Merge AVFS and APFS

This commit is contained in:
Thomas Veerman 2011-08-17 13:23:45 +00:00
parent ee48228aa0
commit a6bd3f4a22
78 changed files with 17905 additions and 9 deletions

View file

@ -3,14 +3,22 @@
.include <bsd.own.mk> .include <bsd.own.mk>
.if ${BUILDAVFS} == "yes"
VFS= "avfs"
PFS= "apfs"
.else
VFS= "vfs"
PFS= "pfs"
.endif
.if ${MKIMAGEONLY} == "yes" .if ${MKIMAGEONLY} == "yes"
SUBDIR= ds init mfs pfs pm rs sched vfs vm SUBDIR= ds init mfs ${PFS} pm rs sched ${VFS} vm
.else .else
SUBDIR= ds ext2 hgfs inet init ipc is iso9660fs \ SUBDIR= ds ext2 hgfs inet init ipc is iso9660fs \
mfs pfs pm procfs rs sched vfs vm devman mfs ${PFS} pm procfs rs sched ${VFS} vm devman
.endif .endif

14
servers/apfs/Makefile Normal file
View file

@ -0,0 +1,14 @@
# Makefile for Pipe File System (PFS)
PROG= pfs
SRCS= open.c table.c inode.c main.c super.c link.c \
buffer.c read.c misc.c mount.c utility.c stadir.c \
uds.c dev_uds.c
DPADD+= ${LIBDRIVER} ${LIBSYS}
LDADD+= -ldriver -lsys
MAN=
BINDIR?= /usr/sbin
.include <minix.bootprog.mk>

26
servers/apfs/buf.h Normal file
View file

@ -0,0 +1,26 @@
#ifndef __PFS_BUF_H__
#define __PFS_BUF_H__
/* Buffer (block) cache.
*/
struct buf {
/* Data portion of the buffer. */
char b_data[PIPE_BUF]; /* ordinary user data */
/* Header portion of the buffer. */
struct buf *b_next; /* used to link all free bufs in a chain */
struct buf *b_prev; /* used to link all free bufs the other way */
ino_t b_num; /* inode number on minor device */
dev_t b_dev; /* major | minor device where block resides */
int b_bytes; /* Number of bytes allocated in bp */
int b_count; /* Number of users of this buffer */
};
/* A block is free if b_dev == NO_DEV. */
EXTERN struct buf *front; /* points to least recently used free block */
EXTERN struct buf *rear; /* points to most recently used free block */
#endif

103
servers/apfs/buffer.c Normal file
View file

@ -0,0 +1,103 @@
#include "fs.h"
#include "buf.h"
#include "inode.h"
#include <sys/types.h>
#include <stdlib.h>
#include <string.h>
FORWARD _PROTOTYPE( struct buf *new_block, (dev_t dev, ino_t inum) );
/*===========================================================================*
* buf_pool *
*===========================================================================*/
PUBLIC void buf_pool(void)
{
/* Initialize the buffer pool. */
front = NULL;
rear = NULL;
}
/*===========================================================================*
* get_block *
*===========================================================================*/
PUBLIC struct buf *get_block(dev_t dev, ino_t inum)
{
struct buf *bp = front;
while(bp != NULL) {
if (bp->b_dev == dev && bp->b_num == inum) {
bp->b_count++;
return(bp);
}
bp = bp->b_next;
}
/* Buffer was not found. Try to allocate a new one */
return new_block(dev, inum);
}
/*===========================================================================*
* new_block *
*===========================================================================*/
PRIVATE struct buf *new_block(dev_t dev, ino_t inum)
{
/* Allocate a new buffer and add it to the double linked buffer list */
struct buf *bp;
bp = malloc(sizeof(struct buf));
if (bp == NULL) {
err_code = ENOSPC;
return(NULL);
}
bp->b_num = inum;
bp->b_dev = dev;
bp->b_bytes = 0;
bp->b_count = 1;
memset(bp->b_data, 0 , PIPE_BUF);
/* Add at the end of the buffer */
if (front == NULL) { /* Empty list? */
front = bp;
bp->b_prev = NULL;
} else {
rear->b_next = bp;
bp->b_prev = rear;
}
bp->b_next = NULL;
rear = bp;
return(bp);
}
/*===========================================================================*
* put_block *
*===========================================================================*/
PUBLIC void put_block(dev_t dev, ino_t inum)
{
struct buf *bp;
bp = get_block(dev, inum);
if (bp == NULL) return; /* We didn't find the block. Nothing to put. */
bp->b_count--; /* Compensate for above 'get_block'. */
if (--bp->b_count > 0) return;
/* Cut bp out of the loop */
if (bp->b_prev == NULL)
front = bp->b_next;
else
bp->b_prev->b_next = bp->b_next;
if (bp->b_next == NULL)
rear = bp->b_prev;
else
bp->b_next->b_prev = bp->b_prev;
/* Buffer administration is done. Now it's safe to free up bp. */
free(bp);
}

42
servers/apfs/const.h Normal file
View file

@ -0,0 +1,42 @@
#ifndef __PFS_CONST_H__
#define __PFS_CONST_H__
#define NR_INODES 256 /* # slots in "in core" inode table */
/* Size of descriptor table for unix domain sockets. This should be
* equal to the maximum number of minor devices (currently 256).
*/
#define NR_FDS 256
#define INODE_HASH_LOG2 7 /* 2 based logarithm of the inode hash size */
#define INODE_HASH_SIZE ((unsigned long)1<<INODE_HASH_LOG2)
#define INODE_HASH_MASK (((unsigned long)1<<INODE_HASH_LOG2)-1)
/* The type of sizeof may be (unsigned) long. Use the following macro for
* taking the sizes of small objects so that there are no surprises like
* (small) long constants being passed to routines expecting an int.
*/
#define usizeof(t) ((unsigned) sizeof(t))
/* Miscellaneous constants */
#define INVAL_UID ((uid_t) -1) /* Invalid user ID */
#define INVAL_GID ((gid_t) -1) /* Invalid group ID */
#define NORMAL 0 /* forces get_block to do disk read */
#define NO_READ 1 /* prevents get_block from doing disk read */
#define PREFETCH 2 /* tells get_block not to read or mark dev */
#define NO_BIT ((bit_t) 0) /* returned by alloc_bit() to signal failure */
#define ATIME 002 /* set if atime field needs updating */
#define CTIME 004 /* set if ctime field needs updating */
#define MTIME 010 /* set if mtime field needs updating */
#define FS_BITMAP_CHUNKS(b) ((b)/usizeof (bitchunk_t))/* # map chunks/blk */
#define FS_BITCHUNK_BITS (usizeof(bitchunk_t) * CHAR_BIT)
#define FS_BITS_PER_BLOCK(b) (FS_BITMAP_CHUNKS(b) * FS_BITCHUNK_BITS)
#define FS_CALL_VEC_SIZE 31
#define DEV_CALL_VEC_SIZE 25
#endif

1167
servers/apfs/dev_uds.c Normal file

File diff suppressed because it is too large Load diff

31
servers/apfs/fs.h Normal file
View file

@ -0,0 +1,31 @@
#ifndef __PFS_FS_H__
#define __PFS_FS_H__
/* This is the master header for pfs. It includes some other files
* and defines the principal constants.
*/
#define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */
#define _MINIX 1 /* tell headers to include MINIX stuff */
#define _SYSTEM 1 /* tell headers that this is the kernel */
/* The following are so basic, all the *.c files get them automatically. */
#include <minix/config.h> /* MUST be first */
#include <minix/ansi.h> /* MUST be second */
#include <sys/types.h>
#include <minix/const.h>
#include <minix/type.h>
#include <minix/dmap.h>
#include <minix/vfsif.h>
#include <limits.h>
#include <errno.h>
#include <minix/syslib.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <minix/sysutil.h>
#include "const.h"
#include "proto.h"
#include "glo.h"
#endif

29
servers/apfs/glo.h Normal file
View file

@ -0,0 +1,29 @@
#ifndef __PFS_GLO_H__
#define __PFS_GLO_H__
/* EXTERN should be extern except for the table file */
#ifdef _TABLE
#undef EXTERN
#define EXTERN
#endif
#include <minix/vfsif.h>
/* The following variables are used for returning results to the caller. */
EXTERN int err_code; /* temporary storage for error number */
EXTERN _PROTOTYPE (int (*fs_call_vec[]), (message *fs_m_in, message *fs_m_out) ); /* fs call table */
EXTERN _PROTOTYPE (int (*dev_call_vec[]), (message *fs_m_in, message *fs_m_out) ); /* dev call table */
EXTERN uid_t caller_uid;
EXTERN gid_t caller_gid;
EXTERN int req_nr;
EXTERN int SELF_E;
EXTERN int exitsignaled;
EXTERN int busy;
EXTERN int unmountdone;
/* Inode map. */
EXTERN bitchunk_t inodemap[FS_BITMAP_CHUNKS(NR_INODES)];
#endif

41
servers/apfs/inc.h Normal file
View file

@ -0,0 +1,41 @@
#define _SYSTEM 1 /* get OK and negative error codes */
#define _MINIX 1 /* tell headers to include MINIX stuff */
#define VERBOSE 0 /* display diagnostics */
#ifdef __NBSD_LIBC
#include <sys/ioc_net.h>
#else
#include <net/ioctl.h>
#endif
#include <minix/ansi.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <limits.h>
#include <errno.h>
#include <signal.h>
#include <unistd.h>
#include <minix/callnr.h>
#include <minix/config.h>
#include <minix/dmap.h>
#include <minix/type.h>
#include <minix/const.h>
#include <minix/com.h>
#include <minix/syslib.h>
#include <minix/sysutil.h>
#include <minix/keymap.h>
#include <minix/bitmap.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <signal.h>
#include "proto.h"

334
servers/apfs/inode.c Normal file
View file

@ -0,0 +1,334 @@
/* This file manages the inode table. There are procedures to allocate and
* deallocate inodes, acquire, erase, and release them, and read and write
* them from the disk.
*
* The entry points into this file are
* get_inode: search inode table for a given inode; if not there,
* read it
* put_inode: indicate that an inode is no longer needed in memory
* alloc_inode: allocate a new, unused inode
* wipe_inode: erase some fields of a newly allocated inode
* free_inode: mark an inode as available for a new file
* update_times: update atime, ctime, and mtime
* find_inode: retrieve pointer to inode in inode cache
*
*/
#include "fs.h"
#include "buf.h"
#include "inode.h"
#include <minix/vfsif.h>
FORWARD _PROTOTYPE( void addhash_inode, (struct inode * const node) );
FORWARD _PROTOTYPE( void unhash_inode, (struct inode * const node) );
/*===========================================================================*
* fs_putnode *
*===========================================================================*/
PUBLIC int fs_putnode(message *fs_m_in, message *fs_m_out)
{
/* Find the inode specified by the request message and decrease its counter.*/
struct inode *rip;
int count;
dev_t dev;
ino_t inum;
rip = find_inode( (ino_t) fs_m_in->REQ_INODE_NR);
if(!rip) {
printf("%s:%d put_inode: inode #%ld dev: %d not found\n", __FILE__,
__LINE__, fs_m_in->REQ_INODE_NR, (dev_t) fs_m_in->REQ_DEV);
panic("fs_putnode failed");
}
count = fs_m_in->REQ_COUNT;
if (count <= 0) {
printf("%s:%d put_inode: bad value for count: %d\n", __FILE__,
__LINE__, count);
panic("fs_putnode failed");
} else if(count > rip->i_count) {
printf("%s:%d put_inode: count too high: %d > %d\n", __FILE__,
__LINE__, count, rip->i_count);
panic("fs_putnode failed");
}
/* Decrease reference counter, but keep one reference; it will be consumed by
* put_inode(). */
rip->i_count -= count - 1;
dev = rip->i_dev;
inum = rip->i_num;
put_inode(rip);
if (rip->i_count == 0) put_block(dev, inum);
return(OK);
}
/*===========================================================================*
* init_inode_cache *
*===========================================================================*/
PUBLIC void init_inode_cache()
{
struct inode *rip;
struct inodelist *rlp;
/* init free/unused list */
TAILQ_INIT(&unused_inodes);
/* init hash lists */
for (rlp = &hash_inodes[0]; rlp < &hash_inodes[INODE_HASH_SIZE]; ++rlp)
LIST_INIT(rlp);
/* add free inodes to unused/free list */
for (rip = &inode[0]; rip < &inode[NR_INODES]; ++rip) {
rip->i_num = NO_ENTRY;
TAILQ_INSERT_HEAD(&unused_inodes, rip, i_unused);
}
/* Reserve the first inode (bit 0) to prevent it from being allocated later*/
if (alloc_bit() != NO_BIT) printf("PFS could not reserve NO_BIT\n");
busy = 0; /* This bit does not make the server 'in use/busy'. */
}
/*===========================================================================*
* addhash_inode *
*===========================================================================*/
PRIVATE void addhash_inode(struct inode * const node)
{
int hashi = (int) (node->i_num & INODE_HASH_MASK);
/* insert into hash table */
LIST_INSERT_HEAD(&hash_inodes[hashi], node, i_hash);
}
/*===========================================================================*
* unhash_inode *
*===========================================================================*/
PRIVATE void unhash_inode(struct inode * const node)
{
/* remove from hash table */
LIST_REMOVE(node, i_hash);
}
/*===========================================================================*
* get_inode *
*===========================================================================*/
PUBLIC struct inode *get_inode(
dev_t dev, /* device on which inode resides */
ino_t numb /* inode number */
)
{
/* Find the inode in the hash table. If it is not there, get a free inode
* load it from the disk if it's necessary and put on the hash list
*/
register struct inode *rip;
int hashi;
hashi = (int) (numb & INODE_HASH_MASK);
/* Search inode in the hash table */
LIST_FOREACH(rip, &hash_inodes[hashi], i_hash) {
if (rip->i_num == numb && rip->i_dev == dev) {
/* If unused, remove it from the unused/free list */
if (rip->i_count == 0) {
TAILQ_REMOVE(&unused_inodes, rip, i_unused);
}
++rip->i_count;
return(rip);
}
}
/* Inode is not on the hash, get a free one */
if (TAILQ_EMPTY(&unused_inodes)) {
err_code = ENFILE;
return(NULL);
}
rip = TAILQ_FIRST(&unused_inodes);
/* If not free unhash it */
if (rip->i_num != NO_ENTRY) unhash_inode(rip);
/* Inode is not unused any more */
TAILQ_REMOVE(&unused_inodes, rip, i_unused);
/* Load the inode. */
rip->i_dev = dev;
rip->i_num = numb;
rip->i_count = 1;
rip->i_update = 0; /* all the times are initially up-to-date */
/* Add to hash */
addhash_inode(rip);
return(rip);
}
/*===========================================================================*
* find_inode *
*===========================================================================*/
PUBLIC struct inode *find_inode(numb)
ino_t numb; /* inode number */
{
/* Find the inode specified by the inode and device number.
*/
struct inode *rip;
int hashi;
hashi = (int) (numb & INODE_HASH_MASK);
/* Search inode in the hash table */
LIST_FOREACH(rip, &hash_inodes[hashi], i_hash) {
if (rip->i_count > 0 && rip->i_num == numb) {
return(rip);
}
}
return(NULL);
}
/*===========================================================================*
* put_inode *
*===========================================================================*/
PUBLIC void put_inode(rip)
struct inode *rip; /* pointer to inode to be released */
{
/* The caller is no longer using this inode. If no one else is using it either
* write it back to the disk immediately. If it has no links, truncate it and
* return it to the pool of available inodes.
*/
if (rip == NULL) return; /* checking here is easier than in caller */
if (rip->i_count < 1)
panic("put_inode: i_count already below 1: %d", rip->i_count);
if (--rip->i_count == 0) { /* i_count == 0 means no one is using it now */
if (rip->i_nlinks == NO_LINK) { /* Are there links to this file? */
/* no links, free the inode. */
truncate_inode(rip, 0); /* return all the disk blocks */
rip->i_mode = I_NOT_ALLOC; /* clear I_TYPE field */
free_inode(rip);
} else {
truncate_inode(rip, (off_t) 0);
}
if (rip->i_nlinks == NO_LINK) {
/* free, put at the front of the LRU list */
unhash_inode(rip);
rip->i_num = NO_ENTRY;
rip->i_dev = NO_DEV;
rip->i_rdev = NO_DEV;
TAILQ_INSERT_HEAD(&unused_inodes, rip, i_unused);
} else {
/* unused, put at the back of the LRU (cache it) */
TAILQ_INSERT_TAIL(&unused_inodes, rip, i_unused);
}
}
}
/*===========================================================================*
* alloc_inode *
*===========================================================================*/
PUBLIC struct inode *alloc_inode(dev_t dev, mode_t bits)
{
/* Allocate a free inode on 'dev', and return a pointer to it. */
register struct inode *rip;
bit_t b;
ino_t i_num;
b = alloc_bit();
if (b == NO_BIT) {
err_code = ENOSPC;
printf("PipeFS is out of inodes\n");
return(NULL);
}
i_num = (ino_t) b;
/* Try to acquire a slot in the inode table. */
if ((rip = get_inode(dev, i_num)) == NULL) {
/* No inode table slots available. Free the inode if just allocated.*/
if (dev == NO_DEV) free_bit(b);
} else {
/* An inode slot is available. */
rip->i_mode = bits; /* set up RWX bits */
rip->i_nlinks = NO_LINK; /* initial no links */
rip->i_uid = caller_uid; /* file's uid is owner's */
rip->i_gid = caller_gid; /* ditto group id */
/* Fields not cleared already are cleared in wipe_inode(). They have
* been put there because truncate() needs to clear the same fields if
* the file happens to be open while being truncated. It saves space
* not to repeat the code twice.
*/
wipe_inode(rip);
}
return(rip);
}
/*===========================================================================*
* wipe_inode *
*===========================================================================*/
PUBLIC void wipe_inode(rip)
struct inode *rip; /* the inode to be erased */
{
/* Erase some fields in the inode. This function is called from alloc_inode()
* when a new inode is to be allocated, and from truncate(), when an existing
* inode is to be truncated.
*/
rip->i_size = 0;
rip->i_update = ATIME | CTIME | MTIME; /* update all times later */
}
/*===========================================================================*
* free_inode *
*===========================================================================*/
PUBLIC void free_inode(rip)
struct inode *rip;
{
/* Return an inode to the pool of unallocated inodes. */
bit_t b;
if (rip->i_num <= (ino_t) 0 || rip->i_num >= (ino_t) NR_INODES) return;
b = (bit_t) rip->i_num;
free_bit(b);
}
/*===========================================================================*
* update_times *
*===========================================================================*/
PUBLIC void update_times(rip)
struct inode *rip; /* pointer to inode to be read/written */
{
/* Various system calls are required by the standard to update atime, ctime,
* or mtime. Since updating a time requires sending a message to the clock
* task--an expensive business--the times are marked for update by setting
* bits in i_update. When a stat, fstat, or sync is done, or an inode is
* released, update_times() may be called to actually fill in the times.
*/
time_t cur_time;
cur_time = clock_time();
if (rip->i_update & ATIME) rip->i_atime = cur_time;
if (rip->i_update & CTIME) rip->i_ctime = cur_time;
if (rip->i_update & MTIME) rip->i_mtime = cur_time;
rip->i_update = 0; /* they are all up-to-date now */
}

