new libunwind, updated to netbsd b1f513eedd

existing libunwind used '0' in lsda_encoding as 'not present,'
whereas that is a valid encoding and does occur and would be
ignored. a missing encoding is actually 0xff.

The commit that addresses this is:

commit 8d4b51028d1a12b58d616f4b605254a877caafcf
Author: joerg <joerg>
Date:   Tue Mar 11 23:52:17 2014 +0000

    0 is a valid LSDA encoding and can be seen in statically linked
    programs. Initialize lsdaEncoding to DW_EH_PE_omit and check for that
    value to decide whether a value should be decoded.

more bugfixes are necessary. this update is up to:

commit b1f513eedd332426d88acbb118b6e9070966dcb9
Author: joerg <joerg>
Date:   Wed May 14 22:13:36 2014 +0000

    Lazy VFP processing works a lot better if the functions contain a return
    instruction.
This commit is contained in:
Ben Gras 2014-05-12 15:17:14 +02:00 committed by Lionel Sambuc
parent 472758f313
commit b029fb598a
9 changed files with 1838 additions and 91 deletions

View file

@ -48,7 +48,6 @@ struct unw_proc_info_t {
uintptr_t lsda; // Address of Language Specific Data Area uintptr_t lsda; // Address of Language Specific Data Area
uintptr_t handler; // Personality routine uintptr_t handler; // Personality routine
uintptr_t extra_args; // Extra stack space for frameless routines uintptr_t extra_args; // Extra stack space for frameless routines
uint32_t unwind_info_size; // Size of DWARF unwind info
uintptr_t unwind_info; // Address of DWARF unwind info uintptr_t unwind_info; // Address of DWARF unwind info
}; };
@ -76,13 +75,29 @@ public:
pthread_rwlock_init(&fdeTreeLock, NULL); pthread_rwlock_init(&fdeTreeLock, NULL);
} }
uint8_t get8(pint_t addr) { return *((uint8_t *)addr); } uint8_t get8(pint_t addr) {
uint8_t val;
memcpy(&val, (void *)addr, sizeof(val));
return val;
}
uint16_t get16(pint_t addr) { return *((uint16_t *)addr); } uint16_t get16(pint_t addr) {
uint16_t val;
memcpy(&val, (void *)addr, sizeof(val));
return val;
}
uint32_t get32(pint_t addr) { return *((uint32_t *)addr); } uint32_t get32(pint_t addr) {
uint32_t val;
memcpy(&val, (void *)addr, sizeof(val));
return val;
}
uint64_t get64(pint_t addr) { return *((uint64_t *)addr); } uint64_t get64(pint_t addr) {
uint64_t val;
memcpy(&val, (void *)addr, sizeof(val));
return val;
}
uintptr_t getP(pint_t addr) { uintptr_t getP(pint_t addr) {
if (sizeof(uintptr_t) == sizeof(uint32_t)) if (sizeof(uintptr_t) == sizeof(uint32_t))
@ -249,6 +264,7 @@ public:
return false; return false;
if (n->hdr_start == 0) { if (n->hdr_start == 0) {
fdeStart = n->hdr_base; fdeStart = n->hdr_base;
data_base = n->data_base;
return true; return true;
} }
@ -271,6 +287,7 @@ public:
len = (len + 1) / 2; len = (len + 1) / 2;
} }
fdeStart = base + (int32_t)get32(first + 4); fdeStart = base + (int32_t)get32(first + 4);
data_base = n->data_base;
return true; return true;
} }
@ -336,9 +353,9 @@ public:
private: private:
findPCRange_t findPCRange; findPCRange_t findPCRange;
bool needsReload; bool needsReload;
#if !defined(__minix) #ifndef __minix
pthread_rwlock_t fdeTreeLock; pthread_rwlock_t fdeTreeLock;
#endif /* !defined(__minix) */ #endif
rb_tree_t segmentTree; rb_tree_t segmentTree;
rb_tree_t dsoTree; rb_tree_t dsoTree;
@ -433,8 +450,8 @@ static int phdr_callback(struct dl_phdr_info *info, size_t size, void *data_) {
} }
static int rangeCmp(void *context, const void *n1_, const void *n2_) { static int rangeCmp(void *context, const void *n1_, const void *n2_) {
LocalAddressSpace::Range *n1 = (LocalAddressSpace::Range *)n1_; const LocalAddressSpace::Range *n1 = (const LocalAddressSpace::Range *)n1_;
LocalAddressSpace::Range *n2 = (LocalAddressSpace::Range *)n2_; const LocalAddressSpace::Range *n2 = (const LocalAddressSpace::Range *)n2_;
if (n1->first_pc < n2->first_pc) if (n1->first_pc < n2->first_pc)
return -1; return -1;
@ -445,8 +462,8 @@ static int rangeCmp(void *context, const void *n1_, const void *n2_) {
} }
static int rangeCmpKey(void *context, const void *n_, const void *pc_) { static int rangeCmpKey(void *context, const void *n_, const void *pc_) {
LocalAddressSpace::Range *n = (LocalAddressSpace::Range *)n_; const LocalAddressSpace::Range *n = (const LocalAddressSpace::Range *)n_;
LocalAddressSpace::pint_t *pc = (LocalAddressSpace::pint_t *)pc_; const LocalAddressSpace::pint_t *pc = (const LocalAddressSpace::pint_t *)pc_;
if (n->last_pc < *pc) if (n->last_pc < *pc)
return -1; return -1;
if (n->first_pc > *pc) if (n->first_pc > *pc)
@ -455,8 +472,8 @@ static int rangeCmpKey(void *context, const void *n_, const void *pc_) {
} }
static int dsoTableCmp(void *context, const void *n1_, const void *n2_) { static int dsoTableCmp(void *context, const void *n1_, const void *n2_) {
LocalAddressSpace::Range *n1 = (LocalAddressSpace::Range *)n1_; const LocalAddressSpace::Range *n1 = (const LocalAddressSpace::Range *)n1_;
LocalAddressSpace::Range *n2 = (LocalAddressSpace::Range *)n2_; const LocalAddressSpace::Range *n2 = (const LocalAddressSpace::Range *)n2_;
if (n1->ehframe_base < n2->ehframe_base) if (n1->ehframe_base < n2->ehframe_base)
return -1; return -1;
@ -466,8 +483,8 @@ static int dsoTableCmp(void *context, const void *n1_, const void *n2_) {
} }
static int dsoTableCmpKey(void *context, const void *n_, const void *ptr_) { static int dsoTableCmpKey(void *context, const void *n_, const void *ptr_) {
LocalAddressSpace::Range *n = (LocalAddressSpace::Range *)n_; const LocalAddressSpace::Range *n = (const LocalAddressSpace::Range *)n_;
LocalAddressSpace::pint_t *ptr = (LocalAddressSpace::pint_t *)ptr_; const LocalAddressSpace::pint_t *ptr = (const LocalAddressSpace::pint_t *)ptr_;
if (n->ehframe_base < *ptr) if (n->ehframe_base < *ptr)
return -1; return -1;
if (n->ehframe_base > *ptr) if (n->ehframe_base > *ptr)

