEL_LEN];
struct rprocpub *rpub;
rpub = rp->r_pub;
/* Publish a new unique label for the system service. */
rpub->label[RS_MAX_LABEL_LEN-1] = '\0';
strcpy(label, rpub->label);
snprintf(rpub->label, RS_MAX_LABEL_LEN, "%lu.%s", ++detach_counter, label);
ds_publish_label(rpub->label, rpub->endpoint, DSF_OVERWRITE);
if(rs_verbose)
printf("RS: %s detached at %s:%d\n", srv_to_string(rp),
file, line);
/* Allow the service to run. */
rp->r_flags = RS_IN_USE | RS_ACTIVE;
rpub->sys_flags &= ~(SF_CORE_SRV|SF_DET_RESTART);
rp->r_period = 0;
rpub->dev_nr = 0;
sys_privctl(rpub->endpoint, SYS_PRIV_ALLOW, NULL);
} }
/*===========================================================================* /*===========================================================================*
@ -495,7 +620,7 @@ struct rproc *rp;
if ((s = sched_init_proc(rp)) != OK) { if ((s = sched_init_proc(rp)) != OK) {
printf("RS: unable to start scheduling: %d\n", s); printf("RS: unable to start scheduling: %d\n", s);
cleanup_service(rp); cleanup_service(rp);
vm_memctl(RS_PROC_NR, VM_RS_MEM_PIN,0,0); vm_memctl(RS_PROC_NR, VM_RS_MEM_PIN, 0, 0);
return s; return s;
} }
@ -529,8 +654,37 @@ struct rproc *rp;
free_exec(rp); free_exec(rp);
} }
/* The purpose of non-blocking forks is to avoid involving VFS in the forking
* process, because VFS may be blocked on a sendrec() to a MFS that is
* waiting for a endpoint update for a dead driver. We have just published
* that update, but VFS may still be blocked. As a result, VFS may not yet
* have received PM's fork message. Hence, if we call mapdriver()
* immediately, VFS may not know about the process and thus refuse to add the
* driver entry. The following temporary hack works around this by forcing
* blocking communication from PM to VFS. Once VFS has been made non-blocking
* towards MFS instances, this hack and the big part of srv_fork() can go.
*/
setuid(0);
/* If this is a RS instance, pin memory. */
if(rp->r_priv.s_flags & ROOT_SYS_PROC) {
if(rs_verbose)
printf("RS: pinning memory of RS instance %s\n", srv_to_string(rp));
s = vm_memctl(rpub->endpoint, VM_RS_MEM_PIN, 0, 0);
if(s != OK) {
printf("vm_memctl failed: %d\n", s);
cleanup_service(rp);
return s;
}
}
/* If this is a VM instance, let VM know now. */ /* If this is a VM instance, let VM know now. */
if(rp->r_priv.s_flags & VM_SYS_PROC) { if(rp->r_priv.s_flags & VM_SYS_PROC) {
struct rproc *rs_rp;
struct rproc **rs_rps;
int i, nr_rs_rps;
if(rs_verbose) if(rs_verbose)
printf("RS: informing VM of instance %s\n", srv_to_string(rp)); printf("RS: informing VM of instance %s\n", srv_to_string(rp));
@ -540,6 +694,15 @@ struct rproc *rp;
cleanup_service(rp); cleanup_service(rp);
return s; return s;
} }
/* VM may start actually pinning memory for us only now.
* Ask again for all our instances.
*/
rs_rp = rproc_ptr[_ENDPOINT_P(RS_PROC_NR)];
get_service_instances(rs_rp, &rs_rps, &nr_rs_rps);
for(i=0;i<nr_rs_rps;i++) {
vm_memctl(rs_rps[i]->r_pub->endpoint, VM_RS_MEM_PIN, 0, 0);
}
} }
/* Tell VM about allowed calls. */ /* Tell VM about allowed calls. */
@ -558,9 +721,7 @@ struct rproc *rp;
/*===========================================================================* /*===========================================================================*
* clone_service * * clone_service *
*===========================================================================*/ *===========================================================================*/
int clone_service(rp, instance_flag) int clone_service(struct rproc *rp, int instance_flag, int init_flags)
struct rproc *rp;
int instance_flag;
{ {
/* Clone the given system service instance. */ /* Clone the given system service instance. */
struct rproc *replica_rp; struct rproc *replica_rp;
@ -572,7 +733,16 @@ int instance_flag;
int r; int r;
if(rs_verbose) if(rs_verbose)
printf("RS: creating a replica for %s\n", srv_to_string(rp)); printf("RS: %s creating a replica\n", srv_to_string(rp));
/* VM can only reliably support one replica at the time for now.
* XXX TO-DO: Fix VM's rs_memctl_make_vm_instance to allow multiple replicas.
*/
if(rp->r_pub->endpoint == VM_PROC_NR && instance_flag == LU_SYS_PROC
&& rp->r_next_rp) {
cleanup_service_now(rp->r_next_rp);
rp->r_next_rp = NULL;
}
/* Clone slot. */ /* Clone slot. */
if((r = clone_slot(rp, &replica_rp)) != OK) { if((r = clone_slot(rp, &replica_rp)) != OK) {
@ -590,6 +760,7 @@ int instance_flag;
replica_link = &replica_rp->r_prev_rp; replica_link = &replica_rp->r_prev_rp;
} }
replica_rp->r_priv.s_flags |= instance_flag; replica_rp->r_priv.s_flags |= instance_flag;
replica_rp->r_priv.s_init_flags |= init_flags;
/* Link the two slots. */ /* Link the two slots. */
*rp_link = replica_rp; *rp_link = replica_rp;
@ -737,7 +908,7 @@ struct rproc *rp; /* pointer to service slot */
r = ds_retrieve_label_endpt("devman",&ep); r = ds_retrieve_label_endpt("devman",&ep);
if (r != OK) { if (r != OK) {
printf("RS: devman not running?"); printf("RS: devman not running?");
} else { } else {
m.m_type = DEVMAN_UNBIND; m.m_type = DEVMAN_UNBIND;
m.DEVMAN_ENDPOINT = rpub->endpoint; m.DEVMAN_ENDPOINT = rpub->endpoint;
@ -759,9 +930,7 @@ struct rproc *rp; /* pointer to service slot */
/*===========================================================================* /*===========================================================================*
* run_service * * run_service *
*===========================================================================*/ *===========================================================================*/
int run_service(rp, init_type) int run_service(struct rproc *rp, int init_type, int init_flags)
struct rproc *rp;
int init_type;
{ {
/* Let a newly created service run. */ /* Let a newly created service run. */
struct rprocpub *rpub; struct rprocpub *rpub;
@ -775,7 +944,7 @@ int init_type;
} }
/* Initialize service. */ /* Initialize service. */
if((s = init_service(rp, init_type)) != OK) { if((s = init_service(rp, init_type, init_flags)) != OK) {
return kill_service(rp, "unable to initialize service", s); return kill_service(rp, "unable to initialize service", s);
} }
@ -788,16 +957,16 @@ int init_type;
/*===========================================================================* /*===========================================================================*
* start_service * * start_service *
*===========================================================================*/ *===========================================================================*/
int start_service(rp) int start_service(struct rproc *rp, int init_flags)
struct rproc *rp;
{ {
/* Start a system service. */ /* Start a system service. */
int r, init_type; int r;
struct rprocpub *rpub; struct rprocpub *rpub;
rpub = rp->r_pub; rpub = rp->r_pub;
/* Create and make active. */ /* Create and make active. */
rp->r_priv.s_init_flags |= init_flags;
r = create_service(rp); r = create_service(rp);
if(r != OK) { if(r != OK) {
return r; return r;
@ -811,8 +980,7 @@ struct rproc *rp;
} }
/* Run. */ /* Run. */
init_type = SEF_INIT_FRESH; r = run_service(rp, SEF_INIT_FRESH, init_flags);
r = run_service(rp, init_type);
if(r != OK) { if(r != OK) {
return r; return r;
} }
@ -849,66 +1017,6 @@ void stop_service(struct rproc *rp,int how)
getticks(&rp->r_stop_tm); /* record current time */ getticks(&rp->r_stop_tm); /* record current time */
} }
/*===========================================================================*
* update_service *
*===========================================================================*/
int update_service(src_rpp, dst_rpp, swap_flag)
struct rproc **src_rpp;
struct rproc **dst_rpp;
int swap_flag;
{
/* Update an existing service. */
int r;
struct rproc *src_rp;
struct rproc *dst_rp;
struct rprocpub *src_rpub;
struct rprocpub *dst_rpub;
int pid;
endpoint_t endpoint;
src_rp = *src_rpp;
dst_rp = *dst_rpp;
src_rpub = src_rp->r_pub;
dst_rpub = dst_rp->r_pub;
if(rs_verbose)
printf("RS: %s updating into %s\n",
srv_to_string(src_rp), srv_to_string(dst_rp));
/* Swap the slots of the two processes when asked to. */
if(swap_flag == RS_SWAP) {
if((r = srv_update(src_rpub->endpoint, dst_rpub->endpoint)) != OK) {
return r;
}
}
/* Swap slots here as well. */
pid = src_rp->r_pid;
endpoint = src_rpub->endpoint;
swap_slot(&src_rp, &dst_rp);
/* Reassign pids and endpoints. */
src_rp->r_pid = dst_rp->r_pid;
src_rp->r_pub->endpoint = dst_rp->r_pub->endpoint;
rproc_ptr[_ENDPOINT_P(src_rp->r_pub->endpoint)] = src_rp;
dst_rp->r_pid = pid;
dst_rp->r_pub->endpoint = endpoint;
rproc_ptr[_ENDPOINT_P(dst_rp->r_pub->endpoint)] = dst_rp;
/* Adjust input pointers. */
*src_rpp = src_rp;
*dst_rpp = dst_rp;
/* Make the new version active. */
activate_service(dst_rp, src_rp);
if(rs_verbose)
printf("RS: %s updated into %s\n",
srv_to_string(src_rp), srv_to_string(dst_rp));
return OK;
}
/*===========================================================================* /*===========================================================================*
* activate_service * * activate_service *
*===========================================================================*/ *===========================================================================*/
@ -932,35 +1040,23 @@ void activate_service(struct rproc *rp, struct rproc *ex_rp)
/*===========================================================================* /*===========================================================================*
* reincarnate_service * * reincarnate_service *
*===========================================================================*/ *===========================================================================*/
void reincarnate_service(struct rproc *rp) void reincarnate_service(struct rproc *old_rp)
{ {
/* Restart a service as if it were never started before. */ /* Restart a service as if it were never started before. */
struct rprocpub *rpub; struct rproc *rp;
int i; int r, restarts;
rpub = rp->r_pub; if ((r = clone_slot(old_rp, &rp)) != OK) {
printf("RS: Failed to clone the slot: %d\n", r);
return;
}
rp->r_flags &= RS_IN_USE; rp->r_flags = RS_IN_USE;
rp->r_pid = -1; rproc_ptr[_ENDPOINT_P(rp->r_pub->endpoint)] = NULL;
rproc_ptr[_ENDPOINT_P(rpub->endpoint)] = NULL;
/* Restore original IRQ and I/O range tables in the priv struct. This is the restarts = rp->r_restarts;
* only part of the privilege structure that can be modified by processes start_service(rp, SEF_INIT_FRESH);
* other than RS itself. rp->r_restarts = restarts + 1;
*/
rp->r_priv.s_nr_irq = rp->r_nr_irq;
for (i = 0; i < rp->r_nr_irq; i++)
rp->r_priv.s_irq_tab[i] = rp->r_irq_tab[i];
rp->r_priv.s_nr_io_range = rp->r_nr_io_range;
for (i = 0; i < rp->r_nr_io_range; i++)
rp->r_priv.s_io_tab[i] = rp->r_io_tab[i];
rp->r_old_rp = NULL;
rp->r_new_rp = NULL;
rp->r_prev_rp = NULL;
rp->r_next_rp = NULL;
start_service(rp);
} }
/*===========================================================================* /*===========================================================================*
@ -971,7 +1067,7 @@ void terminate_service(struct rproc *rp)
/* Handle a termination event for a system service. */ /* Handle a termination event for a system service. */
struct rproc **rps; struct rproc **rps;
struct rprocpub *rpub; struct rprocpub *rpub;
int nr_rps; int nr_rps, norestart;
int i, r; int i, r;
rpub = rp->r_pub; rpub = rp->r_pub;
@ -981,6 +1077,14 @@ void terminate_service(struct rproc *rp)
/* Deal with failures during initialization. */ /* Deal with failures during initialization. */
if(rp->r_flags & RS_INITIALIZING) { if(rp->r_flags & RS_INITIALIZING) {
/* If updating, rollback. */
if(SRV_IS_UPDATING(rp)) {
printf("RS: update failed: state transfer failed. Rolling back...\n");
end_update(rp->r_init_err, RS_REPLY);
rp->r_init_err = ERESTART;
return;
}
if (rpub->sys_flags & SF_NO_BIN_EXP) { if (rpub->sys_flags & SF_NO_BIN_EXP) {
/* If service was deliberately started with binary exponential offset /* If service was deliberately started with binary exponential offset
* disabled, we're going to assume we want to refresh a service upon * disabled, we're going to assume we want to refresh a service upon
@ -993,33 +1097,51 @@ void terminate_service(struct rproc *rp)
} else { } else {
if(rs_verbose) if(rs_verbose)
printf("RS: service '%s' exited during initialization; " printf("RS: service '%s' exited during initialization; "
"not restarting\n", rpub->label); "exiting\n", rpub->label);
rp->r_flags |= RS_EXITING; /* don't restart. */ rp->r_flags |= RS_EXITING; /* don't restart. */
} }
}
/* If updating, rollback. */ /* If an update process is in progress, end it before doing anything else.
if(rp->r_flags & RS_UPDATING) { * This is to be on the safe side, since there may be some weird dependencies
struct rproc *old_rp, *new_rp; * with services under update, while we perform recovery actions.
printf("RS: update failed: state transfer failed. Rolling back...\n"); */
new_rp = rp; if(RUPDATE_IS_UPDATING()) {
old_rp = new_rp->r_old_rp; printf("RS: aborting the update after a crash...\n");
new_rp->r_flags &= ~RS_INITIALIZING; abort_update_proc(ERESTART);
r = update_service(&new_rp, &old_rp, RS_SWAP); }
assert(r == OK); /* can't fail */
end_update(ERESTART, RS_REPLY); /* Force exit when no restart is requested. */
return; norestart = !(rp->r_flags & RS_EXITING) && (rp->r_pub->sys_flags & SF_NORESTART);
if(norestart) {
rp->r_flags |= RS_EXITING;
if((rp->r_pub->sys_flags & SF_DET_RESTART)
&& (rp->r_restarts < MAX_DET_RESTART)) {
/* Detach at cleanup time. */
rp->r_flags |= RS_CLEANUP_DETACH;
}
if(rp->r_script[0] != '\0') {
/* Run script at cleanup time. */
rp->r_flags |= RS_CLEANUP_SCRIPT;
} }
} }
if (rp->r_flags & RS_EXITING) { if (rp->r_flags & RS_EXITING) {
/* If a core system service is exiting, we are in trouble. */ /* If a core system service is exiting, we are in trouble. */
if (rp->r_pub->sys_flags & SF_CORE_SRV && !shutting_down) { if ((rp->r_pub->sys_flags & SF_CORE_SRV) && !shutting_down) {
printf("core system service died: %s\n", srv_to_string(rp)); printf("core system service died: %s\n", srv_to_string(rp));
_exit(1); _exit(1);
} }
/* If this service was scheduled for the update, abort the update now. */
if(SRV_IS_UPD_SCHEDULED(rp)) {
printf("RS: aborting the scheduled update, one of the services part of it is exiting...\n");
abort_update_proc(EDEADSRCDST);
}
/* See if a late reply has to be sent. */ /* See if a late reply has to be sent. */
r = (rp->r_caller_request == RS_DOWN ? OK : EDEADEPT); r = (rp->r_caller_request == RS_DOWN
|| (rp->r_caller_request == RS_REFRESH && norestart) ? OK : EDEADEPT);
late_reply(rp, r); late_reply(rp, r);
/* Unpublish the service. */ /* Unpublish the service. */
@ -1036,6 +1158,7 @@ void terminate_service(struct rproc *rp)
* If this fails, start_service() itself will perform cleanup. * If this fails, start_service() itself will perform cleanup.