39
servers/apfs/inode.h Normal file
View file

@ -0,0 +1,39 @@
#ifndef __PFS_INODE_H__
#define __PFS_INODE_H__
/* Inode table. This table holds inodes that are currently in use.
*/
#include <sys/queue.h>
EXTERN struct inode {
mode_t i_mode; /* file type, protection, etc. */
nlink_t i_nlinks; /* how many links to this file */
uid_t i_uid; /* user id of the file's owner */
gid_t i_gid; /* group number */
off_t i_size; /* current file size in bytes */
time_t i_atime; /* time of last access (V2 only) */
time_t i_mtime; /* when was file data last changed */
time_t i_ctime; /* when was inode itself changed (V2 only)*/
/* The following items are not present on the disk. */
dev_t i_dev; /* which device is the inode on */
dev_t i_rdev; /* which special device is the inode on */
ino_t i_num; /* inode number on its (minor) device */
int i_count; /* # times inode used; 0 means slot is free */
char i_update; /* the ATIME, CTIME, and MTIME bits are here */
LIST_ENTRY(inode) i_hash; /* hash list */
TAILQ_ENTRY(inode) i_unused; /* free and unused list */
} inode[NR_INODES];
/* list of unused/free inodes */
EXTERN TAILQ_HEAD(unused_inodes_t, inode) unused_inodes;
/* inode hashtable */
EXTERN LIST_HEAD(inodelist, inode) hash_inodes[INODE_HASH_SIZE];
#endif

50
servers/apfs/link.c Normal file
View file

@ -0,0 +1,50 @@
#include "fs.h"
#include "buf.h"
#include "inode.h"
#include <minix/vfsif.h>
/*===========================================================================*
* fs_ftrunc *
*===========================================================================*/
PUBLIC int fs_ftrunc(message *fs_m_in, message *fs_m_out)
{
struct inode *rip;
off_t start, end;
ino_t inumb;
inumb = (ino_t) fs_m_in->REQ_INODE_NR;
if( (rip = find_inode(inumb)) == NULL) return(EINVAL);
start = fs_m_in->REQ_TRC_START_LO;
end = fs_m_in->REQ_TRC_END_LO;
return truncate_inode(rip, start);
}
/*===========================================================================*
* truncate_inode *
*===========================================================================*/
PUBLIC int truncate_inode(rip, newsize)
register struct inode *rip; /* pointer to inode to be truncated */
off_t newsize; /* inode must become this size */
{
/* Set inode to a certain size, freeing any zones no longer referenced
* and updating the size in the inode. If the inode is extended, the
* extra space is a hole that reads as zeroes.
*
* Nothing special has to happen to file pointers if inode is opened in
* O_APPEND mode, as this is different per fd and is checked when
* writing is done.
*/
/* Pipes can shrink, so adjust size to make sure all zones are removed. */
if(newsize != 0) return(EINVAL); /* Only truncate pipes to 0. */
rip->i_size = newsize;
/* Next correct the inode size. */
wipe_inode(rip); /* Pipes can only be truncated to 0. */
return(OK);
}

187
servers/apfs/main.c Normal file
View file

@ -0,0 +1,187 @@
#include "fs.h"
#include <assert.h>
#include <signal.h>
#include <minix/dmap.h>
#include <minix/driver.h>
#include <minix/endpoint.h>
#include <minix/vfsif.h>
#include "buf.h"
#include "inode.h"
#include "uds.h"
FORWARD _PROTOTYPE(void get_work, (message *m_in) );
/* SEF functions and variables. */
FORWARD _PROTOTYPE( void sef_local_startup, (void) );
FORWARD _PROTOTYPE( int sef_cb_init_fresh, (int type, sef_init_info_t *info) );
FORWARD _PROTOTYPE( void sef_cb_signal_handler, (int signo) );
/*===========================================================================*
* main *
*===========================================================================*/
PUBLIC int main(int argc, char *argv[])
{
/* This is the main routine of this service. The main loop consists of
* three major activities: getting new work, processing the work, and
* sending the reply. The loop never terminates, unless a panic occurs.
*/
int ind, do_reply, transid;
message pfs_m_in;
message pfs_m_out;
/* SEF local startup. */
env_setargs(argc, argv);
sef_local_startup();
printf("Started APFS\n");
while(!unmountdone || !exitsignaled) {
endpoint_t src;
do_reply = 1;
/* Wait for request message. */
get_work(&pfs_m_in);
transid = TRNS_GET_ID(pfs_m_in.m_type);
pfs_m_in.m_type = TRNS_DEL_ID(pfs_m_in.m_type);
if (pfs_m_in.m_type == 0) {
assert(!IS_VFS_FS_TRANSID(transid));
pfs_m_in.m_type = transid;
transid = 0;
} else
assert(IS_VFS_FS_TRANSID(transid) || transid == 0);
src = pfs_m_in.m_source;
caller_uid = INVAL_UID; /* To trap errors */
caller_gid = INVAL_GID;
req_nr = pfs_m_in.m_type;
if (IS_DEV_RQ(req_nr)) {
ind = req_nr - DEV_RQ_BASE;
if (ind < 0 || ind >= DEV_CALL_VEC_SIZE) {
printf("pfs: bad DEV request %d\n", req_nr);
pfs_m_out.m_type = EINVAL;
} else {
int result;
result = (*dev_call_vec[ind])(&pfs_m_in, &pfs_m_out);
if (pfs_m_out.REP_STATUS == SUSPEND ||
result == SUSPEND) {
/* Nothing to tell, so not replying */
do_reply = 0;
}
}
} else if (IS_VFS_RQ(req_nr)) {
ind = req_nr - VFS_BASE;
if (ind < 0 || ind >= FS_CALL_VEC_SIZE) {
printf("pfs: bad FS request %d\n", req_nr);
pfs_m_out.m_type = EINVAL;
} else {
pfs_m_out.m_type =
(*fs_call_vec[ind])(&pfs_m_in, &pfs_m_out);
}
} else {
printf("pfs: bad request %d\n", req_nr);
pfs_m_out.m_type = EINVAL;
}
if (do_reply) {
if (IS_VFS_RQ(req_nr) && IS_VFS_FS_TRANSID(transid)) {
pfs_m_out.m_type = TRNS_ADD_ID(pfs_m_out.m_type,
transid);
}
reply(src, &pfs_m_out);
}
}
return(OK);
}
/*===========================================================================*
* sef_local_startup *
*===========================================================================*/
PRIVATE void sef_local_startup()
{
/* Register init callbacks. */
sef_setcb_init_fresh(sef_cb_init_fresh);
sef_setcb_init_restart(sef_cb_init_fail);
/* No live update support for now. */
/* Register signal callbacks. */
sef_setcb_signal_handler(sef_cb_signal_handler);
/* Let SEF perform startup. */
sef_startup();
}
/*===========================================================================*
* sef_cb_init_fresh *
*===========================================================================*/
PRIVATE int sef_cb_init_fresh(int type, sef_init_info_t *info)
{
/* Initialize the pipe file server. */
int i;
/* Initialize main loop parameters. */
exitsignaled = 0; /* No exit request seen yet. */
busy = 0; /* Server is not 'busy' (i.e., inodes in use). */
/* Init inode table */
for (i = 0; i < NR_INODES; ++i) {
inode[i].i_count = 0;
}
init_inode_cache();
uds_init();
SELF_E = getprocnr();
buf_pool();
driver_announce();
return(OK);
}
/*===========================================================================*
* sef_cb_signal_handler *
*===========================================================================*/
PRIVATE void sef_cb_signal_handler(int signo)
{
/* Only check for termination signal, ignore anything else. */
if (signo != SIGTERM) return;
exitsignaled = 1;
}
/*===========================================================================*
* get_work *
*===========================================================================*/
PRIVATE void get_work(m_in)
message *m_in; /* pointer to message */
{
int r, srcok = 0, status;
endpoint_t src;
do {
/* wait for a message */
if ((r = sef_receive_status(ANY, m_in, &status)) != OK)
panic("sef_receive_status failed: %d", r);
src = m_in->m_source;
if(src == VFS_PROC_NR) {
srcok = 1; /* Normal FS request. */
} else
printf("PFS: unexpected source %d\n", src);
} while(!srcok);
}
/*===========================================================================*
* reply *
*===========================================================================*/
PUBLIC void reply(who, m_out)
endpoint_t who;
message *m_out; /* report result */
{
if (OK != send(who, m_out)) /* send the message */
printf("PFS(%d) was unable to send reply\n", SELF_E);
}

12
servers/apfs/misc.c Normal file
View file

@ -0,0 +1,12 @@
#include "fs.h"
/*===========================================================================*
* fs_sync *
*===========================================================================*/
PUBLIC int fs_sync(message *fs_m_in, message *fs_m_out)
{
/* Perform the sync() system call. No-op on this FS. */
return(OK); /* sync() can't fail */
}

18
servers/apfs/mount.c Normal file
View file

@ -0,0 +1,18 @@
#include "fs.h"
#include "glo.h"
/*===========================================================================*
* fs_unmount *
*===========================================================================*/
PUBLIC int fs_unmount(message *fs_m_in, message *fs_m_out)
{
/* Unmount Pipe File Server. */
if (busy) return(EBUSY); /* can't umount a busy file system */
/* Finish off the unmount. */
unmountdone = TRUE;
return(OK);
}

52
servers/apfs/open.c Normal file
View file

@ -0,0 +1,52 @@
#include "fs.h"
#include <sys/stat.h>
#include "buf.h"
#include "inode.h"
#include <minix/vfsif.h>
/*===========================================================================*
* fs_newnode *
*===========================================================================*/
PUBLIC int fs_newnode(message *fs_m_in, message *fs_m_out)
{
register int r = OK;
mode_t bits;
struct inode *rip;
dev_t dev;
caller_uid = (uid_t) fs_m_in->REQ_UID;
caller_gid = (gid_t) fs_m_in->REQ_GID;
bits = (mode_t) fs_m_in->REQ_MODE;
dev = (dev_t) fs_m_in->REQ_DEV;
/* Try to allocate the inode */
if( (rip = alloc_inode(dev, bits) ) == NULL) return(err_code);
switch (bits & S_IFMT) {
case S_IFBLK:
case S_IFCHR:
rip->i_rdev = dev; /* Major/minor dev numbers */
break;
case S_IFIFO:
if ((get_block(dev, rip->i_num)) == NULL)
r = EIO;
break;
default:
r = EIO; /* Unsupported file type */
}
if (r != OK) {
free_inode(rip);
} else {
/* Fill in the fields of the response message */
fs_m_out->RES_INODE_NR = rip->i_num;
fs_m_out->RES_MODE = rip->i_mode;
fs_m_out->RES_FILE_SIZE_LO = rip->i_size;
fs_m_out->RES_UID = rip->i_uid;
fs_m_out->RES_GID = rip->i_gid;
fs_m_out->RES_DEV = dev;
}
return(r);
}