View file

@ -39,12 +39,6 @@ public:
static step_result stepWithDwarf(A &, pint_t, pint_t, R &, unw_proc_info_t *); static step_result stepWithDwarf(A &, pint_t, pint_t, R &, unw_proc_info_t *);
private: private:
// Pseudo-register used for return addresses.
enum {
DW_X86_RET_ADDR = 8,
DW_X86_64_RET_ADDR = 16,
};
static pint_t evaluateExpression(pint_t, A &, const R &, pint_t); static pint_t evaluateExpression(pint_t, A &, const R &, pint_t);
static pint_t static pint_t
getSavedRegister(A &, const R &, pint_t, getSavedRegister(A &, const R &, pint_t,
@ -54,9 +48,6 @@ private:
const typename CFI_Parser<A, R>::RegisterLocation &); const typename CFI_Parser<A, R>::RegisterLocation &);
static int lastRestoreReg(const R &) { return R::LAST_RESTORE_REG; } static int lastRestoreReg(const R &) { return R::LAST_RESTORE_REG; }
static bool isReturnAddressRegister(int regno, const R &) {
return regno == R::IP_PSEUDO_REG;
}
static pint_t getCFA(A &addressSpace, static pint_t getCFA(A &addressSpace,
const typename CFI_Parser<A, R>::PrologInfo &prolog, const typename CFI_Parser<A, R>::PrologInfo &prolog,
@ -145,7 +136,7 @@ step_result DwarfInstructions<A, R>::stepWithDwarf(A &addressSpace, pint_t pc,
for (int i = 0; i <= lastRestoreReg(newRegisters); ++i) { for (int i = 0; i <= lastRestoreReg(newRegisters); ++i) {
if (prolog.savedRegisters[i].location == CFI_Parser<A, R>::kRegisterUnused) if (prolog.savedRegisters[i].location == CFI_Parser<A, R>::kRegisterUnused)
continue; continue;
if (isReturnAddressRegister(i, registers)) if (i == (int)cieInfo.returnAddressRegister)
returnAddress = getSavedRegister(addressSpace, registers, cfa, returnAddress = getSavedRegister(addressSpace, registers, cfa,
prolog.savedRegisters[i]); prolog.savedRegisters[i]);
else if (registers.validRegister(i)) else if (registers.validRegister(i))
@ -162,7 +153,7 @@ step_result DwarfInstructions<A, R>::stepWithDwarf(A &addressSpace, pint_t pc,
// The CFA is defined as the stack pointer at the call site. // The CFA is defined as the stack pointer at the call site.
// Therefore the SP is restored by setting it to the CFA. // Therefore the SP is restored by setting it to the CFA.
newRegisters.setSP(cfa); newRegisters.setSP(cfa);
newRegisters.setIP(returnAddress); newRegisters.setIP(returnAddress + R::RETURN_OFFSET);
// Now replace register set with the working copy. // Now replace register set with the working copy.
registers = newRegisters; registers = newRegisters;

View file

@ -43,6 +43,7 @@ public:
uint8_t personalityOffsetInCIE; uint8_t personalityOffsetInCIE;
bool isSignalFrame; bool isSignalFrame;
bool fdesHaveAugmentationData; bool fdesHaveAugmentationData;
uint8_t returnAddressRegister;
}; };
/// Information about an FDE (Frame Description Entry) /// Information about an FDE (Frame Description Entry)
@ -172,7 +173,7 @@ bool CFI_Parser<A, R>::decodeFDE(A &addressSpace, pint_t fdeStart,
if (cieInfo->fdesHaveAugmentationData) { if (cieInfo->fdesHaveAugmentationData) {
uintptr_t augLen = addressSpace.getULEB128(p, nextCFI); uintptr_t augLen = addressSpace.getULEB128(p, nextCFI);
pint_t endOfAug = p + augLen; pint_t endOfAug = p + augLen;
if (cieInfo->lsdaEncoding != 0) { if (cieInfo->lsdaEncoding != DW_EH_PE_omit) {
// Peek at value (without indirection). Zero means no LSDA. // Peek at value (without indirection). Zero means no LSDA.
pint_t lsdaStart = p; pint_t lsdaStart = p;
if (addressSpace.getEncodedP(p, nextCFI, cieInfo->lsdaEncoding & 0x0F, if (addressSpace.getEncodedP(p, nextCFI, cieInfo->lsdaEncoding & 0x0F,
@ -198,7 +199,7 @@ template <typename A, typename R>
bool CFI_Parser<A, R>::parseCIE(A &addressSpace, pint_t cie, bool CFI_Parser<A, R>::parseCIE(A &addressSpace, pint_t cie,
CIE_Info *cieInfo) { CIE_Info *cieInfo) {
cieInfo->pointerEncoding = 0; cieInfo->pointerEncoding = 0;
cieInfo->lsdaEncoding = 0; cieInfo->lsdaEncoding = DW_EH_PE_omit;
cieInfo->personalityEncoding = 0; cieInfo->personalityEncoding = 0;
cieInfo->personalityOffsetInCIE = 0; cieInfo->personalityOffsetInCIE = 0;
cieInfo->personality = 0; cieInfo->personality = 0;
@ -238,7 +239,7 @@ bool CFI_Parser<A, R>::parseCIE(A &addressSpace, pint_t cie,
// Parse data alignment factor // Parse data alignment factor
cieInfo->dataAlignFactor = addressSpace.getSLEB128(p, cieContentEnd); cieInfo->dataAlignFactor = addressSpace.getSLEB128(p, cieContentEnd);
// Parse return address register // Parse return address register
addressSpace.getULEB128(p, cieContentEnd); cieInfo->returnAddressRegister = (uint8_t)addressSpace.getULEB128(p, cieContentEnd);
// Parse augmentation data based on augmentation string. // Parse augmentation data based on augmentation string.
if (addressSpace.get8(strStart) == 'z') { if (addressSpace.get8(strStart) == 'z') {
// parse augmentation data length // parse augmentation data length
@ -460,6 +461,8 @@ CFI_Parser<A, R>::parseInstructions(A &addressSpace, pint_t instructions,
reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd)); reg = R::dwarf2regno(addressSpace.getULEB128(p, instructionsEnd));
offset = offset =
addressSpace.getULEB128(p, instructionsEnd) * cieInfo.dataAlignFactor; addressSpace.getULEB128(p, instructionsEnd) * cieInfo.dataAlignFactor;
if (reg > kMaxRegisterNumber)
return false;
results->savedRegisters[reg].location = kRegisterOffsetFromCFA; results->savedRegisters[reg].location = kRegisterOffsetFromCFA;
results->savedRegisters[reg].value = offset; results->savedRegisters[reg].value = offset;
break; break;
@ -481,6 +484,20 @@ CFI_Parser<A, R>::parseInstructions(A &addressSpace, pint_t instructions,
length = addressSpace.getULEB128(p, instructionsEnd); length = addressSpace.getULEB128(p, instructionsEnd);
p += length; p += length;
break; break;
case DW_CFA_GNU_window_save:
#if defined(__sparc__)
for (reg = 8; reg < 16; ++reg) {
results->savedRegisters[reg].location = kRegisterInRegister;
results->savedRegisters[reg].value = reg + 16;
}
for (reg = 16; reg < 32; ++reg) {
results->savedRegisters[reg].location = kRegisterInCFA;
results->savedRegisters[reg].value = (reg - 16) * sizeof(typename R::reg_t);
}
break;
#else
return false;
#endif
case DW_CFA_GNU_args_size: case DW_CFA_GNU_args_size:
offset = addressSpace.getULEB128(p, instructionsEnd); offset = addressSpace.getULEB128(p, instructionsEnd);
results->spExtraArgSize = offset; results->spExtraArgSize = offset;