*/ */
if (rp->r_flags & RS_REINCARNATE) { if (rp->r_flags & RS_REINCARNATE) {
rp->r_flags &= ~RS_REINCARNATE;
reincarnate_service(rp); reincarnate_service(rp);
} }
} }
@ -1044,13 +1167,6 @@ void terminate_service(struct rproc *rp)
restart_service(rp); restart_service(rp);
} }
else { else {
/* If an update is in progress, end it. The old version
* that just exited will continue executing.
*/
if(rp->r_flags & RS_UPDATING) {
end_update(ERESTART, RS_DONTREPLY);
}
/* Determine what to do. If this is the first unexpected /* Determine what to do. If this is the first unexpected
* exit, immediately restart this service. Otherwise use * exit, immediately restart this service. Otherwise use
* a binary exponential backoff. * a binary exponential backoff.
@ -1104,7 +1220,7 @@ static int run_script(struct rproc *rp)
switch(pid) switch(pid)
{ {
case -1: case -1:
return kill_service(rp, "unable to fork script", errno); return errno;
case 0: case 0:
execle(_PATH_BSHELL, "sh", rp->r_script, rpub->label, reason, execle(_PATH_BSHELL, "sh", rp->r_script, rpub->label, reason,
incarnation_str, (char*) NULL, envp); incarnation_str, (char*) NULL, envp);
@ -1146,25 +1262,19 @@ void restart_service(struct rproc *rp)
/* See if a late reply has to be sent. */ /* See if a late reply has to be sent. */
late_reply(rp, OK); late_reply(rp, OK);
/* This hack disables restarting of file servers, which at the moment always
* cause VFS to hang indefinitely. As soon as VFS no longer blocks on calls
* to file servers, this exception can be removed again.
*/
if (!strncmp(rp->r_pub->label, "fs_", 3)) {
kill_service(rp, "file servers cannot be restarted yet", ENOSYS);
return;
}
/* Run a recovery script if available. */ /* Run a recovery script if available. */
if (rp->r_script[0] != '\0') { if (rp->r_script[0] != '\0') {
run_script(rp); r = run_script(rp);
if(r != OK) {
kill_service(rp, "unable to run script", errno);
}
return; return;
} }
/* Restart directly. We need a replica if not already available. */ /* Restart directly. We need a replica if not already available. */
if(rp->r_next_rp == NULL) { if(rp->r_next_rp == NULL) {
/* Create the replica. */ /* Create the replica. */
r = clone_service(rp, RST_SYS_PROC); r = clone_service(rp, RST_SYS_PROC, 0);
if(r != OK) { if(r != OK) {
kill_service(rp, "unable to clone service", r); kill_service(rp, "unable to clone service", r);
return; return;
@ -1173,19 +1283,25 @@ void restart_service(struct rproc *rp)
replica_rp = rp->r_next_rp; replica_rp = rp->r_next_rp;
/* Update the service into the replica. */ /* Update the service into the replica. */
r = update_service(&rp, &replica_rp, RS_SWAP); r = update_service(&rp, &replica_rp, RS_SWAP, 0);
if(r != OK) { if(r != OK) {
kill_service(rp, "unable to update into new replica", r); kill_service(rp, "unable to update into new replica", r);
return; return;
} }
/* Let the new replica run. */ /* Let the new replica run. */
r = run_service(replica_rp, SEF_INIT_RESTART); r = run_service(replica_rp, SEF_INIT_RESTART, 0);
if(r != OK) { if(r != OK) {
kill_service(rp, "unable to let the replica run", r); kill_service(rp, "unable to let the replica run", r);
return; return;
} }
/* See if the old version needs to be detached. */
if((rp->r_pub->sys_flags & SF_DET_RESTART)
&& (rp->r_restarts < MAX_DET_RESTART)) {
rp->r_flags |= RS_CLEANUP_DETACH;
}
if(rs_verbose) if(rs_verbose)
printf("RS: %s restarted into %s\n", printf("RS: %s restarted into %s\n",
srv_to_string(rp), srv_to_string(replica_rp)); srv_to_string(rp), srv_to_string(replica_rp));
@ -1499,11 +1615,13 @@ endpoint_t source;
/* Update recovery script. */ /* Update recovery script. */
if (rs_start->rss_scriptlen > MAX_SCRIPT_LEN-1) return(E2BIG); if (rs_start->rss_scriptlen > MAX_SCRIPT_LEN-1) return(E2BIG);
if (rs_start->rss_script != NULL && !(rpub->sys_flags & SF_CORE_SRV)) { if (rs_start->rss_script != NULL && rs_start->rss_scriptlen > 0
&& !(rpub->sys_flags & SF_CORE_SRV)) {
s=sys_datacopy(source, (vir_bytes) rs_start->rss_script, s=sys_datacopy(source, (vir_bytes) rs_start->rss_script,
SELF, (vir_bytes) rp->r_script, rs_start->rss_scriptlen); SELF, (vir_bytes) rp->r_script, rs_start->rss_scriptlen);
if (s != OK) return(s); if (s != OK) return(s);
rp->r_script[rs_start->rss_scriptlen] = '\0'; rp->r_script[rs_start->rss_scriptlen] = '\0';
rpub->sys_flags |= SF_USE_SCRIPT;
} }
/* Update system flags and in-memory copy. */ /* Update system flags and in-memory copy. */
@ -1518,9 +1636,6 @@ endpoint_t source;
for(i = 0; i < NR_SYS_PROCS; i++) { for(i = 0; i < NR_SYS_PROCS; i++) {
rp2 = &rproc[i]; rp2 = &rproc[i];
if (!(rp2->r_flags & RS_IN_USE)) {
continue;
}
rpub2 = rproc[i].r_pub; rpub2 = rproc[i].r_pub;
if(strcmp(rpub->proc_name, rpub2->proc_name) == 0 && if(strcmp(rpub->proc_name, rpub2->proc_name) == 0 &&
(rpub2->sys_flags & SF_USE_COPY)) { (rpub2->sys_flags & SF_USE_COPY)) {
@ -1549,12 +1664,32 @@ endpoint_t source;
if (rs_start->rss_flags & RSS_NO_BIN_EXP) { if (rs_start->rss_flags & RSS_NO_BIN_EXP) {
rpub->sys_flags |= SF_NO_BIN_EXP; rpub->sys_flags |= SF_NO_BIN_EXP;
} }
if (rs_start->rss_flags & RSS_DETACH) {
rpub->sys_flags |= SF_DET_RESTART;
}
else {
rpub->sys_flags &= ~SF_DET_RESTART;
}
if (rs_start->rss_flags & RSS_NORESTART) {
if(rpub->sys_flags & SF_CORE_SRV) {
return EPERM;
}
rpub->sys_flags |= SF_NORESTART;
}
else {
rpub->sys_flags &= ~SF_NORESTART;
}
/* Update period. */ /* Update period. */
if(rpub->endpoint != RS_PROC_NR) { if(rpub->endpoint != RS_PROC_NR) {
rp->r_period = rs_start->rss_period; rp->r_period = rs_start->rss_period;
} }
/* Update restarts. */
if(rs_start->rss_restarts) {
rp->r_restarts = rs_start->rss_restarts;
}
/* (Re)initialize privilege settings. */ /* (Re)initialize privilege settings. */
init_privs(rp, &rp->r_priv); init_privs(rp, &rp->r_priv);
@ -1581,6 +1716,7 @@ endpoint_t source;
*/ */
rpub->sys_flags = DSRV_SF; /* system flags */ rpub->sys_flags = DSRV_SF; /* system flags */
rp->r_priv.s_flags = DSRV_F; /* privilege flags */ rp->r_priv.s_flags = DSRV_F; /* privilege flags */
rp->r_priv.s_init_flags = DSRV_I; /* init flags */
rp->r_priv.s_trap_mask = DSRV_T; /* allowed traps */ rp->r_priv.s_trap_mask = DSRV_T; /* allowed traps */
rp->r_priv.s_bak_sig_mgr = NONE; /* backup signal manager */ rp->r_priv.s_bak_sig_mgr = NONE; /* backup signal manager */
@ -1635,6 +1771,9 @@ endpoint_t source;
rpub->label[0]= '\0'; /* no label yet */ rpub->label[0]= '\0'; /* no label yet */
rp->r_scheduler = -1; /* no scheduler yet */ rp->r_scheduler = -1; /* no scheduler yet */
rp->r_priv.s_sig_mgr = -1; /* no signal manager yet */ rp->r_priv.s_sig_mgr = -1; /* no signal manager yet */
rp->r_map_prealloc_addr = 0; /* no preallocated memory */
rp->r_map_prealloc_len = 0;
rp->r_init_err = ERESTART; /* default init error `*/
/* Initialize editable slot settings. */ /* Initialize editable slot settings. */
return edit_slot(rp, rs_start, source); return edit_slot(rp, rs_start, source);
@ -1671,6 +1810,7 @@ struct rproc **clone_rpp;
*clone_rpub = *rpub; *clone_rpub = *rpub;
/* Deep copy. */ /* Deep copy. */
clone_rp->r_init_err = ERESTART; /* default init error */
clone_rp->r_flags &= ~RS_ACTIVE; /* the clone is not active yet */ clone_rp->r_flags &= ~RS_ACTIVE; /* the clone is not active yet */
clone_rp->r_pid = -1; /* no pid yet */ clone_rp->r_pid = -1; /* no pid yet */
clone_rpub->endpoint = -1; /* no endpoint yet */ clone_rpub->endpoint = -1; /* no endpoint yet */
@ -1689,6 +1829,7 @@ struct rproc **clone_rpp;
/* Clear instance flags. */ /* Clear instance flags. */
clone_rp->r_priv.s_flags &= ~(LU_SYS_PROC | RST_SYS_PROC); clone_rp->r_priv.s_flags &= ~(LU_SYS_PROC | RST_SYS_PROC);
clone_rp->r_priv.s_init_flags = 0;
*clone_rpp = clone_rp; *clone_rpp = clone_rp;
return OK; return OK;
@ -1716,12 +1857,11 @@ struct rproc **src_rpp;
struct rproc **dst_rpp; struct rproc **dst_rpp;
{ {
/* Swap two service slots. */ /* Swap two service slots. */
struct rproc *src_rp; struct rproc *src_rp, *dst_rp;
struct rproc *dst_rp; struct rprocpub *src_rpub, *dst_rpub;
struct rprocpub *src_rpub;
struct rprocpub *dst_rpub;
struct rproc orig_src_rproc, orig_dst_rproc; struct rproc orig_src_rproc, orig_dst_rproc;
struct rprocpub orig_src_rprocpub, orig_dst_rprocpub; struct rprocpub orig_src_rprocpub, orig_dst_rprocpub;
struct rprocupd *prev_rpupd, *rpupd;
src_rp = *src_rpp; src_rp = *src_rpp;
dst_rp = *dst_rpp; dst_rp = *dst_rpp;
@ -1740,9 +1880,11 @@ struct rproc **dst_rpp;
*dst_rp = orig_src_rproc; *dst_rp = orig_src_rproc;
*dst_rpub = orig_src_rprocpub; *dst_rpub = orig_src_rprocpub;
/* Restore public entries. */ /* Restore public entries and update descriptors. */
src_rp->r_pub = orig_src_rproc.r_pub; src_rp->r_pub = orig_src_rproc.r_pub;
dst_rp->r_pub = orig_dst_rproc.r_pub; dst_rp->r_pub = orig_dst_rproc.r_pub;
src_rp->r_upd = orig_src_rproc.r_upd;
dst_rp->r_upd = orig_dst_rproc.r_upd;
/* Rebuild command dependencies. */ /* Rebuild command dependencies. */
build_cmd_dep(src_rp); build_cmd_dep(src_rp);
@ -1759,7 +1901,9 @@ struct rproc **dst_rpp;
swap_slot_pointer(&dst_rp->r_new_rp, src_rp, dst_rp); swap_slot_pointer(&dst_rp->r_new_rp, src_rp, dst_rp);
/* Swap global slot pointers. */ /* Swap global slot pointers. */
swap_slot_pointer(&rupdate.rp, src_rp, dst_rp); RUPDATE_ITER(rupdate.first_rpupd, prev_rpupd, rpupd,
swap_slot_pointer(&rpupd->rp, src_rp, dst_rp);
);
swap_slot_pointer(&rproc_ptr[_ENDPOINT_P(src_rp->r_pub->endpoint)], swap_slot_pointer(&rproc_ptr[_ENDPOINT_P(src_rp->r_pub->endpoint)],
src_rp, dst_rp); src_rp, dst_rp);
swap_slot_pointer(&rproc_ptr[_ENDPOINT_P(dst_rp->r_pub->endpoint)], swap_slot_pointer(&rproc_ptr[_ENDPOINT_P(dst_rp->r_pub->endpoint)],

View file

@ -2,6 +2,7 @@
/* Structs used in prototypes must be declared as such first. */ /* Structs used in prototypes must be declared as such first. */
struct rproc; struct rproc;
struct rprocupd;
/* exec.c */ /* exec.c */
int srv_execve(int proc_e, char *exec, size_t exec_len, char *argv[], int srv_execve(int proc_e, char *exec, size_t exec_len, char *argv[],
@ -16,6 +17,7 @@ int do_down(message *m);
int do_refresh(message *m); int do_refresh(message *m);
int do_restart(message *m); int do_restart(message *m);
int do_clone(message *m); int do_clone(message *m);
int do_unclone(message *m);
int do_edit(message *m); int do_edit(message *m);
int do_shutdown(message *m); int do_shutdown(message *m);
void do_period(message *m); void do_period(message *m);
@ -25,6 +27,7 @@ int do_upd_ready(message *m);
void do_sigchld(void); void do_sigchld(void);
int do_getsysinfo(message *m); int do_getsysinfo(message *m);
int do_lookup(message *m); int do_lookup(message *m);
int do_sysctl(message *m);
/* manager.c */ /* manager.c */
int check_call_permission(endpoint_t caller, int call, struct rproc int check_call_permission(endpoint_t caller, int call, struct rproc
@ -33,8 +36,10 @@ int copy_rs_start(endpoint_t src_e, char *src_rs_start, struct rs_start
*rs_start); *rs_start);
int copy_label(endpoint_t src_e, char *src_label, size_t src_len, char int copy_label(endpoint_t src_e, char *src_label, size_t src_len, char
*dst_label, size_t dst_len); *dst_label, size_t dst_len);
int init_state_data(endpoint_t src_e, int prepare_state,
struct rs_state_data *src_rs_state_data,
struct rs_state_data *dst_rs_state_data);
void build_cmd_dep(struct rproc *rp); void build_cmd_dep(struct rproc *rp);
int srv_update(endpoint_t src_e, endpoint_t dst_e);
#define kill_service(rp, errstr, err) \ #define kill_service(rp, errstr, err) \
kill_service_debug(__FILE__, __LINE__, rp, errstr, err) kill_service_debug(__FILE__, __LINE__, rp, errstr, err)
int kill_service_debug(char *file, int line, struct rproc *rp, char int kill_service_debug(char *file, int line, struct rproc *rp, char
@ -44,29 +49,35 @@ int kill_service_debug(char *file, int line, struct rproc *rp, char
int crash_service_debug(char *file, int line, struct rproc *rp); int crash_service_debug(char *file, int line, struct rproc *rp);
#define cleanup_service(rp) \ #define cleanup_service(rp) \
cleanup_service_debug(__FILE__, __LINE__, rp) cleanup_service_debug(__FILE__, __LINE__, rp)
void cleanup_service_debug(char *file, int line, struct rproc *rp); #define cleanup_service_now(rp) \
do { struct rproc *rpt = rp; cleanup_service(rpt); cleanup_service(rpt); } while(0)
void cleanup_service_debug(char *file, int line,
struct rproc *rp);
#define detach_service(rp) \