104
servers/apfs/proto.h Normal file
View file

@ -0,0 +1,104 @@
#ifndef __PFS_PROTO_H__
#define __PFS_PROTO_H__
/* Function prototypes. */
/* Structs used in prototypes must be declared as such first. */
struct buf;
struct inode;
struct sockaddr_un;
struct ancillary;
/* buffer.c */
_PROTOTYPE( struct buf *get_block, (dev_t dev, ino_t inum) );
_PROTOTYPE( void put_block, (dev_t dev, ino_t inum) );
/* cache.c */
_PROTOTYPE( void buf_pool, (void) );
/* inode.c */
_PROTOTYPE( struct inode *alloc_inode, (dev_t dev, mode_t mode) );
_PROTOTYPE( void dup_inode, (struct inode *ip) );
_PROTOTYPE( struct inode *find_inode, (ino_t numb) );
_PROTOTYPE( void free_inode, (struct inode *rip) );
_PROTOTYPE( int fs_putnode, (message *fs_m_in, message *fs_m_out) );
_PROTOTYPE( void init_inode_cache, (void) );
_PROTOTYPE( struct inode *get_inode, (dev_t dev, ino_t numb) );
_PROTOTYPE( void put_inode, (struct inode *rip) );
_PROTOTYPE( void update_times, (struct inode *rip) );
_PROTOTYPE( void wipe_inode, (struct inode *rip) );
/* link.c */
_PROTOTYPE( int fs_ftrunc, (message *fs_m_in, message *fs_m_out) );
_PROTOTYPE( int truncate_inode, (struct inode *rip, off_t newsize) );
/* main.c */
_PROTOTYPE( void reply, (endpoint_t who, message *m_out) );
/* misc.c */
_PROTOTYPE( int fs_sync, (message *fs_m_in, message *fs_m_out) );
/* mount.c */
_PROTOTYPE( int fs_unmount, (message *fs_m_in, message *fs_m_out) );
/* open.c */
_PROTOTYPE( int fs_newnode, (message *fs_m_in, message *fs_m_out) );
/* read.c */
_PROTOTYPE( int fs_readwrite, (message *fs_m_in, message *fs_m_out) );
/* utility.c */
_PROTOTYPE( time_t clock_time, (void) );
_PROTOTYPE( int no_sys, (message *pfs_m_in, message *pfs_m_out) );
/* stadir.c */
_PROTOTYPE( int fs_stat, (message *fs_m_in, message *fs_m_out) );
/* super.c */
_PROTOTYPE( bit_t alloc_bit, (void) );
_PROTOTYPE( void free_bit, (bit_t bit_returned) );
/* dev_uds.c */
_PROTOTYPE( int uds_open, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int uds_close, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int uds_read, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int uds_write, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int uds_ioctl, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int uds_select, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int uds_unsuspend, (endpoint_t m_source, int minor) );
_PROTOTYPE( int uds_cancel, (message *dev_m_in, message *dev_m_out) );
/* uds.c */
_PROTOTYPE( void uds_init, (void) );
_PROTOTYPE( int do_accept, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_connect, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_listen, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_socket, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_bind, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_getsockname, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_getpeername, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_shutdown, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_socketpair, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_getsockopt_sotype,
(message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_getsockopt_peercred,
(message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_getsockopt_sndbuf,
(message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_setsockopt_sndbuf,
(message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_getsockopt_rcvbuf,
(message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_setsockopt_rcvbuf,
(message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_sendto, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_recvfrom, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_sendmsg, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int do_recvmsg, (message *dev_m_in, message *dev_m_out) );
_PROTOTYPE( int perform_connection,
(message *dev_m_in, message *dev_m_out,
struct sockaddr_un *addr, int minorx,
int minory) );
_PROTOTYPE( int clear_fds, (int minor, struct ancillary *data) );
#endif

89
servers/apfs/read.c Normal file
View file

@ -0,0 +1,89 @@
#include "fs.h"
#include "buf.h"
#include <minix/com.h>
#include "inode.h"
/*===========================================================================*
* fs_readwrite *
*===========================================================================*/
PUBLIC int fs_readwrite(message *fs_m_in, message *fs_m_out)
{
int r, rw_flag;
struct buf *bp;
cp_grant_id_t gid;
off_t position, f_size;
unsigned int nrbytes, cum_io;
mode_t mode_word;
struct inode *rip;
ino_t inumb;
r = OK;
cum_io = 0;
inumb = (ino_t) fs_m_in->REQ_INODE_NR;
/* Find the inode referred */
if ((rip = find_inode(inumb)) == NULL) return(EINVAL);
mode_word = rip->i_mode & I_TYPE;
if (mode_word != I_NAMED_PIPE) return(EIO);
f_size = rip->i_size;
/* Get the values from the request message */
rw_flag = (fs_m_in->m_type == REQ_READ ? READING : WRITING);
gid = (cp_grant_id_t) fs_m_in->REQ_GRANT;
position = fs_m_in->REQ_SEEK_POS_LO;
nrbytes = (unsigned) fs_m_in->REQ_NBYTES;
/* We can't read beyond the max file position */
if (nrbytes > MAX_FILE_POS) return(EFBIG);
if (rw_flag == WRITING) {
/* Check in advance to see if file will grow too big. */
/* Casting nrbytes to signed is safe, because it's guaranteed not to
be beyond max signed value (i.e., MAX_FILE_POS). */
if (position > PIPE_BUF - (signed) nrbytes) return(EFBIG);
}
/* Mark inode in use */
if ((get_inode(rip->i_dev, rip->i_num)) == NULL) return(err_code);
if ((bp = get_block(rip->i_dev, rip->i_num)) == NULL) return(err_code);
if (rw_flag == READING) {
/* Copy a chunk from the block buffer to user space. */
r = sys_safecopyto(VFS_PROC_NR, gid, (vir_bytes) 0,
(vir_bytes) (bp->b_data+position), (size_t) nrbytes, D);
} else {
/* Copy a chunk from user space to the block buffer. */
r = sys_safecopyfrom(VFS_PROC_NR, gid, (vir_bytes) 0,
(vir_bytes) (bp->b_data+position), (size_t) nrbytes, D);
}
if (r == OK) {
position += (signed) nrbytes; /* Update position */
cum_io += nrbytes;
}
fs_m_out->RES_SEEK_POS_LO = position; /* It might change later and the VFS
has to know this value */
/* On write, update file size and access time. */
if (rw_flag == WRITING) {
if (position > f_size) rip->i_size = position;
} else {
if(position >= rip->i_size) {
/* All data in the pipe is read, so reset pipe pointers */
rip->i_size = 0; /* no data left */
position = 0; /* reset reader(s) */
}
}
bp->b_bytes = position;
if (rw_flag == READING) rip->i_update |= ATIME;
if (rw_flag == WRITING) rip->i_update |= CTIME | MTIME;
fs_m_out->RES_NBYTES = (size_t) cum_io;
put_inode(rip);
put_block(rip->i_dev, rip->i_num);
return(r);
}

70
servers/apfs/stadir.c Normal file
View file

@ -0,0 +1,70 @@
#include "fs.h"
#include "inode.h"
#include <string.h>
#include <sys/stat.h>
/*===========================================================================*
* stat_inode *
*===========================================================================*/
PRIVATE int stat_inode(
register struct inode *rip, /* pointer to inode to stat */
endpoint_t who_e, /* Caller endpoint */
cp_grant_id_t gid /* grant for the stat buf */
)
{
/* Common code for stat and fstat system calls. */
mode_t type;
struct stat statbuf;
u32_t blocks; /* The unit of this is 512 */
int r, s;
type = rip->i_mode & I_TYPE;
s = (type == I_CHAR_SPECIAL || type == I_BLOCK_SPECIAL);
/* Update the atime, ctime, and mtime fields in the inode, if need be. */
if (rip->i_update) update_times(rip);
blocks = rip->i_size / S_BLKSIZE;
if (rip->i_size % S_BLKSIZE != 0)
blocks += 1;
memset(&statbuf, 0, sizeof(struct stat));
statbuf.st_dev = rip->i_dev;
statbuf.st_ino = rip->i_num;
statbuf.st_mode = rip->i_mode;
statbuf.st_nlink = rip->i_nlinks;
statbuf.st_uid = rip->i_uid;
statbuf.st_gid = (short int) rip->i_gid;
statbuf.st_rdev = (dev_t) (s ? rip->i_rdev : NO_DEV);
statbuf.st_size = rip->i_size;
if (!s) statbuf.st_mode &= ~I_REGULAR;/* wipe out I_REGULAR bit for pipes */
statbuf.st_atime = rip->i_atime;
statbuf.st_mtime = rip->i_mtime;
statbuf.st_ctime = rip->i_ctime;
statbuf.st_blksize = PIPE_BUF;
statbuf.st_blocks = blocks;
/* Copy the struct to user space. */
r = sys_safecopyto(who_e, gid, (vir_bytes) 0, (vir_bytes) &statbuf,
(size_t) sizeof(statbuf), D);
return(r);
}
/*===========================================================================*
* fs_stat *
*===========================================================================*/
PUBLIC int fs_stat(message *fs_m_in, message *fs_m_out)
{
register int r; /* return value */
register struct inode *rip; /* target inode */
if( (rip = find_inode(fs_m_in->REQ_INODE_NR)) == NULL) return(EINVAL);
get_inode(rip->i_dev, rip->i_num); /* mark inode in use */
r = stat_inode(rip, fs_m_in->m_source, (cp_grant_id_t) fs_m_in->REQ_GRANT);
put_inode(rip); /* release the inode */
return(r);
}

75
servers/apfs/super.c Normal file
View file

@ -0,0 +1,75 @@
/* This file manages the super block table and the related data structures,
* namely, the bit maps that keep track of which zones and which inodes are
* allocated and which are free. When a new inode or zone is needed, the
* appropriate bit map is searched for a free entry.
*
* The entry points into this file are
* alloc_bit: somebody wants to allocate a zone or inode; find one
* free_bit: indicate that a zone or inode is available for allocation
*/
#include "fs.h"
#include "buf.h"
#include "inode.h"
#include "const.h"
/*===========================================================================*
* alloc_bit *
*===========================================================================*/
PUBLIC bit_t alloc_bit(void)
{
/* Allocate a bit from a bit map and return its bit number. */
bitchunk_t *wptr, *wlim;
bit_t b;
unsigned int i, bcount;
bcount = FS_BITMAP_CHUNKS(NR_INODES); /* Inode map has this many chunks. */
wlim = &inodemap[bcount]; /* Point to last chunk in inodemap. */
for (wptr = &inodemap[0]; wptr < wlim; wptr++) {
/* Does this word contain a free bit? */
if (*wptr == (bitchunk_t) ~0) continue; /* No. Go to next word */
/* Find and allocate the free bit. */
for (i = 0; (*wptr & (1 << i)) != 0; ++i) {}
/* Get inode number */
b = (bit_t) ((wptr - &inodemap[0]) * FS_BITCHUNK_BITS + i);
/* Don't allocate bits beyond end of map. */
if (b >= NR_INODES) break;
/* Allocate and return bit number. */
*wptr |= 1 << i;
/* Mark server 'busy' */
busy++;
return(b);
}
return(NO_BIT); /* no bit could be allocated */
}
/*===========================================================================*
* free_bit *
*===========================================================================*/
PUBLIC void free_bit(bit_returned)
bit_t bit_returned; /* number of bit to insert into the inode map*/
{
bitchunk_t *k, mask;
bit_t bit;
unsigned word;
/* Get word offset and bit within offset */
word = (unsigned) (bit_returned / (bit_t) FS_BITCHUNK_BITS);
bit = bit_returned % (bit_t) FS_BITCHUNK_BITS;
/* Unset bit */
k = &inodemap[word];
mask = (unsigned) 1 << bit;
*k &= ~mask;
busy--; /* One inode less in use. */
}

82
servers/apfs/table.c Normal file
View file

@ -0,0 +1,82 @@
/* This file contains the table used to map system call numbers onto the
* routines that perform them.
*/
#define _TABLE
#include "fs.h"
#include "inode.h"
#include "buf.h"
#include "uds.h"
/* File System Handlers (pfs) */
PUBLIC _PROTOTYPE (int (*fs_call_vec[]),
(message *fs_m_in, message *fs_m_out) ) = {
no_sys, /* 0 not used */
no_sys, /* 1 */
fs_putnode, /* 2 */
no_sys, /* 3 */
fs_ftrunc, /* 4 */
no_sys, /* 5 */
no_sys, /* 6 */
no_sys, /* 7 */
fs_stat, /* 8 */
no_sys, /* 9 */
no_sys, /* 10 */
no_sys, /* 11 */
no_sys, /* 12 */
no_sys, /* 13 */
no_sys, /* 14 */
fs_unmount, /* 15 */
fs_sync, /* 16 */
no_sys, /* 17 */
no_sys, /* 18 */
fs_readwrite, /* 19 */
fs_readwrite, /* 20 */
no_sys, /* 21 */
no_sys, /* 22 */
no_sys, /* 23 */
no_sys, /* 24 */
no_sys, /* 25 */
no_sys, /* 26 */
no_sys, /* 27 */
no_sys, /* 28 */
fs_newnode, /* 29 */
no_sys, /* 30 */
no_sys, /* 31 */
no_sys, /* 32 */
};
/* Device Handlers (/dev/uds) */
PUBLIC _PROTOTYPE (int (*dev_call_vec[]),
(message *dev_m_in, message *dev_m_out) ) = {
uds_cancel, /* 0 CANCEL */
no_sys, /* 1 */
no_sys, /* 2 */
no_sys, /* 3 */
no_sys, /* 4 */
no_sys, /* 5 */
uds_open, /* 6 DEV_OPEN */
uds_close, /* 7 DEV_CLOSE */
no_sys, /* 8 */
no_sys, /* 9 */
no_sys, /* 10 TTY_SETPGRP */
no_sys, /* 11 TTY_EXIT */
uds_select, /* 12 DEV_SELECT */
no_sys, /* 13 DEV_STATUS */
uds_open, /* 14 DEV_REOPEN */
no_sys, /* 15 */
no_sys, /* 16 */
no_sys, /* 17 */
no_sys, /* 18 */
no_sys, /* 19 */
uds_read, /* 20 DEV_READ_S */
uds_write, /* 21 DEV_WRITE_S */
no_sys, /* 22 DEV_SCATTER_S */
no_sys, /* 23 DEV_GATHER_S */
uds_ioctl, /* 24 DEV_IOCTL_S */
no_sys, /* 25 DEV_MMAP_S */
};