View file

@ -1,4 +1,4 @@
# $NetBSD: Makefile.inc,v 1.1 2013/10/14 01:14:57 joerg Exp $ # $NetBSD: Makefile.inc,v 1.5 2014/03/19 16:46:23 joerg Exp $
.PATH: ${NETBSDSRCDIR}/sys/lib/libunwind .PATH: ${NETBSDSRCDIR}/sys/lib/libunwind
@ -7,4 +7,15 @@ SRCS+= libunwind.cxx \
INCS+= unwind.h INCS+= unwind.h
COPTS.libuwind.cxx+= -funwind-tables -fno-rtti -fno-exceptions -fvisibility=hidden -Wno-old-style-cast .if ${HAVE_GCC:U48} == "4"
CLEANFILES+= cstdint
DPSRCS+= cstdint
cstdint:
echo '#include <stdint.h>' > ${.TARGET}
COPTS.libunwind.cxx+= "-D__builtin_unreachable()=abort()"
.else
COPTS.libunwind.cxx+= ${${ACTIVE_CXX} == "gcc":? -std=c++0x : -std=c++11 }
.endif
COPTS.libunwind.cxx+= -funwind-tables -fno-rtti -fno-exceptions -fvisibility=hidden -Wno-old-style-cast

View file

@ -32,9 +32,9 @@ enum {
class Registers_x86 { class Registers_x86 {
public: public:
enum { enum {
LAST_RESTORE_REG = REGNO_X86_EIP,
IP_PSEUDO_REG = REGNO_X86_EIP,
LAST_REGISTER = REGNO_X86_EIP, LAST_REGISTER = REGNO_X86_EIP,
LAST_RESTORE_REG = REGNO_X86_EIP,
RETURN_OFFSET = 0,
}; };
__dso_hidden Registers_x86(); __dso_hidden Registers_x86();
@ -97,9 +97,9 @@ enum {
class Registers_x86_64 { class Registers_x86_64 {
public: public:
enum { enum {
LAST_RESTORE_REG = REGNO_X86_64_RIP,
IP_PSEUDO_REG = REGNO_X86_64_RIP,
LAST_REGISTER = REGNO_X86_64_RIP, LAST_REGISTER = REGNO_X86_64_RIP,
LAST_RESTORE_REG = REGNO_X86_64_RIP,
RETURN_OFFSET = 0,
}; };
__dso_hidden Registers_x86_64(); __dso_hidden Registers_x86_64();
@ -144,19 +144,18 @@ enum {
DWARF_PPC32_R31 = 31, DWARF_PPC32_R31 = 31,
DWARF_PPC32_F0 = 32, DWARF_PPC32_F0 = 32,
DWARF_PPC32_F31 = 63, DWARF_PPC32_F31 = 63,
DWARF_PPC32_V0 = 1124,
DWARF_PPC32_V31 = 1155,
DWARF_PPC32_LR = 65, DWARF_PPC32_LR = 65,
DWARF_PPC32_CTR = 66, DWARF_PPC32_CR = 70,
DWARF_PPC32_XER = 76, DWARF_PPC32_V0 = 77,
DWARF_PPC32_V31 = 108,
REGNO_PPC32_R0 = 0, REGNO_PPC32_R0 = 0,
REGNO_PPC32_R1 = 0, REGNO_PPC32_R1 = 1,
REGNO_PPC32_R31 = 31, REGNO_PPC32_R31 = 31,
REGNO_PPC32_CR = 32, REGNO_PPC32_LR = 32,
REGNO_PPC32_LR = 33, REGNO_PPC32_CR = 33,
REGNO_PPC32_CTR = 34, REGNO_PPC32_SRR0 = 34,
REGNO_PPC32_XER = 35,
REGNO_PPC32_SRR0 = 36,
REGNO_PPC32_F0 = REGNO_PPC32_SRR0 + 1, REGNO_PPC32_F0 = REGNO_PPC32_SRR0 + 1,
REGNO_PPC32_F31 = REGNO_PPC32_F0 + 31, REGNO_PPC32_F31 = REGNO_PPC32_F0 + 31,
REGNO_PPC32_V0 = REGNO_PPC32_F31 + 1, REGNO_PPC32_V0 = REGNO_PPC32_F31 + 1,
@ -166,9 +165,9 @@ enum {
class Registers_ppc32 { class Registers_ppc32 {
public: public:
enum { enum {
LAST_RESTORE_REG = REGNO_PPC32_V31,
IP_PSEUDO_REG = REGNO_PPC32_SRR0,
LAST_REGISTER = REGNO_PPC32_V31, LAST_REGISTER = REGNO_PPC32_V31,
LAST_RESTORE_REG = REGNO_PPC32_V31,
RETURN_OFFSET = 0,
}; };
__dso_hidden Registers_ppc32(); __dso_hidden Registers_ppc32();
@ -180,7 +179,14 @@ public:
return REGNO_PPC32_F0 + (num - DWARF_PPC32_F0); return REGNO_PPC32_F0 + (num - DWARF_PPC32_F0);
if (num >= DWARF_PPC32_V0 && num <= DWARF_PPC32_V31) if (num >= DWARF_PPC32_V0 && num <= DWARF_PPC32_V31)
return REGNO_PPC32_V0 + (num - DWARF_PPC32_V0); return REGNO_PPC32_V0 + (num - DWARF_PPC32_V0);
return LAST_REGISTER + 1; switch (num) {
case DWARF_PPC32_LR:
return REGNO_PPC32_LR;
case DWARF_PPC32_CR:
return REGNO_PPC32_CR;
default:
return LAST_REGISTER + 1;
}
} }
bool validRegister(int num) const { bool validRegister(int num) const {
@ -225,10 +231,747 @@ private:
uint64_t low, high; uint64_t low, high;
}; };
uint32_t reg[REGNO_PPC32_SRR0 + 1]; uint32_t reg[REGNO_PPC32_SRR0 + 1];
uint32_t dummy;
uint64_t fpreg[32]; uint64_t fpreg[32];
vecreg_t vecreg[64]; vecreg_t vecreg[64];
}; };
enum {
DWARF_ARM32_R0 = 0,
DWARF_ARM32_R15 = 15,
DWARF_ARM32_SPSR = 128,
DWARF_ARM32_OLD_S0 = 64,
DWARF_ARM32_OLD_S31 = 91,
DWARF_ARM32_D0 = 256,
DWARF_ARM32_D31 = 287,
REGNO_ARM32_R0 = 0,
REGNO_ARM32_SP = 13,
REGNO_ARM32_R15 = 15,
REGNO_ARM32_SPSR = 16,
REGNO_ARM32_D0 = 17,
REGNO_ARM32_D15 = 32,
REGNO_ARM32_D31 = 48,
};
class Registers_arm32 {