detach_service_debug(__FILE__, __LINE__, rp)
void detach_service_debug(char *file, int line,
struct rproc *rp);
int create_service(struct rproc *rp); int create_service(struct rproc *rp);
int clone_service(struct rproc *rp, int instance_flag); int clone_service(struct rproc *rp, int instance_flag, int init_flags);
int publish_service(struct rproc *rp); int publish_service(struct rproc *rp);
int unpublish_service(struct rproc *rp); int unpublish_service(struct rproc *rp);
int run_service(struct rproc *rp, int init_type); int run_service(struct rproc *rp, int init_type, int init_flags);
int start_service(struct rproc *rp); int start_service(struct rproc *rp, int init_flags);
void stop_service(struct rproc *rp,int how); void stop_service(struct rproc *rp,int how);
int update_service(struct rproc **src_rpp, struct rproc **dst_rpp, int
swap_flag);
void activate_service(struct rproc *rp, struct rproc *ex_rp); void activate_service(struct rproc *rp, struct rproc *ex_rp);
void terminate_service(struct rproc *rp); void terminate_service(struct rproc *rp);
void restart_service(struct rproc *rp); void restart_service(struct rproc *rp);
void inherit_service_defaults(struct rproc *def_rp, struct rproc *rp); void inherit_service_defaults(struct rproc *def_rp,
void get_service_instances(struct rproc *rp, struct rproc ***rps, int struct rproc *rp);
*length); void get_service_instances(struct rproc *rp, struct rproc ***rps,
int *length);
int read_exec(struct rproc *rp); int read_exec(struct rproc *rp);
void share_exec(struct rproc *rp_src, struct rproc *rp_dst); void share_exec(struct rproc *rp_src, struct rproc *rp_dst);
void free_exec(struct rproc *rp); void free_exec(struct rproc *rp);
int init_slot(struct rproc *rp, struct rs_start *rs_start, endpoint_t int init_slot(struct rproc *rp, struct rs_start *rs_start,
source); endpoint_t source);
int edit_slot(struct rproc *rp, struct rs_start *rs_start, endpoint_t int edit_slot(struct rproc *rp, struct rs_start *rs_start,
source); endpoint_t source);
int clone_slot(struct rproc *rp, struct rproc **clone_rpp); int clone_slot(struct rproc *rp, struct rproc **clone_rpp);
void swap_slot(struct rproc **src_rpp, struct rproc **dst_rpp); void swap_slot(struct rproc **src_rpp, struct rproc **dst_rpp);
struct rproc* lookup_slot_by_label(char *label); struct rproc* lookup_slot_by_label(char *label);
@ -79,21 +90,58 @@ char *get_next_label(char *ptr, char *label, char *caller_label);
void add_forward_ipc(struct rproc *rp, struct priv *privp); void add_forward_ipc(struct rproc *rp, struct priv *privp);
void add_backward_ipc(struct rproc *rp, struct priv *privp); void add_backward_ipc(struct rproc *rp, struct priv *privp);
void init_privs(struct rproc *rp, struct priv *privp); void init_privs(struct rproc *rp, struct priv *privp);
void end_srv_init(struct rproc *rp);
/* update.c */
void rupdate_clear_upds(void);
void rupdate_add_upd(struct rprocupd* rpupd);
void rupdate_set_new_upd_flags(struct rprocupd* rpupd);
void rupdate_upd_init(struct rprocupd* rpupd, struct rproc *rp);
void rupdate_upd_clear(struct rprocupd* rpupd);
void rupdate_upd_move(struct rproc* src_rp, struct rproc* dst_rp);
#define request_prepare_update_service(rp, state) \
request_prepare_update_service_debug(__FILE__, __LINE__, rp, state)
void request_prepare_update_service_debug(char *file, int line,
struct rproc *rp, int state);
int srv_update(endpoint_t src_e, endpoint_t dst_e, int sys_upd_flags);
int update_service(struct rproc **src_rpp,
struct rproc **dst_rpp, int swap_flag, int sys_upd_flags);
void rollback_service(struct rproc **src_rpp,
struct rproc **dst_rpp);
void update_period(message *m_ptr); void update_period(message *m_ptr);
void end_update(int result, int reply_flag); int start_update_prepare(int allow_retries);
struct rprocupd* start_update_prepare_next(void);
int start_update(void);
int start_srv_update(struct rprocupd *rpupd);
int complete_srv_update(struct rprocupd *rpupd);
void end_srv_update(struct rprocupd *rpupd, int result, int reply_flag);
int abort_update_proc(int reason);
#define end_update(result, reply_flag) \
end_update_debug(__FILE__, __LINE__, result, reply_flag)
void end_update_debug(char *file, int line,
int result, int reply_flag);
/* utility.c */ /* utility.c */
int init_service(struct rproc *rp, int type); int init_service(struct rproc *rp, int type, int flags);
void fill_send_mask(sys_map_t *send_mask, int set_bits); void fill_send_mask(sys_map_t *send_mask, int set_bits);
void fill_call_mask( int *calls, int tot_nr_calls, bitchunk_t void fill_call_mask( int *calls, int tot_nr_calls,
*call_mask, int call_base, int is_init); bitchunk_t *call_mask, int call_base, int is_init);
char* srv_to_string(struct rproc *rp); #define srv_to_string(RP) srv_to_string_gen(RP, DEBUG)
char* srv_to_string_gen(struct rproc *rp, int is_verbose);
char* srv_upd_to_string(struct rprocupd *rpupd);
int rs_asynsend(struct rproc *rp, message *m_ptr, int no_reply);
int rs_receive_ticks(endpoint_t src, message *m_ptr,
int *status_ptr, int ticks);
void reply(endpoint_t who, struct rproc *rp, message *m_ptr); void reply(endpoint_t who, struct rproc *rp, message *m_ptr);
void late_reply(struct rproc *rp, int code); void late_reply(struct rproc *rp, int code);
int rs_isokendpt(endpoint_t endpoint, int *proc); int rs_isokendpt(endpoint_t endpoint, int *proc);
int sched_init_proc(struct rproc *rp); int sched_init_proc(struct rproc *rp);
int update_sig_mgrs(struct rproc *rp, endpoint_t sig_mgr, endpoint_t int update_sig_mgrs(struct rproc *rp, endpoint_t sig_mgr,
bak_sig_mgr); endpoint_t bak_sig_mgr);
int rs_is_idle(void);
void rs_idle_period(void);
void print_services_status(void);
void print_update_status(void);
/* error.c */ /* error.c */
char * init_strerror(int errnum); char * init_strerror(int errnum);

660
minix/servers/rs/request.c Executable file → Normal file
View file

@ -21,6 +21,7 @@ message *m_ptr; /* request message pointer */
int r; int r;
struct rs_start rs_start; struct rs_start rs_start;
int noblock; int noblock;
int init_flags = 0;
/* Check if the call can be allowed. */ /* Check if the call can be allowed. */
if((r = check_call_permission(m_ptr->m_source, RS_UP, NULL)) != OK) if((r = check_call_permission(m_ptr->m_source, RS_UP, NULL)) != OK)
@ -43,7 +44,21 @@ message *m_ptr; /* request message pointer */
if (r != OK) { if (r != OK) {
return r; return r;
} }
/* Check flags. */
noblock = (rs_start.rss_flags & RSS_NOBLOCK); noblock = (rs_start.rss_flags & RSS_NOBLOCK);
if(rs_start.rss_flags & RSS_FORCE_INIT_CRASH) {
init_flags |= SEF_INIT_CRASH;
}
if(rs_start.rss_flags & RSS_FORCE_INIT_FAIL) {
init_flags |= SEF_INIT_FAIL;
}
if(rs_start.rss_flags & RSS_FORCE_INIT_TIMEOUT) {
init_flags |= SEF_INIT_TIMEOUT;
}
if(rs_start.rss_flags & RSS_FORCE_INIT_DEFCB) {
init_flags |= SEF_INIT_DEFCB;
}
/* Initialize the slot as requested. */ /* Initialize the slot as requested. */
r = init_slot(rp, &rs_start, m_ptr->m_source); r = init_slot(rp, &rs_start, m_ptr->m_source);
@ -65,7 +80,7 @@ message *m_ptr; /* request message pointer */
} }
/* All information was gathered. Now try to start the system service. */ /* All information was gathered. Now try to start the system service. */
r = start_service(rp); r = start_service(rp, init_flags);
if(r != OK) { if(r != OK) {
return r; return r;
} }
@ -217,7 +232,7 @@ int do_clone(message *m_ptr)
/* Clone the service as requested. */ /* Clone the service as requested. */
rpub->sys_flags |= SF_USE_REPL; rpub->sys_flags |= SF_USE_REPL;
if ((r = clone_service(rp, RST_SYS_PROC)) != OK) { if ((r = clone_service(rp, RST_SYS_PROC, 0)) != OK) {
rpub->sys_flags &= ~SF_USE_REPL; rpub->sys_flags &= ~SF_USE_REPL;
return r; return r;
} }
@ -225,6 +240,51 @@ int do_clone(message *m_ptr)
return OK; return OK;
} }
/*===========================================================================*
* do_unclone *
*===========================================================================*/
int do_unclone(message *m_ptr)
{
struct rproc *rp;
struct rprocpub *rpub;
int s, r;
char label[RS_MAX_LABEL_LEN];
/* Copy label. */
s = copy_label(m_ptr->m_source, m_ptr->m_rs_req.addr,
m_ptr->m_rs_req.len, label, sizeof(label));
if(s != OK) {
return s;
}
/* Lookup slot by label. */
rp = lookup_slot_by_label(label);
if(!rp) {
if(rs_verbose)
printf("RS: do_unclone: service '%s' not found\n", label);
return(ESRCH);
}
rpub = rp->r_pub;
/* Check if the call can be allowed. */
if((r = check_call_permission(m_ptr->m_source, RS_UNCLONE, rp)) != OK)
return r;
/* Don't unclone if no replica is available. */
if(!(rpub->sys_flags & SF_USE_REPL)) {
return ENOENT;
}
/* Unclone the service as requested. */
rpub->sys_flags &= ~SF_USE_REPL;
if(rp->r_next_rp) {
cleanup_service_now(rp->r_next_rp);
rp->r_next_rp = NULL;
}
return OK;
}
/*===========================================================================* /*===========================================================================*
* do_edit * * do_edit *
*===========================================================================*/ *===========================================================================*/
@ -309,7 +369,7 @@ int do_edit(message *m_ptr)
cleanup_service(rp->r_next_rp); cleanup_service(rp->r_next_rp);
rp->r_next_rp = NULL; rp->r_next_rp = NULL;
} }
if ((r = clone_service(rp, RST_SYS_PROC)) != OK) { if ((r = clone_service(rp, RST_SYS_PROC, 0)) != OK) {
printf("RS: warning: unable to clone %s\n", srv_to_string(rp)); printf("RS: warning: unable to clone %s\n", srv_to_string(rp));
} }
} }
@ -350,7 +410,12 @@ int do_refresh(message *m_ptr)
printf("RS: %s refreshing\n", srv_to_string(rp)); printf("RS: %s refreshing\n", srv_to_string(rp));
stop_service(rp,RS_REFRESHING); stop_service(rp,RS_REFRESHING);
return OK; /* Late reply - send a reply when refresh completes. */
rp->r_flags |= RS_LATEREPLY;
rp->r_caller = m_ptr->m_source;
rp->r_caller_request = RS_REFRESH;
return EDONTREPLY;
} }
/*===========================================================================* /*===========================================================================*
@ -391,20 +456,14 @@ int do_init_ready(message *m_ptr)
{ {
int who_p; int who_p;
message m; message m;
struct rproc *rp; struct rproc *rp, *new_rp;
struct rprocpub *rpub; struct rprocpub *rpub;
int result, is_rs; int result;
int r; int r;
is_rs = (m_ptr->m_source == RS_PROC_NR);
who_p = _ENDPOINT_P(m_ptr->m_source); who_p = _ENDPOINT_P(m_ptr->m_source);
result = m_ptr->m_rs_init.result; result = m_ptr->m_rs_init.result;
/* Check for RS failing initialization first. */
if(is_rs && result != OK) {
return result;
}
rp = rproc_ptr[who_p]; rp = rproc_ptr[who_p];
rpub = rp->r_pub; rpub = rp->r_pub;
@ -423,55 +482,43 @@ int do_init_ready(message *m_ptr)
if(rs_verbose) if(rs_verbose)
printf("RS: %s initialization error: %s\n", srv_to_string(rp), printf("RS: %s initialization error: %s\n", srv_to_string(rp),
init_strerror(result)); init_strerror(result));
if (result == ERESTART) if (result == ERESTART && !SRV_IS_UPDATING(rp))
rp->r_flags |= RS_REINCARNATE; rp->r_flags |= RS_REINCARNATE;
crash_service(rp); /* simulate crash */ crash_service(rp); /* simulate crash */
rp->r_init_err = result;
return EDONTREPLY; return EDONTREPLY;
} }
/* Mark the slot as no longer initializing. */
rp->r_flags &= ~RS_INITIALIZING;
rp->r_check_tm = 0;
getticks(&rp->r_alive_tm);
/* Reply and unblock the service before doing anything else. */
m.m_type = OK;
reply(rpub->endpoint, rp, &m);
/* See if a late reply has to be sent. */
late_reply(rp, OK);
if(rs_verbose) if(rs_verbose)
printf("RS: %s initialized\n", srv_to_string(rp)); printf("RS: %s initialized\n", srv_to_string(rp));
/* If the service has completed initialization after a live /* If updating, check if there is no service to update left. In that case,
* update, end the update now. * end the update process. If VM has completed initialization as part of
* multi-component live update, let the other services under update run now.
*/ */
if(rp->r_flags & RS_UPDATING) { if(SRV_IS_UPDATING(rp)) {
printf("RS: update succeeded\n"); rupdate.num_init_ready_pending--;
end_update(OK, RS_DONTREPLY); rp->r_flags |= RS_INIT_DONE;
} if(rupdate.num_init_ready_pending == 0) {
printf("RS: update succeeded\n");
/* If the service has completed initialization after a crash end_update(OK, RS_REPLY);
* make the new instance active and cleanup the old replica.