1528
servers/apfs/uds.c Normal file

File diff suppressed because it is too large Load diff

250
servers/apfs/uds.h Normal file
View file

@ -0,0 +1,250 @@
#ifndef __PFS_UDS_H__
#define __PFS_UDS_H__
/*
* Unix Domain Sockets Implementation (PF_UNIX, PF_LOCAL)
*
* Also See...
*
* dev_uds.c, table.c, uds.c
*/
#include <limits.h>
#include <sys/types.h>
#include <sys/ucred.h>
#include <sys/un.h>
#include <minix/endpoint.h>
/* max connection backlog for incoming connections */
#define UDS_SOMAXCONN 64
typedef void* filp_id_t;
/* ancillary data to be sent */
struct ancillary {
filp_id_t filps[OPEN_MAX];
int fds[OPEN_MAX];
int nfiledes;
struct ucred cred;
};
/*
* Internal State Information for a socket descriptor.
*/
struct uds_fd {
/* Flags */
enum UDS_STATE {
/* This file descriptor is UDS_FREE and can be allocated. */
UDS_FREE = 0,
/* OR it is UDS_INUSE and can't be allocated. */
UDS_INUSE = 1
/* state is set to UDS_INUSE in uds_open(). state is Set to
* UDS_FREE in uds_init() and uds_close(). state should be
* checked prior to all operations.
*/
} state;
/* Owner Info */
/* Socket Owner */
endpoint_t owner;
/* endpoint for suspend/resume */
endpoint_t endpoint;
/* Pipe Housekeeping */
/* inode number on PFS -- each descriptor is backed by 1
* PIPE which is allocated in uds_open() and freed in
* uds_close(). Data is sent/written to a peer's PIPE.
* Data is recv/read from this PIPE.
*/
ino_t inode_nr;
/* position in the PIPE where the data starts */
off_t pos;
/* size of data in the PIPE */
size_t size;
/* control read/write, set by uds_open() and shutdown(2).
* Can be set to S_IRUSR|S_IWUSR, S_IRUSR, S_IWUSR, or 0
* for read and write, read only, write only, or neither.
* default is S_IRUSR|S_IWUSR.
*/
mode_t mode;
/* Socket Info */
/* socket type - SOCK_STREAM, SOCK_DGRAM, or SOCK_SEQPACKET
* Set by uds_ioctl(NWIOSUDSTYPE). It defaults to -1 in
* uds_open(). Any action on a socket with type -1 besides
* uds_ioctl(NWIOSUDSTYPE) and uds_close() will result in
* an error.
*/
int type;
/* queue of pending connections for server sockets.
* connect(2) inserts and accept(2) removes from the queue
*/
int backlog[UDS_SOMAXCONN];
/* requested connection backlog size. Set by listen(2)
* Bounds (0 <= backlog_size <= UDS_SOMAXCONN)
* Defaults to UDS_SOMAXCONN which is defined above.
*/
unsigned char backlog_size;
/* index of peer in uds_fd_table for connected sockets.
* -1 is used to mean no peer. Assumptions: peer != -1 means
* connected.
*/
int peer;
/* index of child (client sd returned by accept(2))
* -1 is used to mean no child.
*/
int child;
/* address -- the address the socket is bound to.
* Assumptions: addr.sun_family == AF_UNIX means its bound.
*/
struct sockaddr_un addr;
/* target -- where DGRAMs are sent to on the next uds_write(). */
struct sockaddr_un target;
/* source -- address where DGRAMs are from. used to fill in the
* from address in recvfrom(2) and recvmsg(2).
*/
struct sockaddr_un source;
/* Flag (1 or 0) - listening for incoming connections.
* Default to 0. Set to 1 by do_listen()
*/
int listening;
/* stores file pointers and credentials being sent between
* processes with sendmsg(2) and recvmsg(2).
*/
struct ancillary ancillary_data;
/* Holds an errno. This is set when a connected socket is
* closed and we need to pass ECONNRESET on to a suspended
* peer.
*/
int err;
/* Suspend/Revive Housekeeping */
/* SUSPEND State Flags */
enum UDS_SUSPENDED {
/* Socket isn't blocked. */
UDS_NOT_SUSPENDED = 0,
/* Socket is blocked on read(2) waiting for data to read. */
UDS_SUSPENDED_READ = 1,
/* Socket is blocked on write(2) for space to write data. */
UDS_SUSPENDED_WRITE = 2,
/* Socket is blocked on connect(2) waiting for the server. */
UDS_SUSPENDED_CONNECT = 4,
/* Socket is blocked on accept(2) waiting for clients. */
UDS_SUSPENDED_ACCEPT = 8
} suspended;
/* Flag (1 or 0) - thing socket was waiting for is ready.
* If 1, then uds_status() will attempt the operation that
* the socket was blocked on.
*/
int ready_to_revive;
/* i/o grant, saved for later use by suspended procs */
cp_grant_id_t io_gr;
/* is of i/o grant, saved for later use by suspended procs */
size_t io_gr_size;
/* Save the call number so that uds_cancel() can unwind the
* call properly.
*/
int call_nr;
/* Save the IOCTL so uds_cancel() knows what got cancelled. */
int ioctl;
/* Flag (1 or 0) - the system call completed.
* A doc I read said DEV_CANCEL might be called even though
* the operation is finished. We use this variable to
* determine if we should rollback the changes or not.
*/
int syscall_done;
/* select() */
/* Flag (1 or 0) - the process blocked on select(2). When
* selecting is 1 and I/O happens on this socket, then
* select_proc should be notified.
*/
int selecting;
/* when a select is in progress, we notify() this endpoint
* of new data.
*/
endpoint_t select_proc;
/* Options (SEL_RD, SEL_WR, SEL_ERR) that are requested. */
int sel_ops_in;
/* Options that are available for this socket. */
int sel_ops_out;
/* Flag (1 or 0) to be set to one before calling notify().
* uds_status() will use the flag to locate this descriptor.
*/
int status_updated;
};
typedef struct uds_fd uds_fd_t;
/* File Descriptor Table -- Defined in uds.c */
EXTERN uds_fd_t uds_fd_table[NR_FDS];
/*
* Take message m and get the index in uds_fd_table.
*/
#define uds_minor(m) (minor((dev_t) m->DEVICE) & BYTE)
/*
* Fill in a reply message.
*/
#define uds_set_reply(msg,type,endpoint,io_gr,status) \
do { \
(msg)->m_type = type; \
(msg)->REP_ENDPT = endpoint; \
(msg)->REP_IO_GRANT = io_gr; \
(msg)->REP_STATUS = status; \
} while (0)
#define uds_sel_reply(msg,type,minor,ops) \
do { \
(msg)->m_type = type; \
(msg)->DEV_MINOR = minor; \
(msg)->DEV_SEL_OPS = ops; \
} while (0)
#endif

33
servers/apfs/utility.c Normal file
View file

@ -0,0 +1,33 @@
#include "fs.h"
/*===========================================================================*
* no_sys *
*===========================================================================*/
PUBLIC int no_sys(message *pfs_m_in, message *pfs_m_out)
{
/* Somebody has used an illegal system call number */
printf("no_sys: invalid call 0x%x to pfs\n", req_nr);
return(EINVAL);
}
/*===========================================================================*
* clock_time *
*===========================================================================*/
PUBLIC time_t clock_time()
{
/* This routine returns the time in seconds since 1.1.1970. MINIX is an
* astrophysically naive system that assumes the earth rotates at a constant
* rate and that such things as leap seconds do not exist.
*/
int r;
clock_t uptime; /* Uptime in ticks */
time_t boottime;
if ((r = getuptime2(&uptime, &boottime)) != OK)
panic("clock_time: getuptme2 failed: %d", r);
return( (time_t) (boottime + (uptime/sys_hz())));
}

25
servers/avfs/Makefile Normal file
View file

@ -0,0 +1,25 @@
# Makefile for Virtual File System (VFS)
.include <bsd.own.mk>
PROG= vfs
SRCS= main.c open.c read.c write.c pipe.c dmap.c \
path.c device.c mount.c link.c exec.c \
filedes.c stadir.c protect.c time.c \
lock.c misc.c utility.c select.c table.c \
vnode.c vmnt.c request.c fscall.c \
tll.c comm.c worker.c
.if ${MKCOVERAGE} != "no"
SRCS+= gcov.c
CPPFLAGS+= -DUSE_COVERAGE
.endif
DPADD+= ${LIBSYS} ${LIBTIMERS} ${LIBEXEC}
LDADD+= -lsys -ltimers -lexec -lmthread
MAN=
BINDIR?= /usr/sbin
INSTALLFLAGS+= -S 16k
.include <minix.bootprog.mk>

163
servers/avfs/comm.c Normal file
View file

@ -0,0 +1,163 @@
#include "fs.h"
#include "glo.h"
#include "vmnt.h"
#include "fproc.h"
#include <minix/vfsif.h>
#include <assert.h>
FORWARD _PROTOTYPE( int sendmsg, (struct vmnt *vmp, struct fproc *rfp) );
FORWARD _PROTOTYPE( int queuemsg, (struct vmnt *vmp) );
/*===========================================================================*
* sendmsg *
*===========================================================================*/
PRIVATE int sendmsg(vmp, rfp)
struct vmnt *vmp;
struct fproc *rfp;
{
/* This is the low level function that sends requests to FS processes.
*/
int r, transid;
if (vmp->m_fs_e == rfp->fp_endpoint) return(EDEADLK);
vmp->m_comm.c_cur_reqs++; /* One more request awaiting a reply */
transid = rfp->fp_wtid + VFS_TRANSID;
rfp->fp_sendrec->m_type = TRNS_ADD_ID(rfp->fp_sendrec->m_type, transid);
if ((r = asynsend3(vmp->m_fs_e, rfp->fp_sendrec, AMF_NOREPLY)) != OK) {
printf("VFS: sendmsg: error sending message. "
"FS_e: %d req_nr: %d err: %d\n", vmp->m_fs_e,
rfp->fp_sendrec->m_type, r);
util_stacktrace();
return(r);
}
return(r);
}
/*===========================================================================*
* send_work *
*===========================================================================*/
PUBLIC void send_work(void)
{
/* Try to send out as many requests as possible */
struct vmnt *vmp;
if (sending == 0) return;
for (vmp = &vmnt[0]; vmp < &vmnt[NR_MNTS]; vmp++)
fs_sendmore(vmp);
}
/*===========================================================================*
* fs_sendmore *
*===========================================================================*/
PUBLIC void fs_sendmore(struct vmnt *vmp)
{
struct worker_thread *worker;
/* Can we send more requests? */
if (vmp->m_fs_e == NONE) return;
if ((worker = vmp->m_comm.c_req_queue) == NULL) /* No process is queued */
return;
if (vmp->m_comm.c_cur_reqs >= vmp->m_comm.c_max_reqs)/*No room to send more*/
return;
if (vmp->m_flags & VMNT_BACKCALL) /* Hold off for now */
return;
vmp->m_comm.c_req_queue = worker->w_next; /* Remove head */
worker->w_next = NULL;
sending--;
assert(sending >= 0);
sendmsg(vmp, worker->w_job.j_fp);
}
/*===========================================================================*
* fs_sendrec *
*===========================================================================*/
PUBLIC int fs_sendrec(endpoint_t fs_e, message *reqmp)
{
struct vmnt *vmp;
int r;
if ((vmp = find_vmnt(fs_e)) == NULL)
panic("Trying to talk to non-existent FS");
if (!force_sync) {
fp->fp_sendrec = reqmp; /* Where to store request and reply */
/* Find out whether we can send right away or have to enqueue */
if ( !(vmp->m_flags & VMNT_BACKCALL) &&
vmp->m_comm.c_cur_reqs < vmp->m_comm.c_max_reqs) {
/* There's still room to send more and no proc is queued */
r = sendmsg(vmp, fp);
} else {
r = queuemsg(vmp);
}
self->w_next = NULL; /* End of list */
if (r != OK) return(r);
worker_wait(); /* Yield execution until we've received the reply. */
} else if (force_sync == 1) {
int r;
if (OK != (r = sendrec(fs_e, reqmp))) {
printf("VFS: sendrec failed: %d\n", r);
util_stacktrace();
return(r);
}
} else if (force_sync == 2) {
int r, status;
if (OK != (r = asynsend(fs_e, reqmp)) ||
OK != (r = receive(fs_e, reqmp, &status))) {
printf("VFS: asynrec failed: %d\n", r);
util_stacktrace();
return(r);
}
} else if (force_sync == 3) {
int r, status;
if (OK != (r = send(fs_e, reqmp)) ||
OK != (r = receive(fs_e, reqmp, &status))) {
printf("VFS: sendreceive failed: %d\n", r);
util_stacktrace();
return(r);
}
}
if (reqmp->m_type == -EENTERMOUNT || reqmp->m_type == -ELEAVEMOUNT ||
reqmp->m_type == -ESYMLINK) {
reqmp->m_type = -reqmp->m_type;
} else if (force_sync != 0 && reqmp->m_type > 0) {
/* XXX: Keep this as long as we're interested in having support
* for synchronous communication. */
nested_fs_call(reqmp);
return fs_sendrec(fs_e, reqmp);
}
return(reqmp->m_type);
}
/*===========================================================================*
* queuemsg *
*===========================================================================*/
PRIVATE int queuemsg(struct vmnt *vmp)
{
/* Put request on queue for vmnt */
struct worker_thread *queue;
if (vmp->m_comm.c_req_queue == NULL) {
vmp->m_comm.c_req_queue = self;
} else {
/* Walk the list ... */
queue = vmp->m_comm.c_req_queue;
while (queue->w_next != NULL) queue = queue->w_next;
/* ... and append this worker */
queue->w_next = self;
}
self->w_next = NULL; /* End of list */
sending++;
return(OK);
}

12
servers/avfs/comm.h Normal file
View file

@ -0,0 +1,12 @@
#ifndef __VFS_COMM_H__
#define __VFS_COMM_H__
/* VFS<->FS communication */
typedef struct {
int c_max_reqs; /* Max requests an FS can handle simultaneously */
int c_cur_reqs; /* Number of requests the FS is currently handling */
struct worker_thread *c_req_queue;/* Queue of procs waiting to send a message */
} comm_t;
#endif

50
servers/avfs/const.h Normal file
View file

@ -0,0 +1,50 @@
#ifndef __VFS_CONST_H__
#define __VFS_CONST_H__
/* Tables sizes */
#define NR_FILPS 512 /* # slots in filp table */
#define NR_LOCKS 8 /* # slots in the file locking table */
#define NR_MNTS 16 /* # slots in mount table */
#define NR_VNODES 512 /* # slots in vnode table */
#define NR_WTHREADS 8 /* # slots in worker thread table */
#define NR_NONEDEVS NR_MNTS /* # slots in nonedev bitmap */
/* Miscellaneous constants */
#define SU_UID ((uid_t) 0) /* super_user's uid_t */
#define SYS_UID ((uid_t) 0) /* uid_t for system processes and INIT */
#define SYS_GID ((gid_t) 0) /* gid_t for system processes and INIT */
#define FP_BLOCKED_ON_NONE 0 /* not blocked */
#define FP_BLOCKED_ON_PIPE 1 /* susp'd on pipe */
#define FP_BLOCKED_ON_LOCK 2 /* susp'd on lock */
#define FP_BLOCKED_ON_POPEN 3 /* susp'd on pipe open */
#define FP_BLOCKED_ON_SELECT 4 /* susp'd on select */
#define FP_BLOCKED_ON_DOPEN 5 /* susp'd on device open */
#define FP_BLOCKED_ON_OTHER 6 /* blocked on other process, check
fp_task to find out */
/* test if the process is blocked on something */
#define fp_is_blocked(fp) ((fp)->fp_blocked_on != FP_BLOCKED_ON_NONE)
#define DUP_MASK 0100 /* mask to distinguish dup2 from dup */
#define LOOK_UP 0 /* tells search_dir to lookup string */
#define ENTER 1 /* tells search_dir to make dir entry */
#define DELETE 2 /* tells search_dir to delete entry */
#define IS_EMPTY 3 /* tells search_dir to ret. OK or ENOTEMPTY */
#define SYMLOOP 16
#define LABEL_MAX 16 /* maximum label size (including '\0'). Should
* not be smaller than 16 or bigger than
* M3_LONG_STRING.
*/
/* Args to dev_io */
#define VFS_DEV_READ 2001
#define VFS_DEV_WRITE 2002
#define VFS_DEV_IOCTL 2005
#define VFS_DEV_SELECT 2006
#endif