public:
enum {
LAST_REGISTER = REGNO_ARM32_D31,
LAST_RESTORE_REG = REGNO_ARM32_D31,
RETURN_OFFSET = 0,
};
__dso_hidden Registers_arm32();
static int dwarf2regno(int num) {
if (num >= DWARF_ARM32_R0 && num <= DWARF_ARM32_R15)
return REGNO_ARM32_R0 + (num - DWARF_ARM32_R0);
if (num == DWARF_ARM32_SPSR)
return REGNO_ARM32_SPSR;
if (num >= DWARF_ARM32_D0 && num <= DWARF_ARM32_D31)
return REGNO_ARM32_D0 + (num - DWARF_ARM32_D0);
if (num >= DWARF_ARM32_OLD_S0 && num <= DWARF_ARM32_OLD_S31) {
assert(num % 2 == 0);
return REGNO_ARM32_D0 + (num - DWARF_ARM32_OLD_S0) / 2;
}
return LAST_REGISTER + 1;
}
bool validRegister(int num) const {
return num >= 0 && num <= REGNO_ARM32_SPSR;
}
uint64_t getRegister(int num) const {
assert(validRegister(num));
return reg[num];
}
void setRegister(int num, uint64_t value) {
assert(validRegister(num));
reg[num] = value;
}
uint64_t getIP() const { return reg[REGNO_ARM32_R15]; }
void setIP(uint64_t value) { reg[REGNO_ARM32_R15] = value; }
uint64_t getSP() const { return reg[REGNO_ARM32_SP]; }
void setSP(uint64_t value) { reg[REGNO_ARM32_SP] = value; }
bool validFloatVectorRegister(int num) const {
return (num >= REGNO_ARM32_D0 && num <= REGNO_ARM32_D31);
}
void copyFloatVectorRegister(int num, uint64_t addr_) {
if (num <= REGNO_ARM32_D15) {
if ((flags & 1) == 0) {
lazyVFP1();
flags |= 1;
}
} else {
if ((flags & 2) == 0) {
lazyVFP3();
flags |= 2;
}
}
const void *addr = reinterpret_cast<const void *>(addr_);
memcpy(fpreg + (num - REGNO_ARM32_D0), addr, sizeof(fpreg[0]));
}
__dso_hidden void lazyVFP1();
__dso_hidden void lazyVFP3();
__dso_hidden void jumpto() const __dead;
private:
uint32_t reg[REGNO_ARM32_SPSR + 1];
uint32_t flags;
uint64_t fpreg[32];
};
enum {
DWARF_VAX_R0 = 0,
DWARF_VAX_R15 = 15,
DWARF_VAX_PSW = 16,
REGNO_VAX_R0 = 0,
REGNO_VAX_R14 = 14,
REGNO_VAX_R15 = 15,
REGNO_VAX_PSW = 16,
};
class Registers_vax {
public:
enum {
LAST_REGISTER = REGNO_VAX_PSW,
LAST_RESTORE_REG = REGNO_VAX_PSW,
RETURN_OFFSET = 0,
};
__dso_hidden Registers_vax();
static int dwarf2regno(int num) {
if (num >= DWARF_VAX_R0 && num <= DWARF_VAX_R15)
return REGNO_VAX_R0 + (num - DWARF_VAX_R0);
if (num == DWARF_VAX_PSW)
return REGNO_VAX_PSW;
return LAST_REGISTER + 1;
}
bool validRegister(int num) const {
return num >= 0 && num <= LAST_RESTORE_REG;
}
uint64_t getRegister(int num) const {
assert(validRegister(num));
return reg[num];
}
void setRegister(int num, uint64_t value) {
assert(validRegister(num));
reg[num] = value;
}
uint64_t getIP() const { return reg[REGNO_VAX_R15]; }
void setIP(uint64_t value) { reg[REGNO_VAX_R15] = value; }
uint64_t getSP() const { return reg[REGNO_VAX_R14]; }
void setSP(uint64_t value) { reg[REGNO_VAX_R14] = value; }
bool validFloatVectorRegister(int num) const {
return false;
}
void copyFloatVectorRegister(int num, uint64_t addr_) {
}
__dso_hidden void jumpto() const __dead;
private:
uint32_t reg[REGNO_VAX_PSW + 1];
};
enum {
DWARF_M68K_A0 = 0,
DWARF_M68K_A7 = 7,
DWARF_M68K_D0 = 8,
DWARF_M68K_D7 = 15,
DWARF_M68K_FP0 = 16,
DWARF_M68K_FP7 = 23,
DWARF_M68K_PC = 24,
REGNO_M68K_A0 = 0,
REGNO_M68K_A7 = 7,
REGNO_M68K_D0 = 8,
REGNO_M68K_D7 = 15,
REGNO_M68K_PC = 16,
REGNO_M68K_FP0 = 17,
REGNO_M68K_FP7 = 24,
};
class Registers_M68K {
public:
enum {
LAST_REGISTER = REGNO_M68K_FP7,
LAST_RESTORE_REG = REGNO_M68K_FP7,
RETURN_OFFSET = 0,
};
__dso_hidden Registers_M68K();
static int dwarf2regno(int num) {
if (num >= DWARF_M68K_A0 && num <= DWARF_M68K_A7)
return REGNO_M68K_A0 + (num - DWARF_M68K_A0);
if (num >= DWARF_M68K_D0 && num <= DWARF_M68K_D7)
return REGNO_M68K_D0 + (num - DWARF_M68K_D0);
if (num >= DWARF_M68K_FP0 && num <= DWARF_M68K_FP7)
return REGNO_M68K_FP0 + (num - DWARF_M68K_FP0);
if (num == DWARF_M68K_PC)
return REGNO_M68K_PC;
return LAST_REGISTER + 1;
}
bool validRegister(int num) const {
return num >= 0 && num <= REGNO_M68K_PC;
}
uint64_t getRegister(int num) const {
assert(validRegister(num));
return reg[num];
}