*/
if(rp->r_prev_rp) {
cleanup_service(rp->r_prev_rp);
rp->r_prev_rp = NULL;
rp->r_restarts += 1;
if(rs_verbose)
printf("RS: %s completed restart\n", srv_to_string(rp));
}
/* If we must keep a replica of this system service, create it now. */
if(rpub->sys_flags & SF_USE_REPL) {
if ((r = clone_service(rp, RST_SYS_PROC)) != OK) {
printf("RS: warning: unable to clone %s\n", srv_to_string(rp));
} }
} }
else {
/* Mark the slot as no longer initializing. */
rp->r_flags &= ~RS_INITIALIZING;
rp->r_check_tm = 0;
getticks(&rp->r_alive_tm);
return is_rs ? OK : EDONTREPLY; /* return what the caller expects */ /* Reply and unblock the service before doing anything else. */
m.m_type = OK;
reply(rpub->endpoint, rp, &m);
/* Finalize initialization. */
end_srv_init(rp);
}
return EDONTREPLY;
} }
/*===========================================================================* /*===========================================================================*
@ -480,26 +527,25 @@ int do_init_ready(message *m_ptr)
int do_update(message *m_ptr) int do_update(message *m_ptr)
{ {
struct rproc *rp; struct rproc *rp;
struct rproc *trg_rp;
struct rproc *new_rp; struct rproc *new_rp;
struct rprocpub *rpub; struct rprocpub *rpub;
struct rprocupd *rpupd;
struct rs_start rs_start; struct rs_start rs_start;
int noblock, do_self_update; int noblock, do_self_update, force_self_update, batch_mode, prepare_only;
int s; int s;
char label[RS_MAX_LABEL_LEN]; char label[RS_MAX_LABEL_LEN];
int lu_state; int prepare_state, prepare_maxtime;
int prepare_maxtime; endpoint_t state_endpoint;
int lu_flags = 0;
int init_flags = 0;
int allow_retries = 0;
/* Copy the request structure. */ /* Copy the request structure. */
s = copy_rs_start(m_ptr->m_source, m_ptr->m_rs_req.addr, &rs_start); s = copy_rs_start(m_ptr->m_source, m_ptr->m_rs_req.addr, &rs_start);
if (s != OK) { if (s != OK) {
return s; return s;
} }
noblock = (rs_start.rss_flags & RSS_NOBLOCK);
do_self_update = (rs_start.rss_flags & RSS_SELF_LU);
s = check_request(&rs_start);
if (s != OK) {
return s;
}
/* Copy label. */ /* Copy label. */
s = copy_label(m_ptr->m_source, rs_start.rss_label.l_addr, s = copy_label(m_ptr->m_source, rs_start.rss_label.l_addr,
@ -517,130 +563,323 @@ int do_update(message *m_ptr)
} }
rpub = rp->r_pub; rpub = rp->r_pub;
/* Check flags. */
noblock = (rs_start.rss_flags & RSS_NOBLOCK);
do_self_update = (rs_start.rss_flags & RSS_SELF_LU);
force_self_update = (rs_start.rss_flags & RSS_FORCE_SELF_LU);
batch_mode = (rs_start.rss_flags & RSS_BATCH);
prepare_only = (rs_start.rss_flags & RSS_PREPARE_ONLY_LU);
if(do_self_update || force_self_update) {
lu_flags |= SEF_LU_SELF;
}
if(prepare_only) {
lu_flags |= SEF_LU_PREPARE_ONLY;
}
if(rs_start.rss_flags & RSS_ASR_LU) {
lu_flags |= SEF_LU_ASR;
}
if(rs_start.rss_flags & RSS_UNSAFE_LU) {
lu_flags |= SEF_LU_UNSAFE;
}
if(!prepare_only && (rs_start.rss_flags & RSS_DETACH)) {
lu_flags |= SEF_LU_DETACHED;
}
if(rs_start.rss_map_prealloc_bytes <= 0
&& rpub->endpoint == VM_PROC_NR
&& (((lu_flags & (SEF_LU_SELF|SEF_LU_ASR)) != SEF_LU_SELF) || rs_start.rss_flags & RSS_FORCE_INIT_ST)
&& RS_VM_DEFAULT_MAP_PREALLOC_LEN > 0) {
/* Give VM some mmapped regions by default on non-identical updates.*/
rs_start.rss_map_prealloc_bytes = RS_VM_DEFAULT_MAP_PREALLOC_LEN;
if(rs_verbose)
printf("RS: %s gets %ld default mmap bytes\n", srv_to_string(rp),
rs_start.rss_map_prealloc_bytes);
}
if((rs_start.rss_flags & RSS_NOMMAP_LU) || rs_start.rss_map_prealloc_bytes) {
/* Don't inherit mmapped regions at update time if requested or if
* mmap preallocation is used.
*/
lu_flags |= SEF_LU_NOMMAP;
}
if(rs_start.rss_flags & RSS_FORCE_INIT_CRASH) {
init_flags |= SEF_INIT_CRASH;
}
if(rs_start.rss_flags & RSS_FORCE_INIT_FAIL) {
init_flags |= SEF_INIT_FAIL;
}
if(rs_start.rss_flags & RSS_FORCE_INIT_TIMEOUT) {
init_flags |= SEF_INIT_TIMEOUT;
}
if(rs_start.rss_flags & RSS_FORCE_INIT_DEFCB) {
init_flags |= SEF_INIT_DEFCB;
}
if(rs_start.rss_flags & RSS_FORCE_INIT_ST) {
init_flags |= SEF_INIT_ST;
}
init_flags |= lu_flags;
/* Lookup target label (if any). */
trg_rp = NULL;
state_endpoint = NONE;
if(rs_start.rss_trg_label.l_len > 0) {
s = copy_label(m_ptr->m_source, rs_start.rss_trg_label.l_addr,
rs_start.rss_trg_label.l_len, label, sizeof(label));
if(s != OK) {
return s;
}
trg_rp = lookup_slot_by_label(label);
if(!trg_rp) {
if(rs_verbose)
printf("RS: do_update: target service '%s' not found\n", label);
return ESRCH;
}
state_endpoint = trg_rp->r_pub->endpoint;
}
/* Check if the call can be allowed. */ /* Check if the call can be allowed. */
if((s = check_call_permission(m_ptr->m_source, RS_UPDATE, rp)) != OK) if((s = check_call_permission(m_ptr->m_source, RS_UPDATE, rp)) != OK)
return s; return s;
/* Retrieve live update state. */ /* Retrieve live update state. */
lu_state = m_ptr->m_rs_update.state; prepare_state = m_ptr->m_rs_update.state;
if(lu_state == SEF_LU_STATE_NULL) { if(prepare_state == SEF_LU_STATE_NULL) {
return(EINVAL); return(EINVAL);
} }
/* Retrieve prepare max time. */ /* Retrieve prepare max time. */
prepare_maxtime = m_ptr->m_rs_update.prepare_maxtime; prepare_maxtime = m_ptr->m_rs_update.prepare_maxtime;
if(prepare_maxtime) { if(prepare_maxtime == 0) {
if(prepare_maxtime < 0 || prepare_maxtime > RS_MAX_PREPARE_MAXTIME) {
return(EINVAL);
}
}
else {
prepare_maxtime = RS_DEFAULT_PREPARE_MAXTIME; prepare_maxtime = RS_DEFAULT_PREPARE_MAXTIME;
} }
/* Make sure we are not already updating. */ /* Make sure we are not already updating. */
if(rupdate.flags & RS_UPDATING) { if(RUPDATE_IS_UPDATING()) {
if(rs_verbose) printf("RS: an update is already in progress\n");
printf("RS: do_update: an update is already in progress\n");
return EBUSY; return EBUSY;
} }
/* If an update is already scheduled, check constraints. */
if(RUPDATE_IS_UPD_SCHEDULED()) {
if(!batch_mode) {
printf("RS: an update is already scheduled, cannot start a new one\n");
return EBUSY;
}
if(SRV_IS_UPD_SCHEDULED(rp)) {
printf("RS: the specified process is already part of the currently scheduled update\n");
return EINVAL;
}
if(rupdate.last_rpupd->rp->r_pub->endpoint == RS_PROC_NR) {
printf("RS: RS should always be the last service to update in a multi-component update\n");
return EINVAL;
}
}
/* Prepare-only update for VM, PM, and VFS is only supported with an unreachable state. */
if(prepare_only
&& (rp->r_pub->endpoint == VM_PROC_NR || rp->r_pub->endpoint == PM_PROC_NR || rp->r_pub->endpoint == VFS_PROC_NR)) {
if(prepare_state != SEF_LU_STATE_UNREACHABLE) {
printf("RS: prepare-only update for VM, PM and VFS is only supported with state %d\n", SEF_LU_STATE_UNREACHABLE);
return EINVAL;
}
}
/* Prepare-only update for RS is not supported. */
if(prepare_only && rp->r_pub->endpoint == RS_PROC_NR) {
printf("RS: prepare-only update for RS is not supported\n");
return EINVAL;
}
/* Initialize update descriptor. */
rpupd = &rp->r_upd;
rupdate_upd_init(rpupd, rp);
rpupd->lu_flags |= lu_flags;
rpupd->init_flags |= init_flags;
rupdate_set_new_upd_flags(rpupd);
/* A self update live updates a service instance into a replica, a regular /* A self update live updates a service instance into a replica, a regular
* update live updates a service instance into a new version, as specified * update live updates a service instance into a new version, as specified
* by the given binary. * by the given binary.
*/ */
if(do_self_update) { if(!prepare_only) {
if(rs_verbose) if(do_self_update) {
printf("RS: %s performs self update\n", srv_to_string(rp)); if(rs_verbose)
printf("RS: %s requested to perform self update\n", srv_to_string(rp));
/* Clone the system service and use the replica as the new version. */ /* Clone the system service and use the replica as the new version. */
s = clone_service(rp, LU_SYS_PROC); s = clone_service(rp, LU_SYS_PROC, rpupd->init_flags);
if(s != OK) { if(s != OK) {
printf("RS: do_update: unable to clone service: %d\n", s); printf("RS: do_update: unable to clone service: %d\n", s);
return s; return s;
}
new_rp = rp->r_new_rp;
} }
} else {
else { if(rs_verbose)
if(rs_verbose) printf("RS: %s requested to perform %s update\n", srv_to_string(rp),
printf("RS: %s performs regular update\n", srv_to_string(rp)); force_self_update ? "(forced) self" : "regular");
/* Allocate a system service slot for the new version. */ /* Allocate a system service slot for the new version. */
s = alloc_slot(&new_rp); s = alloc_slot(&new_rp);
if(s != OK) { if(s != OK) {
printf("RS: do_update: unable to allocate a new slot: %d\n", s); printf("RS: do_update: unable to allocate a new slot: %d\n", s);
return s; return s;
}
/* Initialize the slot as requested. */
s = init_slot(new_rp, &rs_start, m_ptr->m_source);
if(s != OK) {
printf("RS: do_update: unable to init the new slot: %d\n", s);
return s;
}
/* Let the new version inherit defaults from the old one. */
inherit_service_defaults(rp, new_rp);
/* Link the two versions. */
rp->r_new_rp = new_rp;
new_rp->r_old_rp = rp;
/* Create new version of the service but don't let it run. */
new_rp->r_priv.s_flags |= LU_SYS_PROC;
new_rp->r_priv.s_init_flags |= rpupd->init_flags;
s = create_service(new_rp);
if(s != OK) {
printf("RS: do_update: unable to create a new service: %d\n", s);
return s;
}
} }
/* Initialize the slot as requested. */ /* Set default state endpoint. */
s = init_slot(new_rp, &rs_start, m_ptr->m_source); if(state_endpoint == NONE) {
if(s != OK) { state_endpoint = new_rp->r_pub->endpoint;
printf("RS: do_update: unable to init the new slot: %d\n", s);
return s;
} }
/* Let the new version inherit defaults from the old one. */ /* If RS is updating, set up signal managers for the new instance.
inherit_service_defaults(rp, new_rp); * The current RS instance must be made the backup signal manager to
* support rollback in case of a crash during initialization.
*/
if(rp->r_priv.s_flags & ROOT_SYS_PROC) {
s = update_sig_mgrs(new_rp, SELF, new_rp->r_pub->endpoint);
if(s != OK) {
cleanup_service(new_rp);
return s;
}
}
/* Link the two versions. */ /* Preallocate heap regions if requested. */
rp->r_new_rp = new_rp; if(rs_start.rss_heap_prealloc_bytes < 0) {
new_rp->r_old_rp = rp; rs_start.rss_heap_prealloc_bytes = 0;
}
if(rs_start.rss_heap_prealloc_bytes) {
size_t len;
if(rs_verbose)
printf("RS: %s preallocating %ld heap bytes\n", srv_to_string(new_rp),
rs_start.rss_heap_prealloc_bytes);
/* Create new version of the service but don't let it run. */ len = rs_start.rss_heap_prealloc_bytes;
new_rp->r_priv.s_flags |= LU_SYS_PROC; s = vm_memctl(new_rp->r_pub->endpoint, VM_RS_MEM_HEAP_PREALLOC,
s = create_service(new_rp); NULL, &len);
if(s != OK) { if(s != OK) {
printf("RS: do_update: unable to create a new service: %d\n", s); printf("vm_memctl(VM_RS_MEM_HEAP_PREALLOC) failed: %d\n", s);
return s; cleanup_service(new_rp);
return s;
}
if(rp->r_priv.s_flags & ROOT_SYS_PROC) {
vm_memctl(new_rp->r_pub->endpoint, VM_RS_MEM_PIN, 0, 0);
}
}
/* Preallocate mmapped regions if requested. */
if(rs_start.rss_map_prealloc_bytes < 0) {
rs_start.rss_map_prealloc_bytes = 0;
}
if(rs_start.rss_map_prealloc_bytes) {
void *addr = NULL;
if(rs_verbose)
printf("RS: %s preallocating %ld mmap bytes\n", srv_to_string(new_rp),
rs_start.rss_map_prealloc_bytes);
new_rp->r_map_prealloc_len = rs_start.rss_map_prealloc_bytes;
s = vm_memctl(new_rp->r_pub->endpoint, VM_RS_MEM_MAP_PREALLOC,
&addr, &new_rp->r_map_prealloc_len);
if(s != OK) {
printf("vm_memctl(VM_RS_MEM_MAP_PREALLOC) failed: %d\n", s);
cleanup_service(new_rp);
return s;
}
new_rp->r_map_prealloc_addr = (vir_bytes) addr;
} }
} }
/* Mark both versions as updating. */ /* Process state data. */
rp->r_flags |= RS_UPDATING; s = init_state_data(m_ptr->m_source, prepare_state, &rs_start.rss_state_data, &rpupd->prepare_state_data);
rp->r_new_rp->r_flags |= RS_UPDATING; if(s != OK) {
rupdate.flags |= RS_UPDATING; rupdate_upd_clear(rpupd);
getticks(&rupdate.prepare_tm); return s;
rupdate.prepare_maxtime = prepare_maxtime; }
rupdate.rp = rp;
/* Create update grants. */
if(rpupd->prepare_state_data.size > 0) {
struct rs_state_data *state_data = &rpupd->prepare_state_data;
rpupd->prepare_state_data_gid = cpf_grant_direct(rpub->endpoint, (vir_bytes) state_data,
state_data->size, CPF_READ);
if(rpupd->prepare_state_data_gid == GRANT_INVALID) {
rupdate_upd_clear(rpupd);
return ENOMEM;
}
state_data->ipcf_els_gid = GRANT_INVALID;
if(state_data->ipcf_els) {
state_data->ipcf_els_gid = (int) cpf_grant_direct(rpub->endpoint, (vir_bytes) state_data->ipcf_els,
state_data->ipcf_els_size, CPF_READ);
if(state_data->ipcf_els_gid == GRANT_INVALID) {
rupdate_upd_clear(rpupd);
return ENOMEM;
}
}
state_data->eval_gid = GRANT_INVALID;
if(state_data->eval_addr) {
state_data->eval_gid = (int) cpf_grant_direct(rpub->endpoint, (vir_bytes) state_data->eval_addr,
state_data->eval_len, CPF_READ);
if(state_data->eval_gid == GRANT_INVALID) {
rupdate_upd_clear(rpupd);
return ENOMEM;
}
}
}
/* Fill the new update descriptor and add it to the update chain. */
rpupd->prepare_state = prepare_state;
rpupd->state_endpoint = state_endpoint;
getticks(&rpupd->prepare_tm);
rpupd->prepare_maxtime = prepare_maxtime;
rupdate_add_upd(rpupd);
if(rs_verbose) if(rs_verbose)
printf("RS: %s updating\n", srv_to_string(rp)); printf("RS: %s scheduled for %s\n", srv_to_string(rp), srv_upd_to_string(rpupd));
/* If RS is updating, set up signal managers for the new instance. /* If batch mode, reply immediately. More services to update will follow. */
* The current RS instance must be made the backup signal manager to if(batch_mode) {
* support rollback in case of a crash during initialization. return OK;
*/
if(rp->r_priv.s_flags & ROOT_SYS_PROC) {
new_rp = rp->r_new_rp;
s = update_sig_mgrs(new_rp, SELF, new_rp->r_pub->endpoint);
if(s != OK) {
cleanup_service(new_rp);
return s;
}
} }
/* Start preparing for the update process. */
s = start_update_prepare(allow_retries);
if(s == ESRCH) {
/* No process left in the update chain. We are done already. */
return OK;
}
if(s != OK) {
return s;
}
/* Unblock the caller immediately if requested. */
if(noblock) { if(noblock) {
/* Unblock the caller immediately if requested. */ return OK;
m_ptr->m_type = OK;
reply(m_ptr->m_source, NULL, m_ptr);
}
else {
/* Send a reply when the new version completes initialization. */
rp->r_flags |= RS_LATEREPLY;
rp->r_caller = m_ptr->m_source;
rp->r_caller_request = RS_UPDATE;
} }
/* Request to update. */ /* Otherwise, send a reply when the new version completes initialization. */
m_ptr->m_type = RS_LU_PREPARE; rupdate.last_rpupd->rp->r_flags |= RS_LATEREPLY;
if(rpub->endpoint == RS_PROC_NR) { rupdate.last_rpupd->rp->r_caller = m_ptr->m_source;
/* RS can process the request directly. */ rupdate.last_rpupd->rp->r_caller_request = RS_UPDATE;
do_sef_lu_request(m_ptr);
}
else {
/* Send request message to the system service. */
asynsend3(rpub->endpoint, m_ptr, AMF_NOREPLY);
}
return EDONTREPLY; return EDONTREPLY;
} }
@ -650,75 +889,51 @@ int do_update(message *m_ptr)
*===========================================================================*/ *===========================================================================*/
int do_upd_ready(message *m_ptr) int do_upd_ready(message *m_ptr)
{ {
struct rproc *rp, *old_rp, *new_rp; struct rproc *rp;
struct rprocupd *prev_rpupd, *rpupd;
int who_p; int who_p;
int result; int result;
int is_rs; int is_rs;
int r; int i;
who_p = _ENDPOINT_P(m_ptr->m_source); who_p = _ENDPOINT_P(m_ptr->m_source);
rp = rproc_ptr[who_p]; rp = rproc_ptr[who_p];
result = m_ptr->m_rs_update.result; result = m_ptr->m_rs_update.result;
is_rs = (m_ptr->m_source == RS_PROC_NR);
/* Make sure the originating service was requested to prepare for update. */ /* Make sure the originating service was requested to prepare for update. */
if(rp != rupdate.rp) { rpupd = rupdate.curr_rpupd;
if(!rpupd || rp != rpupd->rp || RUPDATE_IS_INITIALIZING()) {
if(rs_verbose) if(rs_verbose)
printf("RS: do_upd_ready: got unexpected update ready msg from %d\n", printf("RS: %s sent late/unexpected update ready msg\n",
m_ptr->m_source); srv_to_string(rp));
return EINVAL; return EINVAL;
} }
rp->r_flags |= RS_PREPARE_DONE;
/* Check if something went wrong and the service failed to prepare /* Check if something went wrong and the service failed to prepare
* for the update. In that case, end the update process. The old version will * for the update. In that case, end the update process. The old version will
* be replied to and continue executing. * be replied to and continue executing.