1060
servers/avfs/device.c Normal file

File diff suppressed because it is too large Load diff

257
servers/avfs/dmap.c Normal file
View file

@ -0,0 +1,257 @@
/* This file contains the table with device <-> driver mappings. It also
* contains some routines to dynamically add and/ or remove device drivers
* or change mappings.
*/
#include "fs.h"
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>
#include <minix/com.h>
#include <minix/ds.h>
#include "fproc.h"
#include "dmap.h"
#include "param.h"
/* The order of the entries in the table determines the mapping between major
* device numbers and device drivers. Character and block devices
* can be intermixed at random. The ordering determines the device numbers in
* /dev. Note that the major device numbers used in /dev are NOT the same as
* the process numbers of the device drivers. See <minix/dmap.h> for mappings.
*/
struct dmap dmap[NR_DEVICES];
#define DT_EMPTY { no_dev, no_dev_io, NONE, "", 0, STYLE_NDEV, NULL }
/*===========================================================================*
* do_mapdriver *
*===========================================================================*/
PUBLIC int do_mapdriver()
{
/* Create a device->driver mapping. RS will tell us which major is driven by
* this driver, what type of device it is (regular, TTY, asynchronous, clone,
* etc), and its label. This label is registered with DS, and allows us to
* retrieve the driver's endpoint.
*/
int r, flags, major;
endpoint_t endpoint;
vir_bytes label_vir;
size_t label_len;
char label[LABEL_MAX];
/* Only RS can map drivers. */
if (who_e != RS_PROC_NR) return(EPERM);
/* Get the label */
label_vir = (vir_bytes) m_in.md_label;
label_len = (size_t) m_in.md_label_len;
if (label_len+1 > sizeof(label)) { /* Can we store this label? */
printf("VFS: do_mapdriver: label too long\n");
return(EINVAL);
}
r = sys_vircopy(who_e, D, label_vir, SELF, D, (vir_bytes) label, label_len);
if (r != OK) {
printf("VFS: do_mapdriver: sys_vircopy failed: %d\n", r);
return(EINVAL);
}
label[label_len] = '\0'; /* Terminate label */
/* Now we know how the driver is called, fetch its endpoint */
r = ds_retrieve_label_endpt(label, &endpoint);
if (r != OK) {
printf("VFS: do_mapdriver: label '%s' unknown\n", label);
return(EINVAL);
}
/* Try to update device mapping. */
major = m_in.md_major;
flags = m_in.md_flags;
return map_driver(label, major, endpoint, m_in.md_style, flags);
}
/*===========================================================================*
* map_driver *
*===========================================================================*/
PUBLIC int map_driver(label, major, proc_nr_e, style, flags)
const char *label; /* name of the driver */
int major; /* major number of the device */
endpoint_t proc_nr_e; /* process number of the driver */
int style; /* style of the device */
int flags; /* device flags */
{
/* Add a new device driver mapping in the dmap table. If the proc_nr is set to
* NONE, we're supposed to unmap it.
*/
int slot;
size_t len;
struct dmap *dp;
/* Get pointer to device entry in the dmap table. */
if (major < 0 || major >= NR_DEVICES) return(ENODEV);
dp = &dmap[major];
/* Check if we're supposed to unmap it. */
if(proc_nr_e == NONE) {
dp->dmap_opcl = no_dev;
dp->dmap_io = no_dev_io;
dp->dmap_driver = NONE;
dp->dmap_flags = flags;
return(OK);
}
/* Check process number of new driver if it was alive before mapping */
if (! (flags & DRV_FORCED)) {
if (isokendpt(proc_nr_e, &slot) != OK)
return(EINVAL);
}
if (label != NULL) {
len = strlen(label);
if (len+1 > sizeof(dp->dmap_label))
panic("VFS: map_driver: label too long: %d", len);
strcpy(dp->dmap_label, label);
}
/* Store driver I/O routines based on type of device */
switch (style) {
case STYLE_DEV:
dp->dmap_opcl = gen_opcl;
dp->dmap_io = gen_io;
break;
case STYLE_DEVA:
dp->dmap_opcl = gen_opcl;
dp->dmap_io = asyn_io;
break;
case STYLE_TTY:
dp->dmap_opcl = tty_opcl;
dp->dmap_io = gen_io;
break;
case STYLE_CTTY:
dp->dmap_opcl = ctty_opcl;
dp->dmap_io = ctty_io;
break;
case STYLE_CLONE:
dp->dmap_opcl = clone_opcl;
dp->dmap_io = gen_io;
break;
case STYLE_CLONE_A:
dp->dmap_opcl = clone_opcl;
dp->dmap_io = asyn_io;
break;
default:
return(EINVAL);
}
dp->dmap_driver = proc_nr_e;
dp->dmap_flags = flags;
dp->dmap_style = style;
return(OK);
}
/*===========================================================================*
* dmap_unmap_by_endpt *
*===========================================================================*/
PUBLIC void dmap_unmap_by_endpt(endpoint_t proc_e)
{
/* Lookup driver in dmap table by endpoint and unmap it */
int major, r;
for (major = 0; major < NR_DEVICES; major++) {
if (dmap_driver_match(proc_e, major)) {
/* Found driver; overwrite it with a NULL entry */
if ((r = map_driver(NULL, major, NONE, 0, 0)) != OK) {
printf("VFS: unmapping driver %d for major %d failed:"
" %d\n", proc_e, major, r);
}
}
}
}
/*===========================================================================*
* map_service *
*===========================================================================*/
PUBLIC int map_service(struct rprocpub *rpub)
{
/* Map a new service by storing its device driver properties. */
int r;
/* Not a driver, nothing more to do. */
if(rpub->dev_nr == NO_DEV) return(OK);
/* Map driver. */
r = map_driver(rpub->label, rpub->dev_nr, rpub->endpoint, rpub->dev_style,
rpub->dev_flags);
if(r != OK) return(r);
/* If driver has two major numbers associated, also map the other one. */
if(rpub->dev_style2 != STYLE_NDEV) {
r = map_driver(rpub->label, rpub->dev_nr+1, rpub->endpoint,
rpub->dev_style2, rpub->dev_flags);
if(r != OK) return(r);
}
return(OK);
}
/*===========================================================================*
* init_dmap *
*===========================================================================*/
PUBLIC void init_dmap()
{
/* Initialize the table with empty device <-> driver mappings. */
int i;
struct dmap dmap_default = DT_EMPTY;
for (i = 0; i < NR_DEVICES; i++)
dmap[i] = dmap_default;
}
/*===========================================================================*
* dmap_driver_match *
*===========================================================================*/
PUBLIC int dmap_driver_match(endpoint_t proc, int major)
{
if (major < 0 || major >= NR_DEVICES) return(0);
if (dmap[major].dmap_driver != NONE && dmap[major].dmap_driver == proc)
return(1);
return(0);
}
/*===========================================================================*
* dmap_endpt_up *
*===========================================================================*/
PUBLIC void dmap_endpt_up(endpoint_t proc_e)
{
/* A device driver with endpoint proc_e has been restarted. Go tell everyone
* that might be blocking on it that this device is 'up'.
*/
int major;
for (major = 0; major < NR_DEVICES; major++)
if (dmap_driver_match(proc_e, major))
dev_up(major);
}
/*===========================================================================*
* get_dmap *
*===========================================================================*/
PUBLIC struct dmap *get_dmap(endpoint_t proc_e)
{
/* See if 'proc_e' endpoint belongs to a valid dmap entry. If so, return a
* pointer */
int major;
for (major = 0; major < NR_DEVICES; major++)
if (dmap_driver_match(proc_e, major))
return(&dmap[major]);
return(NULL);
}

28
servers/avfs/dmap.h Normal file
View file

@ -0,0 +1,28 @@
#ifndef __VFS_DMAP_H__
#define __VFS_DMAP_H__
/*
dmap.h
*/
/*===========================================================================*
* Device <-> Driver Table *
*===========================================================================*/
/* Device table. This table is indexed by major device number. It provides
* the link between major device numbers and the routines that process them.
* The table can be update dynamically. The field 'dmap_flags' describe an
* entry's current status and determines what control options are possible.
*/
extern struct dmap {
int _PROTOTYPE ((*dmap_opcl), (int, dev_t, int, int) );
int _PROTOTYPE ((*dmap_io), (int, message *) );
endpoint_t dmap_driver;
char dmap_label[LABEL_MAX];
int dmap_flags;
int dmap_style;
struct filp *dmap_sel_filp;
} dmap[];
#endif