void setRegister(int num, uint64_t value) {
assert(validRegister(num));
reg[num] = value;
}
uint64_t getIP() const { return reg[REGNO_M68K_PC]; }
void setIP(uint64_t value) { reg[REGNO_M68K_PC] = value; }
uint64_t getSP() const { return reg[REGNO_M68K_A7]; }
void setSP(uint64_t value) { reg[REGNO_M68K_A7] = value; }
bool validFloatVectorRegister(int num) const {
return num >= REGNO_M68K_FP0 && num <= REGNO_M68K_FP7;
}
void copyFloatVectorRegister(int num, uint64_t addr_) {
assert(validFloatVectorRegister(num));
const void *addr = reinterpret_cast<const void *>(addr_);
memcpy(fpreg + (num - REGNO_M68K_FP0), addr, sizeof(fpreg[0]));
}
__dso_hidden void jumpto() const __dead;
private:
typedef uint32_t fpreg_t[3];
uint32_t reg[REGNO_M68K_PC + 1];
uint32_t dummy;
fpreg_t fpreg[8];
};
enum {
DWARF_SH3_R0 = 0,
DWARF_SH3_R15 = 15,
DWARF_SH3_PC = 16,
DWARF_SH3_PR = 17,
REGNO_SH3_R0 = 0,
REGNO_SH3_R15 = 15,
REGNO_SH3_PC = 16,
REGNO_SH3_PR = 17,
};
class Registers_SH3 {
public:
enum {
LAST_REGISTER = REGNO_SH3_PR,
LAST_RESTORE_REG = REGNO_SH3_PR,
RETURN_OFFSET = 0,
};
__dso_hidden Registers_SH3();
static int dwarf2regno(int num) {
if (num >= DWARF_SH3_R0 && num <= DWARF_SH3_R15)
return REGNO_SH3_R0 + (num - DWARF_SH3_R0);
if (num == DWARF_SH3_PC)
return REGNO_SH3_PC;
if (num == DWARF_SH3_PR)
return REGNO_SH3_PR;
return LAST_REGISTER + 1;
}
bool validRegister(int num) const {
return num >= 0 && num <= REGNO_SH3_PR;
}
uint64_t getRegister(int num) const {
assert(validRegister(num));
return reg[num];
}
void setRegister(int num, uint64_t value) {
assert(validRegister(num));
reg[num] = value;
}
uint64_t getIP() const { return reg[REGNO_SH3_PC]; }
void setIP(uint64_t value) { reg[REGNO_SH3_PC] = value; }
uint64_t getSP() const { return reg[REGNO_SH3_R15]; }
void setSP(uint64_t value) { reg[REGNO_SH3_R15] = value; }
bool validFloatVectorRegister(int num) const { return false; }
void copyFloatVectorRegister(int num, uint64_t addr_) {}
__dso_hidden void jumpto() const __dead;
private:
uint32_t reg[REGNO_SH3_PR + 1];
};
enum {
DWARF_SPARC64_R0 = 0,
DWARF_SPARC64_R31 = 31,
DWARF_SPARC64_PC = 32,
REGNO_SPARC64_R0 = 0,
REGNO_SPARC64_R14 = 14,
REGNO_SPARC64_R15 = 15,
REGNO_SPARC64_R31 = 31,
REGNO_SPARC64_PC = 32,
};
class Registers_SPARC64 {
public:
enum {
LAST_REGISTER = REGNO_SPARC64_PC,
LAST_RESTORE_REG = REGNO_SPARC64_PC,
RETURN_OFFSET = 8,
};
typedef uint64_t reg_t;
__dso_hidden Registers_SPARC64();
static int dwarf2regno(int num) {
if (num >= DWARF_SPARC64_R0 && num <= DWARF_SPARC64_R31)
return REGNO_SPARC64_R0 + (num - DWARF_SPARC64_R0);
if (num == DWARF_SPARC64_PC)
return REGNO_SPARC64_PC;
return LAST_REGISTER + 1;
}
bool validRegister(int num) const {
return num >= 0 && num <= REGNO_SPARC64_PC;
}
uint64_t getRegister(int num) const {
assert(validRegister(num));
return reg[num];
}
void setRegister(int num, uint64_t value) {
assert(validRegister(num));
reg[num] = value;
}
uint64_t getIP() const { return reg[REGNO_SPARC64_PC]; }
void setIP(uint64_t value) { reg[REGNO_SPARC64_PC] = value; }
uint64_t getSP() const { return reg[REGNO_SPARC64_R14]; }
void setSP(uint64_t value) { reg[REGNO_SPARC64_R14] = value; }
bool validFloatVectorRegister(int num) const { return false; }
void copyFloatVectorRegister(int num, uint64_t addr_) {}
__dso_hidden void jumpto() const __dead;
private:
uint64_t reg[REGNO_SPARC64_PC + 1];
};
enum {
DWARF_SPARC_R0 = 0,
DWARF_SPARC_R31 = 31,
DWARF_SPARC_PC = 32,
REGNO_SPARC_R0 = 0,
REGNO_SPARC_R14 = 14,
REGNO_SPARC_R15 = 15,
REGNO_SPARC_R31 = 31,
REGNO_SPARC_PC = 32,
};
class Registers_SPARC {
public:
enum {
LAST_REGISTER = REGNO_SPARC_PC,
LAST_RESTORE_REG = REGNO_SPARC_PC,
RETURN_OFFSET = 8,
};
typedef uint32_t reg_t;
__dso_hidden Registers_SPARC();
static int dwarf2regno(int num) {
if (num >= DWARF_SPARC_R0 && num <= DWARF_SPARC_R31)
return REGNO_SPARC_R0 + (num - DWARF_SPARC_R0);
if (num == DWARF_SPARC_PC)
return REGNO_SPARC_PC;