*/ */
if(result != OK) { if(result != OK) {
printf("RS: update failed: %s\n", lu_strerror(result));
end_update(result, RS_REPLY); end_update(result, RS_REPLY);
printf("RS: update failed: %s\n", lu_strerror(result));
return is_rs ? result : EDONTREPLY; /* return what the caller expects */
}
old_rp = rp;
new_rp = rp->r_new_rp;
/* If RS itself is updating, yield control to the new version immediately. */
if(is_rs) {
r = init_service(new_rp, SEF_INIT_LU);
if(r != OK) {
panic("unable to initialize the new RS instance: %d", r);
}
r = sys_privctl(new_rp->r_pub->endpoint, SYS_PRIV_YIELD, NULL);
if(r != OK) {
panic("unable to yield control to the new RS instance: %d", r);
}
/* If we get this far, the new version failed to initialize. Rollback. */
r = srv_update(RS_PROC_NR, new_rp->r_pub->endpoint);
assert(r == OK); /* can't fail */
end_update(ERESTART, RS_REPLY);
return ERESTART;
}
/* Perform the update. */
r = update_service(&old_rp, &new_rp, RS_SWAP);
if(r != OK) {
end_update(r, RS_REPLY);
printf("RS: update failed: error %d\n", r);
return EDONTREPLY; return EDONTREPLY;
} }
/* Let the new version run. */ if(rs_verbose)
r = run_service(new_rp, SEF_INIT_LU); printf("RS: %s ready to update\n", srv_to_string(rp));
if(r != OK) {
/* Something went wrong. Rollback. */ /* If this is a multi-component update and this is not the last service
r = update_service(&new_rp, &old_rp, RS_SWAP); * in the update, request the next process to update.
assert(r == OK); /* can't fail */ */
end_update(r, RS_REPLY); if(start_update_prepare_next() != NULL) {
printf("RS: update failed: error %d\n", r);
return EDONTREPLY; return EDONTREPLY;
} }
/* Now perform the update and request each new instance to initialize. */
start_update();
return EDONTREPLY; return EDONTREPLY;
} }
@ -735,7 +950,7 @@ message *m_ptr;
long period; long period;
/* If an update is in progress, check its status. */ /* If an update is in progress, check its status. */
if(rupdate.flags & RS_UPDATING) { if(RUPDATE_IS_UPDATING() && !RUPDATE_IS_INITIALIZING()) {
update_period(m_ptr); update_period(m_ptr);
} }
@ -744,12 +959,13 @@ message *m_ptr;
*/ */
for (rp=BEG_RPROC_ADDR; rp<END_RPROC_ADDR; rp++) { for (rp=BEG_RPROC_ADDR; rp<END_RPROC_ADDR; rp++) {
rpub = rp->r_pub; rpub = rp->r_pub;
if ((rp->r_flags & RS_ACTIVE) && !(rp->r_flags & RS_UPDATING)) {
if ((rp->r_flags & RS_ACTIVE) && (!SRV_IS_UPDATING(rp) || ((rp->r_flags & (RS_INITIALIZING|RS_INIT_DONE|RS_INIT_PENDING)) == RS_INITIALIZING))) {
/* Compute period. */ /* Compute period. */
period = rp->r_period; period = rp->r_period;
if(rp->r_flags & RS_INITIALIZING) { if(rp->r_flags & RS_INITIALIZING) {
period = RS_INIT_T; period = SRV_IS_UPDATING(rp) ? UPD_INIT_MAXTIME(&rp->r_upd) : RS_INIT_T;
} }
/* If the service is to be revived (because it repeatedly exited, /* If the service is to be revived (because it repeatedly exited,
@ -788,9 +1004,15 @@ message *m_ptr;
if (rp->r_alive_tm < rp->r_check_tm) { if (rp->r_alive_tm < rp->r_check_tm) {
if (now - rp->r_alive_tm > 2*period && if (now - rp->r_alive_tm > 2*period &&
rp->r_pid > 0 && !(rp->r_flags & RS_NOPINGREPLY)) { rp->r_pid > 0 && !(rp->r_flags & RS_NOPINGREPLY)) {
struct rproc *rp2;
int init_flag;
if(rs_verbose) if(rs_verbose)
printf("RS: %s reported late\n", srv_to_string(rp)); printf("RS: %s reported late\n", srv_to_string(rp));
if(lookup_slot_by_flags(RS_INITIALIZING)) { init_flag = rp->r_flags & RS_INITIALIZING;
rp->r_flags &= ~RS_INITIALIZING;
rp2 = lookup_slot_by_flags(RS_INITIALIZING);
rp->r_flags |= init_flag;
if(rp2 != NULL && !SRV_IS_UPDATING(rp)) {
/* Skip for now. */ /* Skip for now. */
if(rs_verbose) if(rs_verbose)
printf("RS: %s gets a free pass\n", printf("RS: %s gets a free pass\n",
@ -801,6 +1023,9 @@ message *m_ptr;
} }
rp->r_flags |= RS_NOPINGREPLY; rp->r_flags |= RS_NOPINGREPLY;
crash_service(rp); /* simulate crash */ crash_service(rp); /* simulate crash */
if(rp->r_flags & RS_INITIALIZING) {
rp->r_init_err = EINTR;
}
} }
} }
@ -830,7 +1055,7 @@ void do_sigchld()
int status; int status;
struct rproc *rp; struct rproc *rp;
struct rproc **rps; struct rproc **rps;
int i, nr_rps; int i, nr_rps, found;
if(rs_verbose) if(rs_verbose)
printf("RS: got SIGCHLD signal, cleaning up dead children\n"); printf("RS: got SIGCHLD signal, cleaning up dead children\n");
@ -848,13 +1073,18 @@ void do_sigchld()
* free slots for all the service instances and send a late * free slots for all the service instances and send a late
* reply if necessary. * reply if necessary.
*/ */
found = 0;
get_service_instances(rp, &rps, &nr_rps); get_service_instances(rp, &rps, &nr_rps);
for(i=0;i<nr_rps;i++) { for(i=0;i<nr_rps;i++) {
if(rupdate.flags & RS_UPDATING) { if(SRV_IS_UPDATING(rps[i])) {
rupdate.flags &= ~RS_UPDATING; rps[i]->r_flags &= ~(RS_UPDATING|RS_PREPARE_DONE|RS_INIT_DONE|RS_INIT_PENDING);
found = 1;
} }
free_slot(rps[i]); free_slot(rps[i]);
} }
if(found) {
rupdate_clear_upds();
}
} }
} }
} }
@ -945,6 +1175,54 @@ message *m_ptr;
return OK; return OK;
} }
/*===========================================================================*
* do_sysctl *
*===========================================================================*/
int do_sysctl(message *m_ptr)
{
int request_type = m_ptr->m_rs_req.subtype;
int r, allow_retries = 1;
switch(request_type) {
case RS_SYSCTL_SRV_STATUS:
print_services_status();
break;
case RS_SYSCTL_UPD_START:
case RS_SYSCTL_UPD_RUN:
r = start_update_prepare(allow_retries);
print_update_status();
if(r != OK) {
if(r == ESRCH) {
/* We are done already. */
r = OK;
}
return r;
}
if(request_type == RS_SYSCTL_UPD_START) {
return OK;
}
/* Send a reply when done. */
rupdate.last_rpupd->rp->r_flags |= RS_LATEREPLY;
rupdate.last_rpupd->rp->r_caller = m_ptr->m_source;
rupdate.last_rpupd->rp->r_caller_request = RS_UPDATE;
return EDONTREPLY;
break;
case RS_SYSCTL_UPD_STOP:
r = abort_update_proc(EINTR);
print_update_status();
return r;
break;
case RS_SYSCTL_UPD_STATUS:
print_update_status();
break;
default:
printf("RS: bad sysctl type\n");
return EINVAL;
break;
}
return OK;
}
/*===========================================================================* /*===========================================================================*
* check_request * * check_request *
*===========================================================================*/ *===========================================================================*/

View file

@ -25,6 +25,32 @@ struct boot_image_dev {
dev_t dev_nr; /* major device number */ dev_t dev_nr; /* major device number */
}; };
/* Definition of the update descriptors. */
struct rproc;
struct rprocupd {
int lu_flags; /* user-specified live update flags */
int init_flags; /* user-specified init flags */
int prepare_state; /* the state the process has to prepare for the update */
endpoint_t state_endpoint; /* the custom process to transfer the state from (if any). */
clock_t prepare_tm; /* timestamp of when the update was scheduled */
clock_t prepare_maxtime; /* max time to wait for the process to be ready */
struct rproc *rp; /* the process under update */
struct rs_state_data prepare_state_data; /* state data for the update */
cp_grant_id_t prepare_state_data_gid; /* state data gid */
struct rprocupd *prev_rpupd; /* the previous process under update */
struct rprocupd *next_rpupd; /* the next process under update */
};
struct rupdate {
int flags; /* flags to keep track of the status of the update */
int num_rpupds; /* number of descriptors scheduled for the update */
int num_init_ready_pending; /* number of pending init ready messages */
struct rprocupd *curr_rpupd; /* the current descriptor under update */
struct rprocupd *first_rpupd; /* first descriptor scheduled for the update */
struct rprocupd *last_rpupd; /* last descriptor scheduled for the update */
struct rprocupd *vm_rpupd; /* VM descriptor scheduled for the update */
struct rprocupd *rs_rpupd; /* RS descriptor scheduled for the update */
};
/* Definition of an entry of the system process table. */ /* Definition of an entry of the system process table. */
struct rproc { struct rproc {
struct rprocpub *r_pub; /* pointer to the corresponding public entry */ struct rprocpub *r_pub; /* pointer to the corresponding public entry */
@ -32,11 +58,13 @@ struct rproc {
struct rproc *r_new_rp; /* pointer to the slot with the new version */ struct rproc *r_new_rp; /* pointer to the slot with the new version */
struct rproc *r_prev_rp; /* pointer to the slot with the prev replica */ struct rproc *r_prev_rp; /* pointer to the slot with the prev replica */
struct rproc *r_next_rp; /* pointer to the slot with the next replica */ struct rproc *r_next_rp; /* pointer to the slot with the next replica */
struct rprocupd r_upd; /* update descriptor */
pid_t r_pid; /* process id, -1 if the process is not there */ pid_t r_pid; /* process id, -1 if the process is not there */
int r_restarts; /* number of restarts (initially zero) */ int r_restarts; /* number of restarts (initially zero) */
long r_backoff; /* number of periods to wait before revive */ long r_backoff; /* number of periods to wait before revive */
unsigned r_flags; /* status and policy flags */ unsigned r_flags; /* status and policy flags */
int r_init_err; /* error code at initialization time */
long r_period; /* heartbeat period (or zero) */ long r_period; /* heartbeat period (or zero) */
clock_t r_check_tm; /* timestamp of last check */ clock_t r_check_tm; /* timestamp of last check */
@ -63,6 +91,8 @@ struct rproc {
int r_priority; /* negative values are reserved for special meanings */ int r_priority; /* negative values are reserved for special meanings */
int r_quantum; int r_quantum;
int r_cpu; int r_cpu;
vir_bytes r_map_prealloc_addr; /* preallocated mmap address */
size_t r_map_prealloc_len; /* preallocated mmap len */
/* Backup values from the privilege structure. */ /* Backup values from the privilege structure. */
struct io_range r_io_tab[NR_IO_RANGE]; struct io_range r_io_tab[NR_IO_RANGE];
@ -75,12 +105,6 @@ struct rproc {
char r_control[RS_NR_CONTROL][RS_MAX_LABEL_LEN]; char r_control[RS_NR_CONTROL][RS_MAX_LABEL_LEN];
}; };
/* Definition of the global update descriptor. */
struct rupdate {
int flags; /* flags to keep track of the status of the update */
clock_t prepare_tm; /* timestamp of when the update was scheduled */
clock_t prepare_maxtime; /* max time to wait for the process to be ready */
struct rproc *rp; /* the process under update */
};
#endif /* RS_TYPE_H */ #endif /* RS_TYPE_H */

960
minix/servers/rs/update.c Normal file
View file

@ -0,0 +1,960 @@
#include "inc.h"
/*===========================================================================*
* rupdate_clear_upds *
*===========================================================================*/
void rupdate_clear_upds()
{
/* Clear the update chain and the global update descriptor. */
struct rprocupd *prev_rpupd, *rpupd;
RUPDATE_ITER(rupdate.first_rpupd, prev_rpupd, rpupd,
if(prev_rpupd) {
rupdate_upd_clear(prev_rpupd);
}
);
rupdate_upd_clear(rupdate.last_rpupd);
RUPDATE_CLEAR();
}
/*===========================================================================*
* rupdate_add_upd *
*===========================================================================*/
void rupdate_add_upd(struct rprocupd* rpupd)
{
/* Add an update descriptor to the update chain. */
struct rprocupd* prev_rpupd;
int lu_flags;
rpupd->prev_rpupd = rupdate.last_rpupd;
if(rupdate.num_rpupds == 0) {
rupdate.first_rpupd = rpupd;
rupdate.curr_rpupd = rpupd;
}
else {
rupdate.last_rpupd->next_rpupd = rpupd;
}
rupdate.last_rpupd = rpupd;
rupdate.num_rpupds++;
/* Propagate relevant flags from the new descriptor. */
lu_flags = rpupd->lu_flags & (SEF_LU_INCLUDES_VM|SEF_LU_INCLUDES_RS|SEF_LU_UNSAFE|SEF_LU_MULTI);
if(lu_flags) {
RUPDATE_ITER(rupdate.first_rpupd, prev_rpupd, rpupd,
rpupd->lu_flags |= lu_flags;
rpupd->init_flags |= lu_flags;
);
}
/* Set VM/RS update descriptor pointers. */
if(!rupdate.vm_rpupd && (lu_flags & SEF_LU_INCLUDES_VM)) {
rupdate.vm_rpupd = rupdate.last_rpupd;
}
else if(!rupdate.rs_rpupd && (lu_flags & SEF_LU_INCLUDES_RS)) {
rupdate.rs_rpupd = rupdate.last_rpupd;
}
}
/*===========================================================================*
* rupdate_set_new_upd_flags *
*===========================================================================*/
void rupdate_set_new_upd_flags(struct rprocupd* rpupd)
{
/* Set multi-component update flags. */
if(rupdate.num_rpupds > 0) {
rpupd->lu_flags |= SEF_LU_MULTI;
rpupd->init_flags |= SEF_LU_MULTI;
}
/* Propagate relevant flags from last service under update (if any). */
if(rupdate.last_rpupd) {
int lu_flags = rupdate.last_rpupd->lu_flags & (SEF_LU_INCLUDES_VM|SEF_LU_INCLUDES_RS|SEF_LU_UNSAFE);
rpupd->lu_flags |= lu_flags;