707
servers/avfs/exec.c Normal file
View file

@ -0,0 +1,707 @@
/* This file handles the EXEC system call. It performs the work as follows:
* - see if the permissions allow the file to be executed
* - read the header and extract the sizes
* - fetch the initial args and environment from the user space
* - allocate the memory for the new process
* - copy the initial stack from PM to the process
* - read in the text and data segments and copy to the process
* - take care of setuid and setgid bits
* - fix up 'mproc' table
* - tell kernel about EXEC
* - save offset to initial argc (for ps)
*
* The entry points into this file are:
* pm_exec: perform the EXEC system call
*/
#include "fs.h"
#include <sys/stat.h>
#include <minix/callnr.h>
#include <minix/endpoint.h>
#include <minix/com.h>
#include <minix/u64.h>
#include <a.out.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <dirent.h>
#include <sys/param.h>
#include "fproc.h"
#include "path.h"
#include "param.h"
#include "vnode.h"
#include <minix/vfsif.h>
#include <assert.h>
#include <libexec.h>
#include "exec.h"
FORWARD _PROTOTYPE( void lock_exec, (void) );
FORWARD _PROTOTYPE( void unlock_exec, (void) );
FORWARD _PROTOTYPE( int exec_newmem, (int proc_e, vir_bytes text_addr, vir_bytes text_bytes,
vir_bytes data_addr, vir_bytes data_bytes,
vir_bytes tot_bytes, vir_bytes frame_len, int sep_id,
int is_elf, dev_t st_dev, ino_t st_ino, time_t ctime,
char *progname, int new_uid, int new_gid,
vir_bytes *stack_topp, int *load_textp,
int *allow_setuidp) );
FORWARD _PROTOTYPE( int is_script, (const char *exec_hdr, size_t exec_len));
FORWARD _PROTOTYPE( int patch_stack, (struct vnode *vp, char stack[ARG_MAX],
vir_bytes *stk_bytes, char path[PATH_MAX+1]) );
FORWARD _PROTOTYPE( int insert_arg, (char stack[ARG_MAX], vir_bytes *stk_bytes,
char *arg, int replace) );
FORWARD _PROTOTYPE( void patch_ptr, (char stack[ARG_MAX], vir_bytes base));
FORWARD _PROTOTYPE( void clo_exec, (struct fproc *rfp) );
FORWARD _PROTOTYPE( int read_seg, (struct vnode *vp, off_t off, int proc_e,
int seg, vir_bytes seg_addr,
phys_bytes seg_bytes) );
FORWARD _PROTOTYPE( int load_aout, (struct exec_info *execi) );
FORWARD _PROTOTYPE( int load_elf, (struct exec_info *execi) );
FORWARD _PROTOTYPE( int map_header, (char **exec_hdr,
const struct vnode *vp) );
#define PTRSIZE sizeof(char *) /* Size of pointers in argv[] and envp[]. */
/* Array of loaders for different object file formats */
struct exec_loaders {
int (*load_object)(struct exec_info *);
};
PRIVATE const struct exec_loaders exec_loaders[] = {
{ load_aout },
{ load_elf },
{ NULL }
};
PRIVATE char hdr[PAGE_SIZE]; /* Assume that header is not larger than a page */
/*===========================================================================*
* lock_exec *
*===========================================================================*/
PRIVATE void lock_exec(void)
{
message org_m_in;
struct fproc *org_fp;
struct worker_thread *org_self;
/* First try to get it right off the bat */
if (mutex_trylock(&exec_lock) == 0)
return;
org_m_in = m_in;
org_fp = fp;
org_self = self;
if (mutex_lock(&exec_lock) != 0)
panic("Could not obtain lock on exec");
m_in = org_m_in;
fp = org_fp;
self = org_self;
}
/*===========================================================================*
* unlock_exec *
*===========================================================================*/
PRIVATE void unlock_exec(void)
{
if (mutex_unlock(&exec_lock) != 0)
panic("Could not release lock on exec");
}
/*===========================================================================*
* pm_exec *
*===========================================================================*/
PUBLIC int pm_exec(int proc_e, char *path, vir_bytes path_len, char *frame,
vir_bytes frame_len, vir_bytes *pc)
{
/* Perform the execve(name, argv, envp) call. The user library builds a
* complete stack image, including pointers, args, environ, etc. The stack
* is copied to a buffer inside VFS, and then to the new core image.
*/
int r, r1, round, slot;
vir_bytes vsp;
struct fproc *rfp;
struct vnode *vp;
struct vmnt *vmp;
char *cp;
static char mbuf[ARG_MAX]; /* buffer for stack and zeroes */
struct exec_info execi;
int i;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lock_exec();
okendpt(proc_e, &slot);
rfp = fp = &fproc[slot];
vp = NULL;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
/* Get the exec file name. */
if ((r = fetch_name(path, path_len, 0, fullpath)) != OK)
goto pm_execfinal;
/* Fetch the stack from the user before destroying the old core image. */
if (frame_len > ARG_MAX) {
printf("VFS: pm_exec: stack too big\n");
r = ENOMEM; /* stack too big */
goto pm_execfinal;
}
r = sys_datacopy(proc_e, (vir_bytes) frame, SELF, (vir_bytes) mbuf,
(phys_bytes) frame_len);
if (r != OK) { /* can't fetch stack (e.g. bad virtual addr) */
printf("VFS: pm_exec: sys_datacopy failed\n");
goto pm_execfinal;
}
/* The default is to keep the original user and group IDs */
execi.new_uid = rfp->fp_effuid;
execi.new_gid = rfp->fp_effgid;
for (round = 0; round < 2; round++) {
/* round = 0 (first attempt), or 1 (interpreted script) */
/* Save the name of the program */
(cp = strrchr(fullpath, '/')) ? cp++ : (cp = fullpath);
strncpy(execi.progname, cp, PROC_NAME_LEN-1);
execi.progname[PROC_NAME_LEN-1] = '\0';
/* Open executable */
if ((vp = eat_path(&resolve, fp)) == NULL) {
r = err_code;
goto pm_execfinal;
}
execi.vp = vp;
unlock_vmnt(vmp);
if ((vp->v_mode & I_TYPE) != I_REGULAR)
r = ENOEXEC;
else if ((r1 = forbidden(vp, X_BIT)) != OK)
r = r1;
else
r = req_stat(vp->v_fs_e, vp->v_inode_nr, VFS_PROC_NR,
(char *) &(execi.sb), 0, 0);
if (r != OK) goto pm_execfinal;
if (round == 0) {
/* Deal with setuid/setgid executables */
if (vp->v_mode & I_SET_UID_BIT) execi.new_uid = vp->v_uid;
if (vp->v_mode & I_SET_GID_BIT) execi.new_gid = vp->v_gid;
}
r = map_header(&execi.hdr, execi.vp);
if (r != OK) goto pm_execfinal;
if (!is_script(execi.hdr, execi.vp->v_size) || round != 0)
break;
/* Get fresh copy of the file name. */
if ((r = fetch_name(path, path_len, 0, fullpath)) != OK)
printf("VFS pm_exec: 2nd fetch_name failed\n");
else if ((r = patch_stack(vp, mbuf, &frame_len, fullpath)) != OK)
printf("VFS pm_exec: patch_stack failed\n");
unlock_vnode(vp);
put_vnode(vp);
vp = NULL;
if (r != OK) goto pm_execfinal;
}
execi.proc_e = proc_e;
execi.frame_len = frame_len;
for (i = 0; exec_loaders[i].load_object != NULL; i++) {
r = (*exec_loaders[i].load_object)(&execi);
/* Loaded successfully, so no need to try other loaders */
if (r == OK) break;
}
if (r != OK) { /* No exec loader could load the object */
r = ENOEXEC;
goto pm_execfinal;
}
/* Save off PC */
*pc = execi.pc;
/* Patch up stack and copy it from VFS to new core image. */
vsp = execi.stack_top;
vsp -= frame_len;
patch_ptr(mbuf, vsp);
if ((r = sys_datacopy(SELF, (vir_bytes) mbuf, proc_e, (vir_bytes) vsp,
(phys_bytes)frame_len)) != OK) {
printf("VFS: datacopy failed (%d) trying to copy to %lu\n", r, vsp);
goto pm_execfinal;
}
if (r != OK) goto pm_execfinal;
clo_exec(rfp);
if (execi.allow_setuid) {
rfp->fp_effuid = execi.new_uid;
rfp->fp_effgid = execi.new_gid;
}
pm_execfinal:
if (vp != NULL) {
unlock_vnode(vp);
put_vnode(vp);
}
unlock_exec();
return(r);
}
/*===========================================================================*
* load_aout *
*===========================================================================*/
PRIVATE int load_aout(struct exec_info *execi)
{
int r;
struct vnode *vp;
int proc_e;
off_t off;
int hdrlen;
int sep_id;
vir_bytes text_bytes, data_bytes, bss_bytes;
phys_bytes tot_bytes; /* total space for program, including gap */
assert(execi != NULL);
assert(execi->hdr != NULL);
assert(execi->vp != NULL);
proc_e = execi->proc_e;
vp = execi->vp;
/* Read the file header and extract the segment sizes. */
r = read_header_aout(execi->hdr, execi->vp->v_size, &sep_id,
&text_bytes, &data_bytes, &bss_bytes,
&tot_bytes, &execi->pc, &hdrlen);
if (r != OK) return(r);
r = exec_newmem(proc_e, 0 /* text_addr */, text_bytes,
0 /* data_addr */, data_bytes + bss_bytes, tot_bytes,
execi->frame_len, sep_id, 0 /* is_elf */, vp->v_dev, vp->v_inode_nr,
execi->sb.st_ctime,
execi->progname, execi->new_uid, execi->new_gid,
&execi->stack_top, &execi->load_text, &execi->allow_setuid);
if (r != OK) {
printf("VFS: load_aout: exec_newmem failed: %d\n", r);
return(r);
}
off = hdrlen;
/* Read in text and data segments. */
if (execi->load_text)
r = read_seg(vp, off, proc_e, T, 0, text_bytes);
off += text_bytes;
if (r == OK)
r = read_seg(vp, off, proc_e, D, 0, data_bytes);
return(r);
}
/*===========================================================================*
* load_elf *
*===========================================================================*/
PRIVATE int load_elf(struct exec_info *execi)
{
int r;
struct vnode *vp;
int proc_e;
phys_bytes tot_bytes; /* total space for program, including gap */
vir_bytes text_vaddr, text_paddr, text_filebytes, text_membytes;
vir_bytes data_vaddr, data_paddr, data_filebytes, data_membytes;
off_t text_offset, data_offset;
int sep_id, is_elf;
assert(execi != NULL);
assert(execi->hdr != NULL);
assert(execi->vp != NULL);
proc_e = execi->proc_e;
vp = execi->vp;
/* Read the file header and extract the segment sizes. */
r = read_header_elf(execi->hdr, &text_vaddr, &text_paddr,
&text_filebytes, &text_membytes,
&data_vaddr, &data_paddr,
&data_filebytes, &data_membytes,
&execi->pc, &text_offset, &data_offset);
if (r != OK) return(r);
sep_id = 0;
is_elf = 1;
tot_bytes = 0; /* Use default stack size */
r = exec_newmem(proc_e,
trunc_page(text_vaddr), text_membytes,
trunc_page(data_vaddr), data_membytes,
tot_bytes, execi->frame_len, sep_id, is_elf,
vp->v_dev, vp->v_inode_nr, execi->sb.st_ctime,
execi->progname, execi->new_uid, execi->new_gid,
&execi->stack_top, &execi->load_text, &execi->allow_setuid);
if (r != OK) {
printf("VFS: load_elf: exec_newmem failed: %d\n", r);
return(r);
}
/* Read in text and data segments. */
if (execi->load_text)
r = read_seg(vp, text_offset, proc_e, T, text_vaddr, text_filebytes);
if (r == OK)
r = read_seg(vp, data_offset, proc_e, D, data_vaddr, data_filebytes);
return(r);
}
/*===========================================================================*
* exec_newmem *
*===========================================================================*/
PRIVATE int exec_newmem(
int proc_e,
vir_bytes text_addr,
vir_bytes text_bytes,
vir_bytes data_addr,
vir_bytes data_bytes,
vir_bytes tot_bytes,
vir_bytes frame_len,
int sep_id,
int is_elf,
dev_t st_dev,
ino_t st_ino,
time_t ctime,
char *progname,
int new_uid,
int new_gid,
vir_bytes *stack_topp,
int *load_textp,
int *allow_setuidp
)
{
/* Allocate a new memory map for a process that tries to exec */
int r;
struct exec_newmem e;
message m;
e.text_addr = text_addr;
e.text_bytes = text_bytes;
e.data_addr = data_addr;
e.data_bytes = data_bytes;
e.tot_bytes = tot_bytes;
e.args_bytes = frame_len;
e.sep_id = sep_id;
e.is_elf = is_elf;
e.st_dev = st_dev;
e.st_ino = st_ino;
e.enst_ctime = ctime;
e.new_uid = new_uid;
e.new_gid = new_gid;
strncpy(e.progname, progname, sizeof(e.progname)-1);
e.progname[sizeof(e.progname)-1] = '\0';
m.m_type = EXEC_NEWMEM;
m.EXC_NM_PROC = proc_e;
m.EXC_NM_PTR = (char *)&e;
if ((r = sendrec(PM_PROC_NR, &m)) != OK) return(r);
*stack_topp = m.m1_i1;
*load_textp = !!(m.m1_i2 & EXC_NM_RF_LOAD_TEXT);
*allow_setuidp = !!(m.m1_i2 & EXC_NM_RF_ALLOW_SETUID);
return(m.m_type);
}
/*===========================================================================*
* is_script *
*===========================================================================*/
PRIVATE int is_script(const char *exec_hdr, size_t exec_len)
{
/* Is Interpreted script? */
assert(exec_hdr != NULL);
return(exec_hdr[0] == '#' && exec_hdr[1] == '!' && exec_len >= 2);
}
/*===========================================================================*
* patch_stack *
*===========================================================================*/
PRIVATE int patch_stack(vp, stack, stk_bytes, path)
struct vnode *vp; /* pointer for open script file */
char stack[ARG_MAX]; /* pointer to stack image within VFS */
vir_bytes *stk_bytes; /* size of initial stack */
char path[PATH_MAX+1]; /* path to script file */
{
/* Patch the argument vector to include the path name of the script to be
* interpreted, and all strings on the #! line. Returns the path name of
* the interpreter.
*/
enum { INSERT=FALSE, REPLACE=TRUE };
int n, r;
off_t pos;
char *sp, *interp = NULL;
u64_t new_pos;
unsigned int cum_io;
char buf[_MAX_BLOCK_SIZE];
/* Make 'path' the new argv[0]. */
if (!insert_arg(stack, stk_bytes, path, REPLACE)) return(ENOMEM);
pos = 0; /* Read from the start of the file */
/* Issue request */
r = req_readwrite(vp->v_fs_e, vp->v_inode_nr, cvul64(pos), READING,
VFS_PROC_NR, buf, _MAX_BLOCK_SIZE, &new_pos, &cum_io);
if (r != OK) return(r);
n = vp->v_size;
if (n > _MAX_BLOCK_SIZE)
n = _MAX_BLOCK_SIZE;
if (n < 2) return ENOEXEC;
sp = &(buf[2]); /* just behind the #! */
n -= 2;
if (n > PATH_MAX) n = PATH_MAX;
/* Use the 'path' variable for temporary storage */
memcpy(path, sp, n);
if ((sp = memchr(path, '\n', n)) == NULL) /* must be a proper line */
return(ENOEXEC);
/* Move sp backwards through script[], prepending each string to stack. */
for (;;) {
/* skip spaces behind argument. */
while (sp > path && (*--sp == ' ' || *sp == '\t')) {}
if (sp == path) break;
sp[1] = 0;
/* Move to the start of the argument. */
while (sp > path && sp[-1] != ' ' && sp[-1] != '\t') --sp;
interp = sp;
if (!insert_arg(stack, stk_bytes, sp, INSERT)) {
printf("VFS: patch_stack: insert_arg failed\n");
return(ENOMEM);
}
}
/* Round *stk_bytes up to the size of a pointer for alignment contraints. */
*stk_bytes= ((*stk_bytes + PTRSIZE - 1) / PTRSIZE) * PTRSIZE;
if (interp != path)
memmove(path, interp, strlen(interp)+1);
return(OK);
}
/*===========================================================================*
* insert_arg *
*===========================================================================*/
PRIVATE int insert_arg(
char stack[ARG_MAX], /* pointer to stack image within PM */
vir_bytes *stk_bytes, /* size of initial stack */
char *arg, /* argument to prepend/replace as new argv[0] */
int replace
)
{
/* Patch the stack so that arg will become argv[0]. Be careful, the stack may
* be filled with garbage, although it normally looks like this:
* nargs argv[0] ... argv[nargs-1] NULL envp[0] ... NULL
* followed by the strings "pointed" to by the argv[i] and the envp[i]. The
* pointers are really offsets from the start of stack.
* Return true iff the operation succeeded.
*/
int offset, a0, a1, old_bytes = *stk_bytes;
/* Prepending arg adds at least one string and a zero byte. */
offset = strlen(arg) + 1;
a0 = (int) ((char **) stack)[1]; /* argv[0] */
if (a0 < 4 * PTRSIZE || a0 >= old_bytes) return(FALSE);
a1 = a0; /* a1 will point to the strings to be moved */
if (replace) {
/* Move a1 to the end of argv[0][] (argv[1] if nargs > 1). */
do {
if (a1 == old_bytes) return(FALSE);
--offset;
} while (stack[a1++] != 0);
} else {
offset += PTRSIZE; /* new argv[0] needs new pointer in argv[] */
a0 += PTRSIZE; /* location of new argv[0][]. */
}
/* stack will grow by offset bytes (or shrink by -offset bytes) */
if ((*stk_bytes += offset) > ARG_MAX) return(FALSE);
/* Reposition the strings by offset bytes */
memmove(stack + a1 + offset, stack + a1, old_bytes - a1);
strcpy(stack + a0, arg); /* Put arg in the new space. */
if (!replace) {
/* Make space for a new argv[0]. */
memmove(stack + 2 * PTRSIZE, stack + 1 * PTRSIZE, a0 - 2 * PTRSIZE);
((char **) stack)[0]++; /* nargs++; */
}
/* Now patch up argv[] and envp[] by offset. */
patch_ptr(stack, (vir_bytes) offset);
((char **) stack)[1] = (char *) a0; /* set argv[0] correctly */
return(TRUE);
}
/*===========================================================================*
* patch_ptr *
*===========================================================================*/
PRIVATE void patch_ptr(
char stack[ARG_MAX], /* pointer to stack image within PM */
vir_bytes base /* virtual address of stack base inside user */
)
{
/* When doing an exec(name, argv, envp) call, the user builds up a stack
* image with arg and env pointers relative to the start of the stack. Now
* these pointers must be relocated, since the stack is not positioned at
* address 0 in the user's address space.
*/
char **ap, flag;
vir_bytes v;
flag = 0; /* counts number of 0-pointers seen */
ap = (char **) stack; /* points initially to 'nargs' */
ap++; /* now points to argv[0] */
while (flag < 2) {
if (ap >= (char **) &stack[ARG_MAX]) return; /* too bad */
if (*ap != NULL) {
v = (vir_bytes) *ap; /* v is relative pointer */
v += base; /* relocate it */
*ap = (char *) v; /* put it back */
} else {
flag++;
}
ap++;
}
}
/*===========================================================================*
* read_seg *
*===========================================================================*/
PRIVATE int read_seg(
struct vnode *vp, /* inode descriptor to read from */
off_t off, /* offset in file */
int proc_e, /* process number (endpoint) */
int seg, /* T, D, or S */
vir_bytes seg_addr, /* address to load segment */
phys_bytes seg_bytes /* how much is to be transferred? */
)
{
/*
* The byte count on read is usually smaller than the segment count, because
* a segment is padded out to a click multiple, and the data segment is only
* partially initialized.
*/
int r;
unsigned n, o;
u64_t new_pos;
unsigned int cum_io;
static char buf[128 * 1024];
assert((seg == T)||(seg == D));
/* Make sure that the file is big enough */
if (vp->v_size < off+seg_bytes) return(EIO);
if (seg == T) {
/* We have to use a copy loop until safecopies support segments */
o = 0;
while (o < seg_bytes) {
n = seg_bytes - o;
if (n > sizeof(buf))
n = sizeof(buf);
if ((r = req_readwrite(vp->v_fs_e,vp->v_inode_nr,cvul64(off+o),
READING, VFS_PROC_NR, buf,
n, &new_pos, &cum_io)) != OK) {
printf("VFS: read_seg: req_readwrite failed (text)\n");
return(r);
}
if (cum_io != n) {
printf(
"VFSread_seg segment has not been read properly by exec() \n");
return(EIO);
}
if ((r = sys_vircopy(VFS_PROC_NR, D, (vir_bytes)buf, proc_e,
seg, seg_addr + o, n)) != OK) {
printf("VFS: read_seg: copy failed (text)\n");
return(r);
}
o += n;
}
return(OK);
} else if (seg == D) {
if ((r = req_readwrite(vp->v_fs_e, vp->v_inode_nr, cvul64(off), READING,
proc_e, (char*)seg_addr, seg_bytes,
&new_pos, &cum_io)) != OK) {
printf("VFS: read_seg: req_readwrite failed (data)\n");
return(r);
}
if (r == OK && cum_io != seg_bytes)
printf("VFS: read_seg segment has not been read properly by exec()\n");
return(r);
}
return(OK);
}
/*===========================================================================*
* clo_exec *
*===========================================================================*/
PRIVATE void clo_exec(struct fproc *rfp)
{
/* Files can be marked with the FD_CLOEXEC bit (in fp->fp_cloexec).
*/
int i;
/* Check the file desriptors one by one for presence of FD_CLOEXEC. */
for (i = 0; i < OPEN_MAX; i++)
if ( FD_ISSET(i, &rfp->fp_cloexec_set))
(void) close_fd(rfp, i);
}
/*===========================================================================*
* map_header *
*===========================================================================*/
PRIVATE int map_header(char **exec_hdr, const struct vnode *vp)
{
int r;
u64_t new_pos;
unsigned int cum_io;
off_t pos;
pos = 0; /* Read from the start of the file */
r = req_readwrite(vp->v_fs_e, vp->v_inode_nr, cvul64(pos), READING,
VFS_PROC_NR, hdr, MIN(vp->v_size, PAGE_SIZE),
&new_pos, &cum_io);
if (r != OK) {
printf("VFS: exec: map_header: req_readwrite failed\n");
return(r);
}
*exec_hdr = hdr;
return(OK);
}

19
servers/avfs/exec.h Normal file
View file

@ -0,0 +1,19 @@
#ifndef _VFS_EXEC_H_
#define _VFS_EXEC_H_ 1
struct exec_info {
int proc_e; /* Process endpoint */
char *hdr; /* Exec file's header */
vir_bytes pc; /* Entry point of exec file */
vir_bytes stack_top; /* Top of the stack */
vir_bytes frame_len; /* Stack size */
uid_t new_uid; /* Process UID after exec */
gid_t new_gid; /* Process GID after exec */
int load_text; /* Load text section? */
int allow_setuid; /* Allow setuid execution? */
struct vnode *vp; /* Exec file's vnode */
struct stat sb; /* Exec file's stat structure */
char progname[PROC_NAME_LEN]; /* Program name */
};
#endif /* !_VFS_EXEC_H_ */