return LAST_REGISTER + 1;
}
bool validRegister(int num) const {
return num >= 0 && num <= REGNO_SPARC_PC;
}
uint64_t getRegister(int num) const {
assert(validRegister(num));
return reg[num];
}
void setRegister(int num, uint64_t value) {
assert(validRegister(num));
reg[num] = value;
}
uint64_t getIP() const { return reg[REGNO_SPARC_PC]; }
void setIP(uint64_t value) { reg[REGNO_SPARC_PC] = value; }
uint64_t getSP() const { return reg[REGNO_SPARC_R14]; }
void setSP(uint64_t value) { reg[REGNO_SPARC_R14] = value; }
bool validFloatVectorRegister(int num) const { return false; }
void copyFloatVectorRegister(int num, uint64_t addr_) {}
__dso_hidden void jumpto() const __dead;
private:
uint32_t reg[REGNO_SPARC_PC + 1];
};
enum {
DWARF_ALPHA_R0 = 0,
DWARF_ALPHA_R30 = 30,
DWARF_ALPHA_F0 = 32,
DWARF_ALPHA_F30 = 62,
REGNO_ALPHA_R0 = 0,
REGNO_ALPHA_R26 = 26,
REGNO_ALPHA_R30 = 30,
REGNO_ALPHA_PC = 31,
REGNO_ALPHA_F0 = 32,
REGNO_ALPHA_F30 = 62,
};
class Registers_Alpha {
public:
enum {
LAST_REGISTER = REGNO_ALPHA_F30,
LAST_RESTORE_REG = REGNO_ALPHA_F30,
RETURN_OFFSET = 0,
};
typedef uint32_t reg_t;
__dso_hidden Registers_Alpha();
static int dwarf2regno(int num) { return num; }
bool validRegister(int num) const {
return num >= 0 && num <= REGNO_ALPHA_PC;
}
uint64_t getRegister(int num) const {
assert(validRegister(num));
return reg[num];
}
void setRegister(int num, uint64_t value) {
assert(validRegister(num));
reg[num] = value;
}
uint64_t getIP() const { return reg[REGNO_ALPHA_PC]; }
void setIP(uint64_t value) { reg[REGNO_ALPHA_PC] = value; }
uint64_t getSP() const { return reg[REGNO_ALPHA_R30]; }
void setSP(uint64_t value) { reg[REGNO_ALPHA_R30] = value; }
bool validFloatVectorRegister(int num) const {
return num >= REGNO_ALPHA_F0 && num <= REGNO_ALPHA_F30;
}
void copyFloatVectorRegister(int num, uint64_t addr_) {
assert(validFloatVectorRegister(num));
const void *addr = reinterpret_cast<const void *>(addr_);
memcpy(fpreg + (num - REGNO_ALPHA_F0), addr, sizeof(fpreg[0]));
}
__dso_hidden void jumpto() const __dead;
private:
uint64_t reg[REGNO_ALPHA_PC + 1];
uint64_t fpreg[31];
};
enum {
DWARF_HPPA_R1 = 1,
DWARF_HPPA_R31 = 31,
DWARF_HPPA_FR4L = 32,
DWARF_HPPA_FR31H = 87,
REGNO_HPPA_PC = 0,
REGNO_HPPA_R1 = 1,
REGNO_HPPA_R2 = 2,
REGNO_HPPA_R30 = 30,
REGNO_HPPA_R31 = 31,
REGNO_HPPA_FR4L = 32,
REGNO_HPPA_FR31H = 87,
};
class Registers_HPPA {
public:
enum {
LAST_REGISTER = REGNO_HPPA_FR31H,
LAST_RESTORE_REG = REGNO_HPPA_FR31H,
RETURN_OFFSET = -3, // strictly speaking, this is a mask
};
__dso_hidden Registers_HPPA();
static int dwarf2regno(int num) {
if (num >= DWARF_HPPA_R1 && num <= DWARF_HPPA_R31)
return REGNO_HPPA_R1 + (num - DWARF_HPPA_R1);
if (num >= DWARF_HPPA_FR4L && num <= DWARF_HPPA_FR31H)
return REGNO_HPPA_FR4L + (num - DWARF_HPPA_FR31H);
return LAST_REGISTER + 1;
}
bool validRegister(int num) const {
return num >= REGNO_HPPA_PC && num <= REGNO_HPPA_R31;
}
uint64_t getRegister(int num) const {
assert(validRegister(num));
return reg[num];
}
void setRegister(int num, uint64_t value) {
assert(validRegister(num));
reg[num] = value;
}
uint64_t getIP() const { return reg[REGNO_HPPA_PC]; }
void setIP(uint64_t value) { reg[REGNO_HPPA_PC] = value; }
uint64_t getSP() const { return reg[REGNO_HPPA_R30]; }
void setSP(uint64_t value) { reg[REGNO_HPPA_R30] = value; }
bool validFloatVectorRegister(int num) const {
return num >= REGNO_HPPA_FR4L && num <= REGNO_HPPA_FR31H;
}
void copyFloatVectorRegister(int num, uint64_t addr_) {
assert(validFloatVectorRegister(num));
const void *addr = reinterpret_cast<const void *>(addr_);
memcpy(fpreg + (num - REGNO_HPPA_FR4L), addr, sizeof(fpreg[0]));
}
__dso_hidden void jumpto() const __dead;
private:
uint32_t reg[REGNO_HPPA_R31 + 1];
uint32_t fpreg[56];
};
enum {
DWARF_MIPS_R1 = 0,
DWARF_MIPS_R31 = 31,
DWARF_MIPS_F0 = 32,
DWARF_MIPS_F31 = 63,
REGNO_MIPS_PC = 0,
REGNO_MIPS_R1 = 0,
REGNO_MIPS_R29 = 29,
REGNO_MIPS_R31 = 31,
REGNO_MIPS_F0 = 33,