rpupd->init_flags |= lu_flags;
}
if(UPD_IS_PREPARING_ONLY(rpupd)) {
return;
}
/* Set VM/RS update flags. */
if(rpupd->rp->r_pub->endpoint == VM_PROC_NR) {
rpupd->lu_flags |= SEF_LU_INCLUDES_VM;
rpupd->init_flags |= SEF_LU_INCLUDES_VM;
}
else if(rpupd->rp->r_pub->endpoint == RS_PROC_NR) {
rpupd->lu_flags |= SEF_LU_INCLUDES_RS;
rpupd->init_flags |= SEF_LU_INCLUDES_RS;
}
}
/*===========================================================================*
* rupdate_upd_init *
*===========================================================================*/
void rupdate_upd_init(struct rprocupd* rpupd, struct rproc *rp)
{
/* Initialize an update descriptor for a given service. */
memset(rpupd, 0, sizeof(*(rpupd)));
rpupd->prepare_state_data_gid = GRANT_INVALID;
rpupd->prepare_state_data.ipcf_els_gid = GRANT_INVALID;
rpupd->prepare_state_data.eval_gid = GRANT_INVALID;
rpupd->state_endpoint = NONE;
rpupd->rp = rp;
}
/*===========================================================================*
* rupdate_upd_clear *
*===========================================================================*/
void rupdate_upd_clear(struct rprocupd* rpupd)
{
/* Clear an update descriptor. */
if(rpupd->rp->r_new_rp) {
cleanup_service(rpupd->rp->r_new_rp);
}
if(rpupd->prepare_state_data_gid != GRANT_INVALID) {
cpf_revoke(rpupd->prepare_state_data_gid);
}
if(rpupd->prepare_state_data.size > 0) {
if(rpupd->prepare_state_data.ipcf_els_gid != GRANT_INVALID) {
cpf_revoke(rpupd->prepare_state_data.ipcf_els_gid);
}
if(rpupd->prepare_state_data.eval_gid != GRANT_INVALID) {
cpf_revoke(rpupd->prepare_state_data.eval_gid);
}
if(rpupd->prepare_state_data.ipcf_els) {
free(rpupd->prepare_state_data.ipcf_els);
}
if(rpupd->prepare_state_data.eval_addr) {
free(rpupd->prepare_state_data.eval_addr);
}
}
rupdate_upd_init(rpupd,NULL);
}
/*===========================================================================*
* rupdate_upd_move *
*===========================================================================*/
void rupdate_upd_move(struct rproc* src_rp, struct rproc* dst_rp)
{
/* Move an update descriptor from one service instance to another. */
dst_rp->r_upd = src_rp->r_upd;
dst_rp->r_upd.rp = dst_rp;
if(src_rp->r_new_rp) {
assert(!dst_rp->r_new_rp);
dst_rp->r_new_rp = src_rp->r_new_rp;
dst_rp->r_new_rp->r_old_rp = dst_rp;
}
if(dst_rp->r_upd.prev_rpupd) dst_rp->r_upd.prev_rpupd->next_rpupd = &dst_rp->r_upd;
if(dst_rp->r_upd.next_rpupd) dst_rp->r_upd.next_rpupd->prev_rpupd = &dst_rp->r_upd;
if(rupdate.first_rpupd == &src_rp->r_upd) rupdate.first_rpupd = &dst_rp->r_upd;
if(rupdate.last_rpupd == &src_rp->r_upd) rupdate.last_rpupd = &dst_rp->r_upd;
rupdate_upd_init(&src_rp->r_upd, NULL);
src_rp->r_new_rp = NULL;
}
/*===========================================================================*
* request_prepare_update_service_debug *
*===========================================================================*/
void request_prepare_update_service_debug(char *file, int line,
struct rproc *rp, int state)
{
/* Request a service to prepare/cancel the update. */
message m;
struct rprocpub *rpub;
int no_reply;
rpub = rp->r_pub;
if(state != SEF_LU_STATE_NULL) {
struct rprocupd *rpupd = &rp->r_upd;
getticks(&rpupd->prepare_tm);
if(!UPD_IS_PREPARING_ONLY(rpupd)) {
assert(rp->r_new_rp);
rp->r_flags |= RS_UPDATING;
rp->r_new_rp->r_flags |= RS_UPDATING;
}
else {
assert(!rp->r_new_rp);
}
m.m_rs_update.flags = rpupd->lu_flags;
m.m_rs_update.state_data_gid = rpupd->prepare_state_data_gid;
if(rs_verbose)
printf("RS: %s being requested to prepare for the %s at %s:%d\n",
srv_to_string(rp), srv_upd_to_string(rpupd), file, line);
}
else {
if(rs_verbose)
printf("RS: %s being requested to cancel the update at %s:%d\n",
srv_to_string(rp), file, line);
}
/* Request to prepare for the update or cancel the update. */
m.m_type = RS_LU_PREPARE;
m.m_rs_update.state = state;
no_reply = !(rp->r_flags & RS_PREPARE_DONE);
rs_asynsend(rp, &m, no_reply);
}
/*===========================================================================*
* srv_update *
*===========================================================================*/
int srv_update(endpoint_t src_e, endpoint_t dst_e, int sys_upd_flags)
{
int r = OK;
/* Ask VM to swap the slots of the two processes and tell the kernel to
* do the same. If VM is being updated, only perform the kernel
* part of the call. The new instance of VM will do the rest at
* initialization time. If a multi-component update includes VM, let VM
* handle updates at state transfer time and rollbacks afterwards.
*/
if(src_e == VM_PROC_NR) {
if(rs_verbose)
printf("RS: executing sys_update(%d, %d)\n", src_e, dst_e);
r = sys_update(src_e, dst_e,
sys_upd_flags & SF_VM_ROLLBACK ? SYS_UPD_ROLLBACK : 0);
}
else if(!RUPDATE_IS_UPD_VM_MULTI() || RUPDATE_IS_VM_INIT_DONE()) {
if(rs_verbose)
printf("RS: executing vm_update(%d, %d)\n", src_e, dst_e);
r = vm_update(src_e, dst_e, sys_upd_flags);
}
else {
if(rs_verbose)
printf("RS: skipping srv_update(%d, %d)\n", src_e, dst_e);
}
return r;
}
/*===========================================================================*
* update_service *
*===========================================================================*/
int update_service(src_rpp, dst_rpp, swap_flag, sys_upd_flags)
struct rproc **src_rpp;
struct rproc **dst_rpp;
int swap_flag;
int sys_upd_flags;
{
/* Update an existing service. */
int r;
struct rproc *src_rp;
struct rproc *dst_rp;
struct rprocpub *src_rpub;
struct rprocpub *dst_rpub;
int pid;
endpoint_t endpoint;
src_rp = *src_rpp;
dst_rp = *dst_rpp;
src_rpub = src_rp->r_pub;
dst_rpub = dst_rp->r_pub;
if(rs_verbose)
printf("RS: %s updating into %s\n",
srv_to_string(src_rp), srv_to_string(dst_rp));
/* Swap the slots of the two processes when asked to. */
if(swap_flag == RS_SWAP) {
if((r = srv_update(src_rpub->endpoint, dst_rpub->endpoint, sys_upd_flags)) != OK) {
return r;
}
}
/* Swap slots here as well. */
pid = src_rp->r_pid;
endpoint = src_rpub->endpoint;
swap_slot(&src_rp, &dst_rp);
/* Reassign pids and endpoints. */
src_rp->r_pid = dst_rp->r_pid;
src_rp->r_pub->endpoint = dst_rp->r_pub->endpoint;
rproc_ptr[_ENDPOINT_P(src_rp->r_pub->endpoint)] = src_rp;
dst_rp->r_pid = pid;
dst_rp->r_pub->endpoint = endpoint;
rproc_ptr[_ENDPOINT_P(dst_rp->r_pub->endpoint)] = dst_rp;
/* Adjust input pointers. */
*src_rpp = src_rp;
*dst_rpp = dst_rp;
/* Make the new version active. */
activate_service(dst_rp, src_rp);
if(rs_verbose)
printf("RS: %s updated into %s\n",
srv_to_string(src_rp), srv_to_string(dst_rp));
return OK;
}
/*===========================================================================*
* rollback_service *
*===========================================================================*/
void rollback_service(struct rproc **new_rpp, struct rproc **old_rpp)
{
/* Rollback an updated service. */
int r = OK;
/* RS is special, we may only need to swap the slots to rollback. */
if((*old_rpp)->r_pub->endpoint == RS_PROC_NR) {
endpoint_t me = NONE;
char name[20];
int priv_flags, init_flags;
r = sys_whoami(&me, name, sizeof(name), &priv_flags, &init_flags);
assert(r == OK);
if(me != RS_PROC_NR) {
r = vm_update((*new_rpp)->r_pub->endpoint, (*old_rpp)->r_pub->endpoint, SF_VM_ROLLBACK);
if(rs_verbose)
printf("RS: %s performed rollback\n", srv_to_string(*new_rpp));
}
}
else {
int swap_flag = ((*new_rpp)->r_flags & RS_INIT_PENDING ? RS_DONTSWAP : RS_SWAP);
if(rs_verbose)
printf("RS: %s performs rollback\n", srv_to_string(*new_rpp));
if(swap_flag == RS_SWAP) {
/* Freeze the new instance to rollback safely. */
sys_privctl((*new_rpp)->r_pub->endpoint, SYS_PRIV_DISALLOW, NULL);
}
r = update_service(new_rpp, old_rpp, swap_flag, SF_VM_ROLLBACK);
}
assert(r == OK); /* can't fail */
}
/*===========================================================================*
* update_period *
*===========================================================================*/
void update_period(message *m_ptr)
{
/* Periodically check the status of the update (preparation phase). */
clock_t now = m_ptr->m_notify.timestamp;
short has_update_timed_out;
message m;
struct rprocupd *rpupd;
struct rproc *rp;
struct rprocpub *rpub;
rpupd = rupdate.curr_rpupd;
rp = rpupd->rp;
rpub = rp->r_pub;
/* See if a timeout has occurred. */
has_update_timed_out = (rpupd->prepare_maxtime > 0) && (now - rpupd->prepare_tm > rpupd->prepare_maxtime);
/* If an update timed out, end the update process and notify
* the old version that the update has been canceled. From now on, the old
* version will continue executing.
*/
if(has_update_timed_out) {
printf("RS: update failed: maximum prepare time reached\n");
end_update(EINTR, RS_CANCEL);
}
}
/*===========================================================================*
* start_update_prepare *
*===========================================================================*/
int start_update_prepare(int allow_retries)
{
/* Start the preparation phase of the update process. */
struct rprocupd *prev_rpupd, *rpupd;
struct rproc *rp, *new_rp;
int r;
if(!RUPDATE_IS_UPD_SCHEDULED()) {
return EINVAL;
}
if(!rs_is_idle()) {
printf("RS: not idle now, try again\n");
if(!allow_retries) {
abort_update_proc(EAGAIN);
}
return EAGAIN;
}
if(rs_verbose)
printf("RS: starting the preparation phase of the update process\n");
if(rupdate.rs_rpupd) {
assert(rupdate.rs_rpupd == rupdate.last_rpupd);
assert(rupdate.rs_rpupd->rp->r_pub->endpoint == RS_PROC_NR);
assert(!UPD_IS_PREPARING_ONLY(rupdate.rs_rpupd));
}
if(rupdate.vm_rpupd) {
assert(rupdate.vm_rpupd->rp->r_pub->endpoint == VM_PROC_NR);
assert(!UPD_IS_PREPARING_ONLY(rupdate.vm_rpupd));
}
/* If a multi-component update includes VM, fill information about old
* and new endpoints, as well as update flags. VM needs this to complete
* the update internally at state transfer time.
*/
if(RUPDATE_IS_UPD_VM_MULTI()) {
RUPDATE_ITER(rupdate.first_rpupd, prev_rpupd, rpupd,
if(!UPD_IS_PREPARING_ONLY(rpupd)) {
rp = rpupd->rp;
new_rp = rp->r_new_rp;
assert(rp && new_rp);
rp->r_pub->old_endpoint = rpupd->state_endpoint;
rp->r_pub->new_endpoint = rp->r_pub->endpoint;
if(rpupd != rupdate.vm_rpupd && rpupd != rupdate.rs_rpupd) {
rp->r_pub->sys_flags |= SF_VM_UPDATE;
if(rpupd->lu_flags & SEF_LU_NOMMAP) {
rp->r_pub->sys_flags |= SF_VM_NOMMAP;
}
if(!(rpupd->lu_flags & SEF_LU_UNSAFE)) {
if(rs_verbose)
printf("RS: %s pinning memory\n", srv_to_string(rp));
vm_memctl(rp->r_pub->new_endpoint, VM_RS_MEM_PIN, 0, 0);
if(rs_verbose)
printf("RS: %s pinning memory\n", srv_to_string(new_rp));
vm_memctl(new_rp->r_pub->endpoint, VM_RS_MEM_PIN, 0, 0);
}
}
}
);
}
/* Request the first service to prepare for the update. */
if(start_update_prepare_next() == NULL) {
/* If we are done already, end the update now. */
end_update(OK, RS_REPLY);
return ESRCH;
}
return OK;
}
/*===========================================================================*
* start_update_prepare_next *
*===========================================================================*/
struct rprocupd* start_update_prepare_next()
{
/* Request the next service in the update chain to prepare for the update. */
struct rprocupd *rpupd = NULL;
if(!RUPDATE_IS_UPDATING()) {
rpupd = rupdate.first_rpupd;
}
else {
rpupd = rupdate.curr_rpupd->next_rpupd;
}
if(!rpupd) {
return NULL;
}
rupdate.flags |= RS_UPDATING;
while(1) {
rupdate.curr_rpupd = rpupd;
request_prepare_update_service(rupdate.curr_rpupd->rp, rupdate.curr_rpupd->prepare_state);
if(!UPD_IS_PREPARING_ONLY(rpupd)) {
/* Continue only if the current service requires a prepare-only update. */
break;
}
if(!rupdate.curr_rpupd->next_rpupd) {
/* Continue only if there are services left. */
break;
}
rpupd = rupdate.curr_rpupd->next_rpupd;
}
return rpupd;
}
/*===========================================================================*
* start_update *
*===========================================================================*/
int start_update()
{
/* Start the update phase of the update process. */
struct rprocupd *prev_rpupd, *rpupd;
int r, init_ready_pending=0;
if(rs_verbose)
printf("RS: starting a %s-component update process\n",
RUPDATE_IS_UPD_MULTI() ? "multi" : "single");
assert(RUPDATE_IS_UPDATING());
assert(rupdate.num_rpupds > 0);
assert(rupdate.num_init_ready_pending == 0);
assert(rupdate.first_rpupd);
assert(rupdate.last_rpupd);
assert(rupdate.curr_rpupd == rupdate.last_rpupd);
rupdate.flags |= RS_INITIALIZING;
/* Cancel the update for the prepare-only services now. */
RUPDATE_ITER(rupdate.first_rpupd, prev_rpupd, rpupd,
if(UPD_IS_PREPARING_ONLY(rpupd)) {
request_prepare_update_service(rpupd->rp, SEF_LU_STATE_NULL);
}
);
/* Iterate over all the processes scheduled for the update. Update each
* service and initialize the new instance. If VM is part of a
* multi-component live update, initialize VM first.