48
servers/avfs/file.h Normal file
View file

@ -0,0 +1,48 @@
#ifndef __VFS_FILE_H__
#define __VFS_FILE_H__
/* This is the filp table. It is an intermediary between file descriptors and
* inodes. A slot is free if filp_count == 0.
*/
EXTERN struct filp {
mode_t filp_mode; /* RW bits, telling how file is opened */
int filp_flags; /* flags from open and fcntl */
int filp_state; /* state for crash recovery */
int filp_count; /* how many file descriptors share this slot?*/
struct vnode *filp_vno; /* vnode belonging to this file */
u64_t filp_pos; /* file position */
mutex_t filp_lock; /* lock to gain exclusive access */
struct fproc *filp_softlock; /* if not NULL; this filp didn't lock the
* vnode. Another filp already holds a lock
* for this thread */
/* the following fields are for select() and are owned by the generic
* select() code (i.e., fd-type-specific select() code can't touch these).
*/
int filp_selectors; /* select()ing processes blocking on this fd */
int filp_select_ops; /* interested in these SEL_* operations */
int filp_select_flags; /* Select flags for the filp */
/* following are for fd-type-specific select() */
int filp_pipe_select_ops;
} filp[NR_FILPS];
#define FILP_CLOSED 0 /* filp_mode: associated device closed */
#define FS_NORMAL 0 /* file descriptor can be used normally */
#define FS_NEEDS_REOPEN 1 /* file descriptor needs to be re-opened */
#define FSF_UPDATE 001 /* The driver should be informed about new
* state.
*/
#define FSF_BUSY 002 /* Select operation sent to driver but no
* reply yet.
*/
#define FSF_RD_BLOCK 010 /* Read request is blocking, the driver should
* keep state.
*/
#define FSF_WR_BLOCK 020 /* Write request is blocking */
#define FSF_ERR_BLOCK 040 /* Exception request is blocking */
#define FSF_BLOCKED 070
#endif

556
servers/avfs/filedes.c Normal file
View file

@ -0,0 +1,556 @@
/* This file contains the procedures that manipulate file descriptors.
*
* The entry points into this file are
* get_fd: look for free file descriptor and free filp slots
* get_filp: look up the filp entry for a given file descriptor
* find_filp: find a filp slot that points to a given vnode
* inval_filp: invalidate a filp and associated fd's, only let close()
* happen on it
* do_verify_fd: verify whether the given file descriptor is valid for
* the given endpoint.
* do_set_filp: marks a filp as in-flight.
* do_copy_filp: copies a filp to another endpoint.
* do_put_filp: marks a filp as not in-flight anymore.
* do_cancel_fd: cancel the transaction when something goes wrong for
* the receiver.
*/
#include <sys/select.h>
#include <minix/callnr.h>
#include <minix/u64.h>
#include <assert.h>
#include "fs.h"
#include "file.h"
#include "fproc.h"
#include "vnode.h"
FORWARD _PROTOTYPE( filp_id_t verify_fd, (endpoint_t ep, int fd) );
#if LOCK_DEBUG
/*===========================================================================*
* check_filp_locks *
*===========================================================================*/
PUBLIC void check_filp_locks_by_me(void)
{
/* Check whether this thread still has filp locks held */
struct filp *f;
int r;
for (f = &filp[0]; f < &filp[NR_FILPS]; f++) {
r = mutex_trylock(&f->filp_lock);
if (r == -EDEADLK)
panic("Thread %d still holds filp lock on filp %p call_nr=%d\n",
mthread_self(), f, call_nr);
else if (r == 0) {
/* We just obtained the lock, release it */
mutex_unlock(&f->filp_lock);
}
}
}
#endif
/*===========================================================================*
* check_filp_locks *
*===========================================================================*/
PUBLIC void check_filp_locks(void)
{
struct filp *f;
int r, count = 0;
for (f = &filp[0]; f < &filp[NR_FILPS]; f++) {
r = mutex_trylock(&f->filp_lock);
if (r == -EBUSY) {
/* Mutex is still locked */
count++;
} else if (r == 0) {
/* We just obtained a lock, don't want it */
mutex_unlock(&f->filp_lock);
} else
panic("filp_lock weird state");
}
if (count) panic("locked filps");
#if 0
else printf("check_filp_locks OK\n");
#endif
}
/*===========================================================================*
* init_filps *
*===========================================================================*/
PUBLIC void init_filps(void)
{
/* Initialize filps */
struct filp *f;
for (f = &filp[0]; f < &filp[NR_FILPS]; f++) {
mutex_init(&f->filp_lock, NULL);
}
}
/*===========================================================================*
* get_fd *
*===========================================================================*/
PUBLIC int get_fd(int start, mode_t bits, int *k, struct filp **fpt)
{
/* Look for a free file descriptor and a free filp slot. Fill in the mode word
* in the latter, but don't claim either one yet, since the open() or creat()
* may yet fail.
*/
register struct filp *f;
register int i;
/* Search the fproc fp_filp table for a free file descriptor. */
for (i = start; i < OPEN_MAX; i++) {
if (fp->fp_filp[i] == NULL && !FD_ISSET(i, &fp->fp_filp_inuse)) {
/* A file descriptor has been located. */
*k = i;
break;
}
}
/* Check to see if a file descriptor has been found. */
if (i >= OPEN_MAX) return(EMFILE);
/* If we don't care about a filp, return now */
if (fpt == NULL) return(OK);
/* Now that a file descriptor has been found, look for a free filp slot. */
for (f = &filp[0]; f < &filp[NR_FILPS]; f++) {
assert(f->filp_count >= 0);
if (f->filp_count == 0 && mutex_trylock(&f->filp_lock) == 0) {
if (verbose) printf("get_fd: locking filp=%p\n", f);
f->filp_mode = bits;
f->filp_pos = cvu64(0);
f->filp_selectors = 0;
f->filp_select_ops = 0;
f->filp_pipe_select_ops = 0;
f->filp_flags = 0;
f->filp_state = FS_NORMAL;
f->filp_select_flags = 0;
f->filp_softlock = NULL;
*fpt = f;
return(OK);
}
}
/* If control passes here, the filp table must be full. Report that back. */
return(ENFILE);
}
/*===========================================================================*
* get_filp *
*===========================================================================*/
PUBLIC struct filp *get_filp(fild, locktype)
int fild; /* file descriptor */
tll_access_t locktype;
{
/* See if 'fild' refers to a valid file descr. If so, return its filp ptr. */
return get_filp2(fp, fild, locktype);
}
/*===========================================================================*
* get_filp2 *
*===========================================================================*/
PUBLIC struct filp *get_filp2(rfp, fild, locktype)
register struct fproc *rfp;
int fild; /* file descriptor */
tll_access_t locktype;
{
/* See if 'fild' refers to a valid file descr. If so, return its filp ptr. */
struct filp *filp;
err_code = EBADF;
if (fild < 0 || fild >= OPEN_MAX ) return(NULL);
if (rfp->fp_filp[fild] == NULL && FD_ISSET(fild, &rfp->fp_filp_inuse))
err_code = EIO; /* The filedes is not there, but is not closed either.
*/
if ((filp = rfp->fp_filp[fild]) != NULL) lock_filp(filp, locktype);
return(filp); /* may also be NULL */
}
/*===========================================================================*
* find_filp *
*===========================================================================*/
PUBLIC struct filp *find_filp(struct vnode *vp, mode_t bits)
{
/* Find a filp slot that refers to the vnode 'vp' in a way as described
* by the mode bit 'bits'. Used for determining whether somebody is still
* interested in either end of a pipe. Also used when opening a FIFO to
* find partners to share a filp field with (to shared the file position).
* Like 'get_fd' it performs its job by linear search through the filp table.
*/
struct filp *f;
for (f = &filp[0]; f < &filp[NR_FILPS]; f++) {
if (f->filp_count != 0 && f->filp_vno == vp && (f->filp_mode & bits)) {
return(f);
}
}
/* If control passes here, the filp wasn't there. Report that back. */
return(NULL);
}
/*===========================================================================*
* invalidate *
*===========================================================================*/
PUBLIC int invalidate(struct filp *fp)
{
/* Invalidate filp. fp_filp_inuse is not cleared, so filp can't be reused
until it is closed first. */
int f, fd, n = 0;
for(f = 0; f < NR_PROCS; f++) {
if(fproc[f].fp_pid == PID_FREE) continue;
for(fd = 0; fd < OPEN_MAX; fd++) {
if(fproc[f].fp_filp[fd] && fproc[f].fp_filp[fd] == fp) {
fproc[f].fp_filp[fd] = NULL;
n++;
}
}
}
return(n); /* Report back how often this filp has been invalidated. */
}
/*===========================================================================*
* lock_filp *
*===========================================================================*/
PUBLIC void lock_filp(filp, locktype)
struct filp *filp;
tll_access_t locktype;
{
message org_m_in;
struct fproc *org_fp;
struct worker_thread *org_self;
struct vnode *vp;
assert(filp->filp_count > 0);
vp = filp->filp_vno;
assert(vp != NULL);
if (verbose)
printf("lock_filp: filp=%p locking vnode %p with locktype %d\n", filp,
vp, locktype);
/* Lock vnode only if we haven't already locked it. If already locked by us,
* we're allowed to have one additional 'soft' lock. */
if (tll_locked_by_me(&vp->v_lock)) {
assert(filp->filp_softlock == NULL);
filp->filp_softlock = fp;
} else {
lock_vnode(vp, locktype);
}
assert(vp->v_ref_count > 0); /* vnode still in use? */
assert(filp->filp_vno == vp); /* vnode still what we think it is? */
assert(filp->filp_count > 0); /* filp still in use? */
/* First try to get filp lock right off the bat */
if (mutex_trylock(&filp->filp_lock) != 0) {
/* Already in use, let's wait for our turn */
org_m_in = m_in;
org_fp = fp;
org_self = self;
assert(mutex_lock(&filp->filp_lock) == 0);
m_in = org_m_in;
fp = org_fp;
self = org_self;
}
assert(filp->filp_count > 0); /* Yet again; filp still in use? */
}
/*===========================================================================*
* unlock_filp *
*===========================================================================*/
PUBLIC void unlock_filp(filp)
struct filp *filp;
{
/* If this filp holds a soft lock on the vnode, we must be the owner */
if (filp->filp_softlock != NULL)
assert(filp->filp_softlock == fp);
if (filp->filp_count > 0) {
/* Only unlock vnode if filp is still in use */
/* and if we don't hold a soft lock */
if (filp->filp_softlock == NULL) {
assert(tll_islocked(&(filp->filp_vno->v_lock)));
unlock_vnode(filp->filp_vno);
}
}
filp->filp_softlock = NULL;
assert(mutex_unlock(&filp->filp_lock) == 0);
}
/*===========================================================================*
* unlock_filps *
*===========================================================================*/
PUBLIC void unlock_filps(filp1, filp2)
struct filp *filp1;
struct filp *filp2;
{
/* Unlock two filps that are tied to the same vnode. As a thread can lock a
* vnode only once, unlocking the vnode twice would result in an error. */
/* No NULL pointers and not equal */
assert(filp1);
assert(filp2);
assert(filp1 != filp2);
/* Must be tied to the same vnode and not NULL */
assert(filp1->filp_vno == filp2->filp_vno);
assert(filp1->filp_vno != NULL);
if (filp1->filp_count > 0 && filp2->filp_count > 0) {
/* Only unlock vnode if filps are still in use */
unlock_vnode(filp1->filp_vno);
}
filp1->filp_softlock = NULL;
filp2->filp_softlock = NULL;
assert(mutex_unlock(&filp2->filp_lock) == 0);
assert(mutex_unlock(&filp1->filp_lock) == 0);
}
/*===========================================================================*
* verify_fd *
*===========================================================================*/
PRIVATE filp_id_t verify_fd(ep, fd)
endpoint_t ep;
int fd;
{
/* Verify whether the file descriptor 'fd' is valid for the endpoint 'ep'. When
* the file descriptor is valid, verify_fd returns a pointer to that filp, else
* it returns NULL.
*/
int slot;
struct filp *rfilp;
if (isokendpt(ep, &slot) != OK)
return(NULL);
rfilp = get_filp2(&fproc[slot], fd, VNODE_READ);
return(rfilp);
}
/*===========================================================================*
* do_verify_fd *
*===========================================================================*/
PUBLIC int do_verify_fd(void)
{
struct filp *rfilp;
rfilp = (struct filp *) verify_fd(m_in.USER_ENDPT, m_in.COUNT);
m_out.ADDRESS = (void *) rfilp;
if (rfilp != NULL) unlock_filp(rfilp);
return (rfilp != NULL) ? OK : EINVAL;
}
/*===========================================================================*
* set_filp *
*===========================================================================*/
PUBLIC int set_filp(sfilp)
filp_id_t sfilp;
{
if (sfilp == NULL) return(EINVAL);
lock_filp(sfilp, VNODE_READ);
sfilp->filp_count++;
unlock_filp(sfilp);
return(OK);
}
/*===========================================================================*
* do_set_filp *
*===========================================================================*/
PUBLIC int do_set_filp(void)
{
return set_filp((filp_id_t) m_in.ADDRESS);
}
/*===========================================================================*
* copy_filp *
*===========================================================================*/
PUBLIC int copy_filp(to_ep, cfilp)
endpoint_t to_ep;
filp_id_t cfilp;
{
int fd;
int slot;
struct fproc *rfp;
if (isokendpt(to_ep, &slot) != OK) return(EINVAL);
rfp = &fproc[slot];
/* Find an open slot in fp_filp */
for (fd = 0; fd < OPEN_MAX; fd++) {
if (rfp->fp_filp[fd] == NULL &&
!FD_ISSET(fd, &rfp->fp_filp_inuse)) {
/* Found a free slot, add descriptor */
FD_SET(fd, &rfp->fp_filp_inuse);
rfp->fp_filp[fd] = cfilp;
rfp->fp_filp[fd]->filp_count++;
return(fd);
}
}
/* File descriptor table is full */
return(EMFILE);
}
/*===========================================================================*
* do_copy_filp *
*===========================================================================*/
PUBLIC int do_copy_filp(void)
{
return copy_filp(m_in.USER_ENDPT, (filp_id_t) m_in.ADDRESS);
}
/*===========================================================================*
* put_filp *
*===========================================================================*/
PUBLIC int put_filp(pfilp)
filp_id_t pfilp;
{
if (pfilp == NULL) {
return EINVAL;
} else {
lock_filp(pfilp, VNODE_OPCL);
close_filp(pfilp);
return(OK);
}
}
/*===========================================================================*
* do_put_filp *
*===========================================================================*/
PUBLIC int do_put_filp(void)
{
return put_filp((filp_id_t) m_in.ADDRESS);
}
/*===========================================================================*
* cancel_fd *
*===========================================================================*/
PUBLIC int cancel_fd(ep, fd)
endpoint_t ep;
int fd;
{
int slot;
struct fproc *rfp;
struct filp *rfilp;
if (isokendpt(ep, &slot) != OK) return(EINVAL);
rfp = &fproc[slot];
/* Check that the input 'fd' is valid */
rfilp = (struct filp *) verify_fd(ep, fd);
if (rfilp != NULL) {
/* Found a valid descriptor, remove it */
FD_CLR(fd, &rfp->fp_filp_inuse);
if (rfp->fp_filp[fd]->filp_count == 0) {
unlock_filp(rfilp);
printf("VFS: filp_count for slot %d fd %d already zero", slot,
fd);
return(EINVAL);
}
rfp->fp_filp[fd]->filp_count--;
rfp->fp_filp[fd] = NULL;
unlock_filp(rfilp);
return(fd);
}
/* File descriptor is not valid for the endpoint. */
return(EINVAL);
}
/*===========================================================================*
* do_cancel_fd *
*===========================================================================*/
PUBLIC int do_cancel_fd(void)
{
return cancel_fd(m_in.USER_ENDPT, m_in.COUNT);
}
/*===========================================================================*
* close_filp *
*===========================================================================*/
PUBLIC void close_filp(f)
struct filp *f;
{
/* Close a file. Will also unlock filp when done */
int mode_word, rw;
dev_t dev;
struct vnode *vp;
/* Must be locked */
assert(mutex_trylock(&f->filp_lock) == -EDEADLK);
assert(tll_islocked(&f->filp_vno->v_lock));
vp = f->filp_vno;
if (f->filp_count - 1 == 0 && f->filp_mode != FILP_CLOSED) {
/* Check to see if the file is special. */
mode_word = vp->v_mode & I_TYPE;
if (mode_word == I_CHAR_SPECIAL || mode_word == I_BLOCK_SPECIAL) {
dev = (dev_t) vp->v_sdev;
if (mode_word == I_BLOCK_SPECIAL) {
lock_bsf();
if (vp->v_bfs_e == ROOT_FS_E) {
/* Invalidate the cache unless the special is
* mounted. Assume that the root filesystem's
* is open only for fsck.
*/
req_flush(vp->v_bfs_e, dev);
}
unlock_bsf();
}
/* Do any special processing on device close. */
(void) dev_close(dev, f-filp); /* Ignore any errors, even
* SUSPEND. */
f->filp_mode = FILP_CLOSED;
}
}
/* If the inode being closed is a pipe, release everyone hanging on it. */
if (vp->v_pipe == I_PIPE) {
rw = (f->filp_mode & R_BIT ? WRITE : READ);
release(vp, rw, NR_PROCS);
}
/* If a write has been done, the inode is already marked as DIRTY. */
if (--f->filp_count == 0) {
if (vp->v_pipe == I_PIPE) {
/* Last reader or writer is going. Tell PFS about latest
* pipe size.
*/
truncate_vnode(vp, vp->v_size);
}
unlock_vnode(f->filp_vno);
put_vnode(f->filp_vno);
} else if (f->filp_count < 0) {
panic("VFS: invalid filp count: %d ino %d/%d", f->filp_count,
vp->v_dev, vp->v_inode_nr);
} else {
unlock_vnode(f->filp_vno);
}
mutex_unlock(&f->filp_lock);
}