REGNO_MIPS_F31 = 64
};
class Registers_MIPS {
public:
enum {
LAST_REGISTER = REGNO_MIPS_F31,
LAST_RESTORE_REG = REGNO_MIPS_F31,
RETURN_OFFSET = 0,
};
__dso_hidden Registers_MIPS();
static int dwarf2regno(int num) {
if (num >= DWARF_MIPS_R1 && num <= DWARF_MIPS_R31)
return REGNO_MIPS_R1 + (num - DWARF_MIPS_R1);
if (num >= DWARF_MIPS_F0 && num <= DWARF_MIPS_F31)
return REGNO_MIPS_F0 + (num - DWARF_MIPS_F0);
return LAST_REGISTER + 1;
}
bool validRegister(int num) const {
return num >= REGNO_MIPS_PC && num <= REGNO_MIPS_R31;
}
uint64_t getRegister(int num) const {
assert(validRegister(num));
return reg[num];
}
void setRegister(int num, uint64_t value) {
assert(validRegister(num));
reg[num] = value;
}
uint64_t getIP() const { return reg[REGNO_MIPS_PC]; }
void setIP(uint64_t value) { reg[REGNO_MIPS_PC] = value; }
uint64_t getSP() const { return reg[REGNO_MIPS_R29]; }
void setSP(uint64_t value) { reg[REGNO_MIPS_R29] = value; }
bool validFloatVectorRegister(int num) const {
return num >= DWARF_MIPS_F0 && num <= DWARF_MIPS_F31;
}
void copyFloatVectorRegister(int num, uint64_t addr_) {
assert(validFloatVectorRegister(num));
const void *addr = reinterpret_cast<const void *>(addr_);
memcpy(fpreg + (num - REGNO_MIPS_F0), addr, sizeof(fpreg[0]));
}
__dso_hidden void jumpto() const __dead;
private:
uint32_t reg[REGNO_MIPS_R31 + 1];
uint64_t fpreg[32];
};
enum {
DWARF_MIPS64_R1 = 0,
DWARF_MIPS64_R31 = 31,
DWARF_MIPS64_F0 = 32,
DWARF_MIPS64_F31 = 63,
REGNO_MIPS64_PC = 0,
REGNO_MIPS64_R1 = 0,
REGNO_MIPS64_R29 = 29,
REGNO_MIPS64_R31 = 31,
REGNO_MIPS64_F0 = 33,
REGNO_MIPS64_F31 = 64
};
class Registers_MIPS64 {
public:
enum {
LAST_REGISTER = REGNO_MIPS64_F31,
LAST_RESTORE_REG = REGNO_MIPS64_F31,
RETURN_OFFSET = 0,
};
__dso_hidden Registers_MIPS64();
static int dwarf2regno(int num) {
if (num >= DWARF_MIPS64_R1 && num <= DWARF_MIPS64_R31)
return REGNO_MIPS64_R1 + (num - DWARF_MIPS64_R1);
if (num >= DWARF_MIPS64_F0 && num <= DWARF_MIPS64_F31)
return REGNO_MIPS64_F0 + (num - DWARF_MIPS64_F0);
return LAST_REGISTER + 1;
}
bool validRegister(int num) const {
return num >= REGNO_MIPS64_PC && num <= REGNO_MIPS64_R31;
}
uint64_t getRegister(int num) const {
assert(validRegister(num));
return reg[num];
}
void setRegister(int num, uint64_t value) {
assert(validRegister(num));
reg[num] = value;
}
uint64_t getIP() const { return reg[REGNO_MIPS64_PC]; }
void setIP(uint64_t value) { reg[REGNO_MIPS64_PC] = value; }
uint64_t getSP() const { return reg[REGNO_MIPS64_R29]; }
void setSP(uint64_t value) { reg[REGNO_MIPS64_R29] = value; }
bool validFloatVectorRegister(int num) const {
return num >= DWARF_MIPS64_F0 && num <= DWARF_MIPS64_F31;
}
void copyFloatVectorRegister(int num, uint64_t addr_) {
assert(validFloatVectorRegister(num));
const void *addr = reinterpret_cast<const void *>(addr_);
memcpy(fpreg + (num - REGNO_MIPS64_F0), addr, sizeof(fpreg[0]));
}
__dso_hidden void jumpto() const __dead;
private:
uint64_t reg[REGNO_MIPS64_R31 + 1];
uint64_t fpreg[32];
};
#if __i386__
typedef Registers_x86 NativeUnwindRegisters;
#elif __x86_64__
typedef Registers_x86_64 NativeUnwindRegisters;
#elif __powerpc__
typedef Registers_ppc32 NativeUnwindRegisters;
#elif __arm__
typedef Registers_arm32 NativeUnwindRegisters;
#elif __vax__
typedef Registers_vax NativeUnwindRegisters;
#elif __m68k__
typedef Registers_M68K NativeUnwindRegisters;
#elif __mips_n64 || __mips_n32
typedef Registers_MIPS64 NativeUnwindRegisters;
#elif __mips__
typedef Registers_MIPS NativeUnwindRegisters;
#elif __sh3__
typedef Registers_SH3 NativeUnwindRegisters;
#elif __sparc64__
typedef Registers_SPARC64 NativeUnwindRegisters;
#elif __sparc__
typedef Registers_SPARC NativeUnwindRegisters;
#elif __alpha__
typedef Registers_Alpha NativeUnwindRegisters;
#elif __hppa__
typedef Registers_HPPA NativeUnwindRegisters;
#endif
} // namespace _Unwind } // namespace _Unwind
#endif // __REGISTERS_HPP__ #endif // __REGISTERS_HPP__