*/
RUPDATE_ITER(rupdate.first_rpupd, prev_rpupd, rpupd,
rupdate.curr_rpupd = rpupd;
if(!UPD_IS_PREPARING_ONLY(rpupd)) {
init_ready_pending=1;
r = start_srv_update(rpupd);
if(r != OK) {
return r;
}
if(!RUPDATE_IS_UPD_VM_MULTI() || rpupd == rupdate.vm_rpupd) {
r = complete_srv_update(rpupd);
if(r != OK) {
return r;
}
}
}
);
/* End update if there is nothing more to do. */
if (!init_ready_pending) {
end_update(OK, 0);
return OK;
}
/* Handle multi-component live updates including VM. */
if(RUPDATE_IS_UPD_VM_MULTI()) {
message m;
/* Check VM initialization, assume failure after timeout. */
if (rs_verbose)
printf("RS: waiting for VM to initialize...\n");
r = rs_receive_ticks(VM_PROC_NR, &m, NULL, UPD_INIT_MAXTIME(rupdate.vm_rpupd));
if(r != OK || m.m_type != RS_INIT || m.m_rs_init.result != OK) {
r = (r == OK && m.m_type == RS_INIT ? m.m_rs_init.result : EINTR);
m.m_source = VM_PROC_NR;
m.m_type = RS_INIT;
m.m_rs_init.result = r;
}
do_init_ready(&m);
/* If initialization was successfull, complete the update. */
if(r == OK) {
/* Reply and unblock VM immediately. */
m.m_type = OK;
reply(VM_PROC_NR, NULL, &m);
/* Initialize other services. */
RUPDATE_ITER(rupdate.first_rpupd, prev_rpupd, rpupd,
if(!UPD_IS_PREPARING_ONLY(rpupd) && rpupd != rupdate.vm_rpupd) {
r = complete_srv_update(rpupd);
if(r != OK) {
return r;
}
}
);
}
}
return OK;
}
/*===========================================================================*
* start_srv_update *
*===========================================================================*/
int start_srv_update(struct rprocupd *rpupd)
{
/* Start updating a single service given its update descriptor. */
struct rproc *old_rp, *new_rp;
int r, sys_upd_flags = 0;
old_rp = rpupd->rp;
new_rp = old_rp->r_new_rp;
assert(old_rp && new_rp);
if(rs_verbose)
printf("RS: %s starting the %s\n", srv_to_string(old_rp), srv_upd_to_string(rpupd));
rupdate.num_init_ready_pending++;
new_rp->r_flags |= RS_INITIALIZING;
new_rp->r_flags |= RS_INIT_PENDING;
if(rpupd->lu_flags & SEF_LU_NOMMAP) {
sys_upd_flags |= SF_VM_NOMMAP;
}
/* Perform the update, skip for RS. */
if(old_rp->r_pub->endpoint != RS_PROC_NR) {
r = update_service(&old_rp, &new_rp, RS_SWAP, sys_upd_flags);
if(r != OK) {
end_update(r, RS_REPLY);
printf("RS: update failed: error %d\n", r);
return r;
}
}
return OK;
}
/*===========================================================================*
* complete_srv_update *
*===========================================================================*/
int complete_srv_update(struct rprocupd *rpupd)
{
/* Complete update of a service given its update descriptor. */
struct rproc *old_rp, *new_rp;
int r;
old_rp = rpupd->rp;
new_rp = old_rp->r_new_rp;
assert(old_rp && new_rp);
if(rs_verbose)
printf("RS: %s completing the %s\n", srv_to_string(old_rp), srv_upd_to_string(rpupd));
new_rp->r_flags &= ~RS_INIT_PENDING;
/* If RS itself is updating, yield control to the new version immediately. */
if(old_rp->r_pub->endpoint == RS_PROC_NR) {
r = init_service(new_rp, SEF_INIT_LU, rpupd->init_flags);
if(r != OK) {
panic("unable to initialize the new RS instance: %d", r);
}
if(rs_verbose)
printf("RS: %s is the new RS instance we'll yield control to\n", srv_to_string(new_rp));
r = sys_privctl(new_rp->r_pub->endpoint, SYS_PRIV_YIELD, NULL);
if(r != OK) {
panic("unable to yield control to the new RS instance: %d", r);
}
/* If we get this far, the new version failed to initialize. Rollback. */
rollback_service(&new_rp, &old_rp);
end_update(ERESTART, RS_REPLY);
printf("RS: update failed: state transfer failed for the new RS instance\n");
return ERESTART;
}
/* Let the new version run. */
r = run_service(new_rp, SEF_INIT_LU, rpupd->init_flags);
if(r != OK) {
/* Something went wrong. Rollback. */
rollback_service(&new_rp, &old_rp);
end_update(r, RS_REPLY);
printf("RS: update failed: error %d\n", r);
return r;
}
return OK;
}
/*===========================================================================*
* abort_update_proc *
*===========================================================================*/
int abort_update_proc(int reason)
{
/* This function is called to abort a scheduled/in-progress update process
* indiscriminately. If the update is in progress, simply pretend the
* current service is causing premature termination of the update.
*/
int is_updating = RUPDATE_IS_UPDATING();
assert(reason != OK);
if(!is_updating && !RUPDATE_IS_UPD_SCHEDULED()) {
return EINVAL;
}
if(rs_verbose)
printf("RS: aborting the %s update process prematurely\n",
is_updating ? "in-progress" : "scheduled");
if(!is_updating) {
rupdate_clear_upds();
return OK;
}
if(rupdate.flags & RS_INITIALIZING) {
/* Pretend the current service under update failed to initialize. */
end_update(reason, RS_REPLY);
}
else {
/* Pretend the current service under update failed to prepare. */
end_update(reason, RS_CANCEL);
}
return OK;
}
/*===========================================================================*
* end_update_curr *
*===========================================================================*/
static void end_update_curr(struct rprocupd *rpupd, int result, int reply_flag)
{
/* Execute the requested action on the current service under update. */
struct rproc *old_rp, *new_rp;
assert(rpupd == rupdate.curr_rpupd);
old_rp = rpupd->rp;
new_rp = old_rp->r_new_rp;
assert(old_rp && new_rp);
if(result != OK && SRV_IS_UPDATING_AND_INITIALIZING(new_rp) && rpupd != rupdate.rs_rpupd) {
/* Rollback in case of failures at initialization time. */
rollback_service(&new_rp, &old_rp);
}
end_srv_update(rpupd, result, reply_flag);
}
/*===========================================================================*
* end_update_before_prepare *
*===========================================================================*/
static void end_update_before_prepare(struct rprocupd *rpupd, int result)
{
/* The service is still waiting for the update. Cleanup the new version and
* keep the old version running.
*/
struct rproc *old_rp, *new_rp;
assert(result != OK);
old_rp = rpupd->rp;
new_rp = old_rp->r_new_rp;
assert(old_rp && new_rp);
cleanup_service(new_rp);
}
/*===========================================================================*
* end_update_prepare_done *
*===========================================================================*/
static void end_update_prepare_done(struct rprocupd *rpupd, int result)
{
/* The service is blocked after preparing for the update. Unblock it
* and cleanup the new version.
*/
assert(!RUPDATE_IS_INITIALIZING());
assert(result != OK);
assert(!(rpupd->rp->r_flags & RS_INITIALIZING));
end_srv_update(rpupd, result, RS_REPLY);
}
/*===========================================================================*
* end_update_initializing *
*===========================================================================*/
static void end_update_initializing(struct rprocupd *rpupd, int result)
{
/* The service is initializing after a live udate. Cleanup the version that
* has to die out and let the other version run.
*/
struct rproc *old_rp, *new_rp;
old_rp = rpupd->rp;
new_rp = old_rp->r_new_rp;
assert(old_rp && new_rp);
assert(SRV_IS_UPDATING_AND_INITIALIZING(new_rp));
if(result != OK && rpupd != rupdate.rs_rpupd) {
/* Rollback in case of failures at initialization time. */
rollback_service(&new_rp, &old_rp);
}
end_srv_update(rpupd, result, RS_REPLY);
}
/*===========================================================================*
* end_update_rev_iter *
*===========================================================================*/
static void end_update_rev_iter(int result, int reply_flag,
struct rprocupd *skip_rpupd, struct rprocupd *only_rpupd)
{
/* End the update for all the requested services. */
struct rprocupd *prev_rpupd, *rpupd;
short is_curr, is_before_curr, is_after_curr;
is_after_curr = 1;
RUPDATE_REV_ITER(rupdate.last_rpupd, prev_rpupd, rpupd,
is_curr = (rupdate.curr_rpupd == rpupd);
is_after_curr = is_after_curr && !is_curr;
if(!UPD_IS_PREPARING_ONLY(rpupd)) {
short is_before_prepare;
short is_prepare_done;
short is_initializing;
is_before_curr = !is_curr && !is_after_curr;
if(RUPDATE_IS_INITIALIZING()) {
is_before_prepare = 0;
is_prepare_done = is_after_curr;
is_initializing = is_before_curr;
}
else {
is_before_prepare = is_after_curr;
is_prepare_done = is_before_curr;
is_initializing = 0;
}
if((!skip_rpupd || rpupd != skip_rpupd) && (!only_rpupd || rpupd == only_rpupd)) {
/* Analyze different cases. */
if(is_curr) {
end_update_curr(rpupd, result, reply_flag);
}
else if(is_before_prepare) {
end_update_before_prepare(rpupd, result);
}
else if(is_prepare_done) {
end_update_prepare_done(rpupd, result);
}
else {
assert(is_initializing);
end_update_initializing(rpupd, result);
}
}
}
);
}
/*===========================================================================*
* end_update_debug *
*===========================================================================*/
void end_update_debug(char *file, int line,
int result, int reply_flag)
{
/* End an in-progress update process. */
struct rprocupd *prev_rpupd, *rpupd, *rpupd_it;
struct rproc *rp, *old_rp, *new_rp;
int i, r, slot_nr;
assert(RUPDATE_IS_UPDATING());
if(rs_verbose)
printf("RS: %s ending the update: result=%d, reply=%d at %s:%d\n",
srv_to_string(rupdate.curr_rpupd->rp), result, (reply_flag==RS_REPLY),
file, line);
/* If the new instance of RS is active and the update failed, ending
* the update couldn't be any easier.
*/
if(result != OK && RUPDATE_IS_RS_INIT_DONE()) {
if(rs_verbose)
printf("RS: update failed, new RS instance will now exit\n");
exit(1);
}
/* If VM is updated as part of a multi-component live update and something
* goes wrong after VM has completed initialization, rollback is only
* supported in a best-effort way in unsafe mode. The new VM instance might
* have important state changes that won't be reflected in the old version
* once we rollback.
*/
if(result != OK && RUPDATE_IS_UPD_VM_MULTI() && RUPDATE_IS_VM_INIT_DONE() && (rupdate.vm_rpupd->lu_flags & SEF_LU_UNSAFE)) {
printf("RS: Warning rollbacking in unsafe multi-component update including VM!\n");
}
/* Handle prepare-only services first: simply cancel the update. */
RUPDATE_ITER(rupdate.first_rpupd, prev_rpupd, rpupd,
if(UPD_IS_PREPARING_ONLY(rpupd)) {
if(!RUPDATE_IS_INITIALIZING()) {
request_prepare_update_service(rpupd->rp, SEF_LU_STATE_NULL);
}
rpupd->rp->r_flags &= ~RS_PREPARE_DONE;
}
);
/* Handle all the other services now, VM always last to support rollback. */
end_update_rev_iter(result, reply_flag, rupdate.vm_rpupd, NULL);
if(rupdate.vm_rpupd) {
end_update_rev_iter(result, reply_flag, NULL, rupdate.vm_rpupd);
}
/* End the update and complete initialization in case of success. */
RUPDATE_ITER(rupdate.first_rpupd, prev_rpupd, rpupd,
if(prev_rpupd) {
rupdate_upd_clear(prev_rpupd);
}
if(result == OK && !UPD_IS_PREPARING_ONLY(rpupd)) {
/* The rp pointer points to the new instance in this case. */
new_rp = rpupd->rp;
end_srv_init(new_rp);
}
);
late_reply(rupdate.last_rpupd->rp, result);
rupdate_upd_clear(rupdate.last_rpupd);
RUPDATE_CLEAR();
/* Clear all the old/new endpoints and update flags in the public entries. */
for(slot_nr = 0; slot_nr < NR_SYS_PROCS; slot_nr++) {
rp = &rproc[slot_nr];
rp->r_pub->old_endpoint = NONE;
rp->r_pub->new_endpoint = NONE;
rp->r_pub->sys_flags &= ~(SF_VM_UPDATE|SF_VM_ROLLBACK|SF_VM_NOMMAP);
}
}
/*===========================================================================*
* end_srv_update *
*===========================================================================*/
void end_srv_update(struct rprocupd *rpupd, int result, int reply_flag)
{
/* End the update for the given service. There are two possibilities:
* 1) the update succeeded. In that case, cleanup the old version and mark the
* new version as no longer under update.
* 2) the update failed. In that case, cleanup the new version and mark the old
* version as no longer under update. Eventual late ready to update
* messages (if any) will simply be ignored and the service can
* continue executing. In addition, reset the check timestamp, so that if the
* service has a period, a status request will be forced in the next period.
*/
struct rproc *old_rp, *new_rp, *exiting_rp, *surviving_rp;
struct rproc **rps;
struct rprocpub *rpub;
int nr_rps, i;
old_rp = rpupd->rp;
new_rp = old_rp->r_new_rp;
assert(old_rp && new_rp);
if(result == OK && new_rp->r_pub->endpoint == VM_PROC_NR && RUPDATE_IS_UPD_MULTI()) {
/* VM has already been replied to in case of multi-component live update.
* Send an update cancel message to trigger cleanup.
*/
reply_flag = RS_CANCEL;
}
if(rs_verbose)
printf("RS: ending update from %s to %s with result=%d, reply=%d\n",
srv_to_string(old_rp), srv_to_string(new_rp), result, (reply_flag==RS_REPLY));
/* Decide which version has to die out and which version has to survive. */
surviving_rp = (result == OK ? new_rp : old_rp);
exiting_rp = (result == OK ? old_rp : new_rp);
surviving_rp->r_flags &= ~RS_INITIALIZING;
surviving_rp->r_check_tm = 0;
getticks(&surviving_rp->r_alive_tm);
/* Keep track of the surviving process in the update descriptor from now on. */
rpupd->rp = surviving_rp;
/* Unlink the two versions. */
old_rp->r_new_rp = NULL;
new_rp->r_old_rp = NULL;
/* Mark the version that has to survive as no longer updating and
* reply when asked to.