View file

@ -63,6 +63,9 @@ public:
this->setInfoBasedOnIPRegister(true); this->setInfoBasedOnIPRegister(true);
if (fUnwindInfoMissing) if (fUnwindInfoMissing)
return UNW_STEP_END; return UNW_STEP_END;
if (fInfo.extra_args)
setSP(getSP() + fInfo.extra_args);
return UNW_STEP_SUCCESS; return UNW_STEP_SUCCESS;
} }
__builtin_unreachable(); __builtin_unreachable();
@ -134,7 +137,6 @@ void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
fInfo.handler = cieInfo.personality; fInfo.handler = cieInfo.personality;
fInfo.extra_args = prolog.spExtraArgSize; fInfo.extra_args = prolog.spExtraArgSize;
fInfo.unwind_info = fdeInfo.fdeStart; fInfo.unwind_info = fdeInfo.fdeStart;
fInfo.unwind_info_size = fdeInfo.fdeLength;
} }
}; // namespace _Unwind }; // namespace _Unwind

View file

@ -17,22 +17,12 @@
using namespace _Unwind; using namespace _Unwind;
#if __i386__ typedef CFI_Parser<LocalAddressSpace, NativeUnwindRegisters> MyCFIParser;
typedef Registers_x86 ThisUnwindRegisters;
#elif __x86_64__
typedef Registers_x86_64 ThisUnwindRegisters;
#elif __powerpc__
typedef Registers_ppc32 ThisUnwindRegisters;
#else
#error Unsupported architecture
#endif
typedef CFI_Parser<LocalAddressSpace, ThisUnwindRegisters> MyCFIParser;
// Internal object representing the address space of this process. // Internal object representing the address space of this process.
static LocalAddressSpace sThisAddressSpace(MyCFIParser::findPCRange); static LocalAddressSpace sThisAddressSpace(MyCFIParser::findPCRange);
typedef UnwindCursor<LocalAddressSpace, ThisUnwindRegisters> ThisUnwindCursor; typedef UnwindCursor<LocalAddressSpace, NativeUnwindRegisters> ThisUnwindCursor;
static _Unwind_Reason_Code unwind_phase1(ThisUnwindCursor &cursor, static _Unwind_Reason_Code unwind_phase1(ThisUnwindCursor &cursor,
struct _Unwind_Exception *exc) { struct _Unwind_Exception *exc) {
@ -197,7 +187,7 @@ static _Unwind_Reason_Code unwind_phase2_forced(ThisUnwindCursor &cursor,
} }
_Unwind_Reason_Code _Unwind_RaiseException(struct _Unwind_Exception *exc) { _Unwind_Reason_Code _Unwind_RaiseException(struct _Unwind_Exception *exc) {
ThisUnwindRegisters registers; NativeUnwindRegisters registers;
ThisUnwindCursor cursor1(registers, sThisAddressSpace); ThisUnwindCursor cursor1(registers, sThisAddressSpace);
ThisUnwindCursor cursor2(registers, sThisAddressSpace); ThisUnwindCursor cursor2(registers, sThisAddressSpace);
@ -216,7 +206,7 @@ _Unwind_Reason_Code _Unwind_RaiseException(struct _Unwind_Exception *exc) {
_Unwind_Reason_Code _Unwind_ForcedUnwind(struct _Unwind_Exception *exc, _Unwind_Reason_Code _Unwind_ForcedUnwind(struct _Unwind_Exception *exc,
_Unwind_Stop_Fn stop, void *stop_arg) { _Unwind_Stop_Fn stop, void *stop_arg) {
ThisUnwindRegisters registers; NativeUnwindRegisters registers;
ThisUnwindCursor cursor(registers, sThisAddressSpace); ThisUnwindCursor cursor(registers, sThisAddressSpace);
// Mark this as forced unwind for _Unwind_Resume(). // Mark this as forced unwind for _Unwind_Resume().
@ -227,7 +217,7 @@ _Unwind_Reason_Code _Unwind_ForcedUnwind(struct _Unwind_Exception *exc,
} }
void _Unwind_Resume(struct _Unwind_Exception *exc) { void _Unwind_Resume(struct _Unwind_Exception *exc) {
ThisUnwindRegisters registers; NativeUnwindRegisters registers;
ThisUnwindCursor cursor(registers, sThisAddressSpace); ThisUnwindCursor cursor(registers, sThisAddressSpace);
if (exc->private_1 != 0) if (exc->private_1 != 0)
@ -273,17 +263,18 @@ uintptr_t _Unwind_GetIP(struct _Unwind_Context *context) {
return cursor->getIP(); return cursor->getIP();
} }
uintptr_t _Unwind_GetIPInfo(struct _Unwind_Context *context, int *isSignalFrame) {
ThisUnwindCursor *cursor = (ThisUnwindCursor *)context;
*isSignalFrame = cursor->isSignalFrame() ? 1 : 0;
return cursor->getIP();
}
void _Unwind_SetIP(struct _Unwind_Context *context, uintptr_t new_value) { void _Unwind_SetIP(struct _Unwind_Context *context, uintptr_t new_value) {
ThisUnwindCursor *cursor = (ThisUnwindCursor *)context; ThisUnwindCursor *cursor = (ThisUnwindCursor *)context;
cursor->setIP(new_value); cursor->setIP(new_value);
unw_proc_info_t info; unw_proc_info_t info;
cursor->getInfo(&info); cursor->getInfo(&info);
uint64_t orgArgSize = info.extra_args;
uint64_t orgFuncStart = info.start_ip;
cursor->setInfoBasedOnIPRegister(false); cursor->setInfoBasedOnIPRegister(false);
// Adjust REG_SP if there was a DW_CFA_GNU_args_size.
if (orgFuncStart == info.start_ip && orgArgSize != 0)
cursor->setSP(cursor->getSP() + orgArgSize);
} }
uintptr_t _Unwind_GetRegionStart(struct _Unwind_Context *context) { uintptr_t _Unwind_GetRegionStart(struct _Unwind_Context *context) {
@ -301,7 +292,7 @@ uintptr_t _Unwind_GetLanguageSpecificData(struct _Unwind_Context *context) {
} }
_Unwind_Reason_Code _Unwind_Backtrace(_Unwind_Trace_Fn callback, void *ref) { _Unwind_Reason_Code _Unwind_Backtrace(_Unwind_Trace_Fn callback, void *ref) {
ThisUnwindRegisters registers; NativeUnwindRegisters registers;
ThisUnwindCursor cursor(registers, sThisAddressSpace); ThisUnwindCursor cursor(registers, sThisAddressSpace);
cursor.setInfoBasedOnIPRegister(); cursor.setInfoBasedOnIPRegister();
@ -327,7 +318,7 @@ uintptr_t _Unwind_GetCFA(struct _Unwind_Context *context) {
} }
void *_Unwind_FindEnclosingFunction(void *pc) { void *_Unwind_FindEnclosingFunction(void *pc) {
ThisUnwindRegisters registers; NativeUnwindRegisters registers;
ThisUnwindCursor cursor(registers, sThisAddressSpace); ThisUnwindCursor cursor(registers, sThisAddressSpace);
unw_proc_info_t info; unw_proc_info_t info;

View file

@ -67,6 +67,7 @@ void _Unwind_DeleteException(struct _Unwind_Exception *);
uintptr_t _Unwind_GetGR(struct _Unwind_Context *, int); uintptr_t _Unwind_GetGR(struct _Unwind_Context *, int);
void _Unwind_SetGR(struct _Unwind_Context *, int, uintptr_t); void _Unwind_SetGR(struct _Unwind_Context *, int, uintptr_t);
uintptr_t _Unwind_GetIP(struct _Unwind_Context *); uintptr_t _Unwind_GetIP(struct _Unwind_Context *);
uintptr_t _Unwind_GetIPInfo(struct _Unwind_Context *, int *);
uintptr_t _Unwind_GetCFA(struct _Unwind_Context *); uintptr_t _Unwind_GetCFA(struct _Unwind_Context *);
void _Unwind_SetIP(struct _Unwind_Context *, uintptr_t); void _Unwind_SetIP(struct _Unwind_Context *, uintptr_t);
uintptr_t _Unwind_GetRegionStart(struct _Unwind_Context *); uintptr_t _Unwind_GetRegionStart(struct _Unwind_Context *);

File diff suppressed because it is too large Load diff