*/
surviving_rp->r_flags &= ~(RS_UPDATING|RS_PREPARE_DONE|RS_INIT_DONE|RS_INIT_PENDING);
if(reply_flag == RS_REPLY) {
message m;
m.m_type = result;
reply(surviving_rp->r_pub->endpoint, surviving_rp, &m);
}
else if(reply_flag == RS_CANCEL) {
if(!(surviving_rp->r_flags & RS_TERMINATED)) {
request_prepare_update_service(surviving_rp, SEF_LU_STATE_NULL);
}
}
/* Cleanup or detach the version that has to die out. */
get_service_instances(exiting_rp, &rps, &nr_rps);
for(i=0;i<nr_rps;i++) {
if(rps[i] == old_rp && (rpupd->lu_flags & SEF_LU_DETACHED)) {
message m;
m.m_type = EDEADEPT;
rps[i]->r_flags |= RS_CLEANUP_DETACH;
cleanup_service(rps[i]);
reply(rps[i]->r_pub->endpoint, rps[i], &m);
}
else {
cleanup_service(rps[i]);
}
}
if(rs_verbose)
printf("RS: %s ended the %s\n", srv_to_string(surviving_rp),
srv_upd_to_string(rpupd));
}

View file

@ -10,21 +10,19 @@
#include <minix/sched.h> #include <minix/sched.h>
#include "kernel/proc.h" #include "kernel/proc.h"
#define PRINT_SEP() printf("---------------------------------------------------------------------------------\n")
/*===========================================================================* /*===========================================================================*
* init_service * * init_service *
*===========================================================================*/ *===========================================================================*/
int init_service(rp, type) int init_service(struct rproc *rp, int type, int flags)
struct rproc *rp; /* pointer to process slot */
int type; /* type of initialization */
{ {
int r; int r;
message m; message m;
struct rprocpub *rpub;
endpoint_t old_endpoint; endpoint_t old_endpoint;
rpub = rp->r_pub;
rp->r_flags |= RS_INITIALIZING; /* now initializing */ rp->r_flags |= RS_INITIALIZING; /* now initializing */
getticks(&rp->r_alive_tm);
rp->r_check_tm = rp->r_alive_tm + 1; /* expect reply within period */ rp->r_check_tm = rp->r_alive_tm + 1; /* expect reply within period */
/* In case of RS initialization, we are done. */ /* In case of RS initialization, we are done. */
@ -35,19 +33,29 @@ int type; /* type of initialization */
/* Determine the old endpoint if this is a new instance. */ /* Determine the old endpoint if this is a new instance. */
old_endpoint = NONE; old_endpoint = NONE;
if(rp->r_old_rp) { if(rp->r_old_rp) {
old_endpoint = rp->r_old_rp->r_pub->endpoint; old_endpoint = rp->r_upd.state_endpoint;
} }
else if(rp->r_prev_rp) { else if(rp->r_prev_rp) {
old_endpoint = rp->r_prev_rp->r_pub->endpoint; old_endpoint = rp->r_prev_rp->r_pub->endpoint;
} }
/* Check flags. */
if(rp->r_pub->sys_flags & SF_USE_SCRIPT) {
flags |= SEF_INIT_SCRIPT_RESTART;
}
/* Send initialization message. */ /* Send initialization message. */
memset(&m, 0, sizeof(message));
m.m_type = RS_INIT; m.m_type = RS_INIT;
m.m_rs_init.type = type; m.m_rs_init.type = (short) type;
m.m_rs_init.flags = flags;
m.m_rs_init.rproctab_gid = rinit.rproctab_gid; m.m_rs_init.rproctab_gid = rinit.rproctab_gid;
m.m_rs_init.old_endpoint = old_endpoint; m.m_rs_init.old_endpoint = old_endpoint;
r = asynsend(rpub->endpoint, &m); m.m_rs_init.restarts = (short) rp->r_restarts+1;
m.m_rs_init.buff_addr = rp->r_map_prealloc_addr;
m.m_rs_init.buff_len = rp->r_map_prealloc_len;
rp->r_map_prealloc_addr = 0;
rp->r_map_prealloc_len = 0;
r = rs_asynsend(rp, &m, 0);
return r; return r;
} }
@ -113,15 +121,14 @@ int is_init; /* set when initializing a call mask */
} }
/*===========================================================================* /*===========================================================================*
* srv_to_string * * srv_to_string_gen *
*===========================================================================*/ *===========================================================================*/
char* srv_to_string(rp) char* srv_to_string_gen(struct rproc *rp, int is_verbose)
struct rproc *rp; /* pointer to process slot */
{ {
struct rprocpub *rpub; struct rprocpub *rpub;
int slot_nr; int slot_nr;
char *srv_string; char *srv_string;
static char srv_string_pool[3][RS_MAX_LABEL_LEN + (DEBUG ? 256 : 64)]; static char srv_string_pool[3][RS_MAX_LABEL_LEN + 256];
static int srv_string_pool_index = 0; static int srv_string_pool_index = 0;
rpub = rp->r_pub; rpub = rp->r_pub;
@ -130,26 +137,94 @@ struct rproc *rp; /* pointer to process slot */
srv_string_pool_index = (srv_string_pool_index + 1) % 3; srv_string_pool_index = (srv_string_pool_index + 1) % 3;
#define srv_str(cmd) ((cmd) == NULL || (cmd)[0] == '\0' ? "_" : (cmd)) #define srv_str(cmd) ((cmd) == NULL || (cmd)[0] == '\0' ? "_" : (cmd))
#define srv_ep_str(rp) (itoa((rp)->r_pub->endpoint))
#define srv_active_str(rp) ((rp)->r_flags & RS_ACTIVE ? "*" : " ") #define srv_active_str(rp) ((rp)->r_flags & RS_ACTIVE ? "*" : " ")
#define srv_version_str(rp) ((rp)->r_new_rp || (rp)->r_next_rp ? "-" : \ #define srv_version_str(rp) ((rp)->r_new_rp || (rp)->r_next_rp ? "-" : \
((rp)->r_old_rp || (rp)->r_prev_rp ? "+" : " ")) ((rp)->r_old_rp || (rp)->r_prev_rp ? "+" : " "))
#if DEBUG if(is_verbose) {
sprintf(srv_string, "service '%s'%s%s(slot %d, ep %d, pid %d, cmd %s, script %s, proc %s, major %d, flags 0x%03x, sys_flags 0x%02x)", sprintf(srv_string, "service '%s'%s%s(slot %d, ep %d, pid %d, cmd %s, script %s, proc %s, major %d, flags 0x%03x, sys_flags 0x%02x)",
rpub->label, srv_active_str(rp), srv_version_str(rp), rpub->label, srv_active_str(rp), srv_version_str(rp),
slot_nr, rpub->endpoint, rp->r_pid, srv_str(rp->r_cmd), slot_nr, rpub->endpoint, rp->r_pid, srv_str(rp->r_cmd),
srv_str(rp->r_script), srv_str(rpub->proc_name), rpub->dev_nr, srv_str(rp->r_script), srv_str(rpub->proc_name), rpub->dev_nr,
rp->r_flags, rpub->sys_flags); rp->r_flags, rpub->sys_flags);
#else }
sprintf(srv_string, "service '%s'%s%s(slot %d, ep %d, pid %d)", else {
rpub->label, srv_active_str(rp), srv_version_str(rp), sprintf(srv_string, "service '%s'%s%s(slot %d, ep %d, pid %d)",
slot_nr, rpub->endpoint, rp->r_pid); rpub->label, srv_active_str(rp), srv_version_str(rp),
#endif slot_nr, rpub->endpoint, rp->r_pid);
}
#undef srv_str
#undef srv_active_str
#undef srv_version_str
return srv_string; return srv_string;
} }
/*===========================================================================*
* srv_upd_to_string *
*===========================================================================*/
char* srv_upd_to_string(struct rprocupd *rpupd)
{
static char srv_upd_string[256];
struct rprocpub *rpub, *next_rpub, *prev_rpub;
rpub = rpupd->rp ? rpupd->rp->r_pub : NULL;
next_rpub = rpupd->next_rpupd && rpupd->next_rpupd->rp ? rpupd->next_rpupd->rp->r_pub : NULL;
prev_rpub = rpupd->prev_rpupd && rpupd->prev_rpupd->rp ? rpupd->prev_rpupd->rp->r_pub : NULL;
#define srv_ep(RPUB) (RPUB ? (RPUB)->endpoint : -1)
#define srv_upd_luflag_c(F) (rpupd->lu_flags & F ? '1' : '0')
#define srv_upd_iflag_c(F) (rpupd->init_flags & F ? '1' : '0')
sprintf(srv_upd_string, "update (lu_flags(SAMPUNDRV)=%c%c%c%c%c%c%c%c%c, init_flags=(FCTD)=%c%c%c%c, state %d (%s), tm %lu, maxtime %lu, endpoint %d, state_data_gid %d, prev_ep %d, next_ep %d)",
srv_upd_luflag_c(SEF_LU_SELF), srv_upd_luflag_c(SEF_LU_ASR),
srv_upd_luflag_c(SEF_LU_MULTI), srv_upd_luflag_c(SEF_LU_PREPARE_ONLY),
srv_upd_luflag_c(SEF_LU_UNSAFE), srv_upd_luflag_c(SEF_LU_NOMMAP),
srv_upd_luflag_c(SEF_LU_DETACHED), srv_upd_luflag_c(SEF_LU_INCLUDES_RS),
srv_upd_luflag_c(SEF_LU_INCLUDES_VM), srv_upd_iflag_c(SEF_INIT_FAIL),
srv_upd_iflag_c(SEF_INIT_CRASH), srv_upd_iflag_c(SEF_INIT_TIMEOUT),
srv_upd_iflag_c(SEF_INIT_DEFCB), rpupd->prepare_state,
rpupd->prepare_state_data.eval_addr ? rpupd->prepare_state_data.eval_addr : "", rpupd->prepare_tm,
rpupd->prepare_maxtime, srv_ep(rpub), rpupd->prepare_state_data_gid,
srv_ep(prev_rpub), srv_ep(next_rpub));
return srv_upd_string;
}
/*===========================================================================*
* rs_asynsend *
*===========================================================================*/
int rs_asynsend(struct rproc *rp, message *m_ptr, int no_reply)
{
struct rprocpub *rpub;
int r;
rpub = rp->r_pub;
if(no_reply) {
r = asynsend3(rpub->endpoint, m_ptr, AMF_NOREPLY);
}
else {
r = asynsend(rpub->endpoint, m_ptr);
}
if(rs_verbose)
printf("RS: %s being asynsent to with message type %d, noreply=%d, result=%d\n",
srv_to_string(rp), m_ptr->m_type, no_reply, r);
return r;
}
/*===========================================================================*
* rs_receive_ticks *
*===========================================================================*/
int rs_receive_ticks(endpoint_t src, message *m_ptr,
int *status_ptr, int ticks)
{
printf("RS: rs_receive_ticks not implemented\n");
return ENOSYS;
}
/*===========================================================================* /*===========================================================================*
* reply * * reply *
*===========================================================================*/ *===========================================================================*/
@ -166,7 +241,7 @@ message *m_ptr; /* reply message */
} }
if(rs_verbose && rp) if(rs_verbose && rp)
printf("RS: %s being replied to\n", srv_to_string(rp)); printf("RS: %s being replied to with message type %d\n", srv_to_string(rp), m_ptr->m_type);
r = ipc_sendnb(who, m_ptr); /* send the message */ r = ipc_sendnb(who, m_ptr); /* send the message */
if (r != OK) if (r != OK)
@ -265,3 +340,125 @@ int update_sig_mgrs(struct rproc *rp, endpoint_t sig_mgr,
return OK; return OK;
} }
/*===========================================================================*
* rs_is_idle *
*===========================================================================*/
int rs_is_idle()
{
int slot_nr;
struct rproc *rp;
for (slot_nr = 0; slot_nr < NR_SYS_PROCS; slot_nr++) {
rp = &rproc[slot_nr];
if (!(rp->r_flags & RS_IN_USE)) {
continue;
}
if(!RS_SRV_IS_IDLE(rp)) {
return 0;
}
}
return 1;
}
/*===========================================================================*
* rs_idle_period *
*===========================================================================*/
void rs_idle_period()
{
struct rproc *rp;
struct rprocpub *rpub;
int r;
/* Not much to do when RS is not idle. */
if(!rs_is_idle()) {
return;
}
/* Cleanup dead services. */
for (rp=BEG_RPROC_ADDR; rp<END_RPROC_ADDR; rp++) {
if((rp->r_flags & (RS_IN_USE|RS_DEAD)) == (RS_IN_USE|RS_DEAD)) {
cleanup_service(rp);
}
}
/* Create missing replicas when necessary. */
for (rp=BEG_RPROC_ADDR; rp<END_RPROC_ADDR; rp++) {
rpub = rp->r_pub;
if((rp->r_flags & RS_ACTIVE) && (rpub->sys_flags & SF_USE_REPL) && rp->r_next_rp == NULL) {
if(rpub->endpoint == VM_PROC_NR && (rp->r_old_rp || rp->r_new_rp)) {
/* Only one replica at the time for VM. */
continue;
}
if ((r = clone_service(rp, RST_SYS_PROC, 0)) != OK) {
printf("RS: warning: unable to clone %s (error %d)\n",
srv_to_string(rp), r);
}
}
}
}
/*===========================================================================*
* print_services_status *
*===========================================================================*/
void print_services_status()
{
int slot_nr;
struct rproc *rp;
int num_services = 0;
int num_service_instances = 0;
int is_verbose = 1;
PRINT_SEP();
printf("Printing information about all the system service instances:\n");
PRINT_SEP();
for (slot_nr = 0; slot_nr < NR_SYS_PROCS; slot_nr++) {
rp = &rproc[slot_nr];
if (!(rp->r_flags & RS_IN_USE)) {
continue;
}
if (rp->r_flags & RS_ACTIVE) {
num_services++;
}
num_service_instances++;
printf("%s\n", srv_to_string_gen(rp, is_verbose));
}
PRINT_SEP();
printf("Found %d service instances, of which %d are active services\n",
num_service_instances, num_services);
PRINT_SEP();
}
/*===========================================================================*
* print_update_status *
*===========================================================================*/
void print_update_status()
{
struct rprocupd *prev_rpupd, *rpupd;
int is_updating = RUPDATE_IS_UPDATING();
int i;
#define rupdate_flag_c(F) (rupdate.flags & F ? '1' : '0')
if(!is_updating && !RUPDATE_IS_UPD_SCHEDULED()) {
PRINT_SEP();
printf("No update is in progress or scheduled\n");
PRINT_SEP();
return;
}
PRINT_SEP();
i = 1;
printf("A %s-component update is %s, flags(UIRV)=%c%c%c%c:\n", RUPDATE_IS_UPD_MULTI() ? "multi" : "single",
is_updating ? "in progress" : "scheduled",
rupdate_flag_c(RS_UPDATING), rupdate_flag_c(RS_INITIALIZING),
rupdate.rs_rpupd ? '1' : '0', rupdate.vm_rpupd ? '1' : '0');
PRINT_SEP();
RUPDATE_ITER(rupdate.first_rpupd, prev_rpupd, rpupd,
printf("%d. %s %s %s\n", i++, srv_to_string(rpupd->rp),
is_updating ? "updating with" : "scheduled for",
srv_upd_to_string(rpupd));
);
PRINT_SEP();
#undef rupdate_flag_c
}

View file

@ -276,20 +276,11 @@ int do_rs_memctl(message *m_ptr)
switch(req) switch(req)
{ {
case VM_RS_MEM_PIN: case VM_RS_MEM_PIN:
/* Only actually pin RS memory if VM can recover from crashes (saves memory). */
/* Do not perform VM_RS_MEM_PIN yet - it costs the full if (num_vm_instances <= 1)
* size of the RS stack (64MB by default) in memory, return OK;
* and it's needed for functionality that isn't complete /
* merged in current Minix (surviving VM crashes).
*/
#if 0
r = map_pin_memory(vmp); r = map_pin_memory(vmp);
return r; return r;
#else
return OK;
#endif
case VM_RS_MEM_MAKE_VM: case VM_RS_MEM_MAKE_VM:
r = rs_memctl_make_vm_instance(vmp); r = rs_memctl_make_vm_instance(vmp);
return r; return r;