72
servers/avfs/fproc.h Normal file
View file

@ -0,0 +1,72 @@
#ifndef __VFS_FPROC_H__
#define __VFS_FPROC_H__
#include "threads.h"
#include <sys/select.h>
#include <minix/safecopies.h>
/* This is the per-process information. A slot is reserved for each potential
* process. Thus NR_PROCS must be the same as in the kernel. It is not
* possible or even necessary to tell when a slot is free here.
*/
#define LOCK_DEBUG 0
EXTERN struct fproc {
unsigned fp_flags;
pid_t fp_pid; /* process id */
endpoint_t fp_endpoint; /* kernel endpoint number of this process */
struct vnode *fp_wd; /* working directory; NULL during reboot */
struct vnode *fp_rd; /* root directory; NULL during reboot */
struct filp *fp_filp[OPEN_MAX];/* the file descriptor table */
fd_set fp_filp_inuse; /* which fd's are in use? */
fd_set fp_cloexec_set; /* bit map for POSIX Table 6-2 FD_CLOEXEC */
dev_t fp_tty; /* major/minor of controlling tty */
int fp_block_fd; /* place to save fd if rd/wr can't finish */
int fp_block_callnr; /* blocked call if rd/wr can't finish */
char *fp_buffer; /* place to save buffer if rd/wr can't finish*/
int fp_nbytes; /* place to save bytes if rd/wr can't finish */
int fp_cum_io_partial; /* partial byte count if rd/wr can't finish */
endpoint_t fp_task; /* which task is proc suspended on */
int fp_blocked_on; /* what is it blocked on */
endpoint_t fp_ioproc; /* proc no. in suspended-on i/o message */
cp_grant_id_t fp_grant; /* revoke this grant on unsuspend if > -1 */
uid_t fp_realuid; /* real user id */
uid_t fp_effuid; /* effective user id */
gid_t fp_realgid; /* real group id */
gid_t fp_effgid; /* effective group id */
int fp_ngroups; /* number of supplemental groups */
gid_t fp_sgroups[NGROUPS_MAX];/* supplemental groups */
mode_t fp_umask; /* mask set by umask system call */
message *fp_sendrec; /* request/reply to/from FS/driver */
mutex_t fp_lock; /* mutex to lock fproc object */
struct job fp_job; /* pending job */
thread_t fp_wtid; /* Thread ID of worker */
#if LOCK_DEBUG
int fp_vp_rdlocks; /* number of read-only locks on vnodes */
int fp_vmnt_rdlocks; /* number of read-only locks on vmnts */
#endif
} fproc[NR_PROCS];
/* fp_flags */
#define FP_NOFLAGS 00
#define FP_SUSP_REOPEN 01 /* Process is suspended until the reopens are
* completed (after the restart of a driver).
*/
#define FP_REVIVED 02 /* Indicates process is being revived */
#define FP_SESLDR 04 /* Set if process is session leader */
#define FP_PENDING 010 /* Set if process has pending work */
#define FP_EXITING 020 /* Set if process is exiting */
#define FP_PM_PENDING 040 /* Set if process has pending PM request */
/* Field values. */
#define NOT_REVIVING 0xC0FFEEE /* process is not being revived */
#define REVIVING 0xDEEAD /* process is being revived from suspension */
#define PID_FREE 0 /* process slot free */
#endif /* __VFS_FPROC_H__ */

51
servers/avfs/fs.h Normal file
View file

@ -0,0 +1,51 @@
#ifndef __VFS_FS_H__
#define __VFS_FS_H__
/* This is the master header for fs. It includes some other files
* and defines the principal constants.
*/
#define _POSIX_SOURCE 1 /* tell headers to include POSIX stuff */
#define _MINIX 1 /* tell headers to include MINIX stuff */
#define _SYSTEM 1 /* tell headers that this is the kernel */
#define DO_SANITYCHECKS 0
#if DO_SANITYCHECKS
#define SANITYCHECK do { \
if(!check_vrefs() || !check_pipe()) { \
printf("VFS:%s:%d: call_nr %d who_e %d\n", \
__FILE__, __LINE__, call_nr, who_e); \
panic("sanity check failed"); \
} \
} while(0)
#else
#define SANITYCHECK
#endif
/* The following are so basic, all the *.c files get them automatically. */
#include <minix/config.h> /* MUST be first */
#include <minix/ansi.h> /* MUST be second */
#include <sys/types.h>
#include <minix/const.h>
#include <minix/type.h>
#include <minix/dmap.h>
#include <minix/ds.h>
#include <minix/rs.h>
#include <limits.h>
#include <errno.h>
#include <unistd.h>
#include <minix/syslib.h>
#include <minix/sysutil.h>
#include <minix/timers.h>
#include "const.h"
#include "dmap.h"
#include "proto.h"
#include "threads.h"
#include "glo.h"
#include "comm.h"
#include "vmnt.h"
#endif

136
servers/avfs/fscall.c Normal file
View file

@ -0,0 +1,136 @@
/* This file handles nested counter-request calls to VFS sent by file system
* (FS) servers in response to VFS requests.
*
* The entry points into this file are
* nested_fs_call perform a nested call from a file system server
* nested_dev_call perform a nested call from a device driver server
*
*/
#include "fs.h"
#include "fproc.h"
#include <string.h>
#include <assert.h>
#include <minix/callnr.h>
#include <minix/endpoint.h>
#include <minix/vfsif.h>
/* maximum nested call stack depth */
#define MAX_DEPTH 1
/* global variables stack */
PRIVATE struct {
struct fproc *g_fp; /* pointer to caller process */
message g_m_in; /* request message */
message g_m_out; /* reply message */
int g_who_e; /* endpoint of caller process */
int g_who_p; /* slot number of caller process */
int g_call_nr; /* call number */
int g_super_user; /* is the caller root? */
char g_user_fullpath[PATH_MAX+1]; /* path to look up */
} globals[MAX_DEPTH];
PRIVATE int depth = 0; /* current globals stack level */
#if ENABLE_SYSCALL_STATS
EXTERN unsigned long calls_stats[NCALLS];
#endif
FORWARD _PROTOTYPE( int push_globals, (void) );
FORWARD _PROTOTYPE( void pop_globals, (void) );
FORWARD _PROTOTYPE( void set_globals, (message *m) );
/*===========================================================================*
* push_globals *
*===========================================================================*/
PRIVATE int push_globals()
{
/* Save the global variables of the current call onto the globals stack.
*/
if (depth == MAX_DEPTH)
return(EPERM);
globals[depth].g_fp = fp;
globals[depth].g_m_in = m_in;
globals[depth].g_m_out = m_out;
globals[depth].g_super_user = super_user;
/* err_code is not used across blocking calls */
depth++;
return(OK);
}
/*===========================================================================*
* pop_globals *
*===========================================================================*/
PRIVATE void pop_globals()
{
/* Restore the global variables of a call from the globals stack.
*/
if (depth == 0)
panic("Popping from empty globals stack!");
depth--;
fp = globals[depth].g_fp;
m_in = globals[depth].g_m_in;
m_out = globals[depth].g_m_out;
}
/*===========================================================================*
* set_globals *
*===========================================================================*/
PRIVATE void set_globals(m)
message *m; /* request message */
{
/* Initialize global variables based on a request message.
*/
int proc_p;
m_in = *m;
proc_p = _ENDPOINT_P(m_in.m_source);
fp = &fproc[proc_p];
/* the rest need not be initialized */
}
/*===========================================================================*
* nested_fs_call *
*===========================================================================*/
PUBLIC void nested_fs_call(m)
message *m; /* request/reply message pointer */
{
/* Handle a nested call from a file system server.
*/
int r;
/* Save global variables of the current call */
if ((r = push_globals()) != OK) {
printf("VFS: error saving global variables in call %d from FS %d\n",
m->m_type, m->m_source);
} else {
/* Initialize global variables for the nested call */
set_globals(m);
/* Perform the nested call - only getsysinfo() is allowed right now */
if (call_nr == COMMON_GETSYSINFO) {
r = do_getsysinfo();
} else {
printf("VFS: invalid nested call %d from FS %d\n", call_nr,
who_e);
r = ENOSYS;
}
/* Store the result, and restore original global variables */
*m = m_out;
pop_globals();
}
m->m_type = r;
}

66
servers/avfs/gcov.c Normal file
View file

@ -0,0 +1,66 @@
#include "fs.h"
#include "file.h"
#include "fproc.h"
_PROTOTYPE( int gcov_flush, (cp_grant_id_t grantid, size_t size ));
/*===========================================================================*
* do_gcov_flush *
*===========================================================================*/
PUBLIC int do_gcov_flush()
{
/* A userland tool has requested the gcov data from another
* process (possibly vfs itself). Grant the target process
* access to the supplied buffer, and perform the call that
* makes the target copy its buffer to the caller (incl vfs
* itself).
*/
struct fproc *rfp;
ssize_t size;
cp_grant_id_t grantid;
int r, n;
pid_t target;
message m;
size = m_in.GCOV_BUFF_SZ;
target = m_in.GCOV_PID;
/* If the wrong process is sent to, the system hangs; so make this root-only.
*/
if (!super_user) return(EPERM);
/* Find target gcov process. */
for(n = 0; n < NR_PROCS; n++) {
if(fproc[n].fp_endpoint != NONE && fproc[n].fp_pid == target)
break;
}
if(n >= NR_PROCS) {
printf("VFS: gcov process %d not found\n", target);
return(ESRCH);
}
rfp = &fproc[n];
/* Grant target process to requestor's buffer. */
if ((grantid = cpf_grant_magic(rfp->fp_endpoint, who_e,
(vir_bytes) m_in.GCOV_BUFF_P, size,
CPF_WRITE)) < 0) {
printf("VFS: gcov_flush: grant failed\n");
return(ENOMEM);
}
if(rfp->fp_endpoint == VFS_PROC_NR) {
/* Request is for VFS itself. */
r = gcov_flush(grantid, size);
} else {
/* Perform generic GCOV request. */
m.GCOV_GRANT = grantid;
m.GCOV_BUFF_SZ = size;
r = _taskcall(rfp->fp_endpoint, COMMON_REQ_GCOV_DATA, &m);
}
cpf_revoke(grantid);
return(r);
}

57
servers/avfs/glo.h Normal file
View file

@ -0,0 +1,57 @@
#ifndef __VFS_GLO_H__
#define __VFS_GLO_H__
/* EXTERN should be extern except for the table file */
#ifdef _TABLE
#undef EXTERN
#define EXTERN
#endif
/* File System global variables */
EXTERN struct fproc *fp; /* pointer to caller's fproc struct */
EXTERN int susp_count; /* number of procs suspended on pipe */
EXTERN int nr_locks; /* number of locks currently in place */
EXTERN int reviving; /* number of pipe processes to be revived */
EXTERN int pending;
EXTERN int sending;
EXTERN dev_t ROOT_DEV; /* device number of the root device */
EXTERN int ROOT_FS_E; /* kernel endpoint of the root FS proc */
EXTERN u32_t system_hz; /* system clock frequency. */
/* The parameters of the call are kept here. */
EXTERN message m_in; /* the input message itself */
EXTERN message m_out; /* the output message used for reply */
# define who_p ((int) (fp - fproc))
# define isokslot(p) (p >= 0 && \
p < (int)(sizeof(fproc) / sizeof(struct fproc)))
#if 0
# define who_e (isokslot(who_p) ? fp->fp_endpoint : m_in.m_source)
#else
# define who_e (isokslot(who_p) && fp->fp_endpoint != NONE ? \
fp->fp_endpoint : m_in.m_source)
#endif
# define call_nr (m_in.m_type)
# define super_user (fp->fp_effuid == SU_UID ? 1 : 0)
EXTERN struct worker_thread *self;
EXTERN endpoint_t receive_from;/* endpoint with pending reply */
EXTERN int force_sync; /* toggle forced synchronous communication */
EXTERN int verbose;
EXTERN int deadlock_resolving;
EXTERN mutex_t exec_lock;
EXTERN mutex_t bsf_lock;/* Global lock for access to block special files */
EXTERN struct worker_thread workers[NR_WTHREADS];
EXTERN struct worker_thread sys_worker;
EXTERN struct worker_thread dl_worker;
EXTERN char mount_label[LABEL_MAX]; /* label of file system to mount */
/* The following variables are used for returning results to the caller. */
EXTERN int err_code; /* temporary storage for error number */
/* Data initialized elsewhere. */
extern _PROTOTYPE (int (*call_vec[]), (void) ); /* sys call table */
extern _PROTOTYPE (int (*pfs_call_vec[]), (void) ); /* pfs callback table */
extern char dot1[2]; /* dot1 (&dot1[0]) and dot2 (&dot2[0]) have a special */
extern char dot2[3]; /* meaning to search_dir: no access permission check. */
#endif

11
servers/avfs/job.h Normal file
View file

@ -0,0 +1,11 @@
#ifndef __VFS_WORK_H__
#define __VFS_WORK_H__
struct job {
struct fproc *j_fp;
message j_m_in;
void *(*j_func)(void *arg);
struct job *j_next;
};
#endif

455
servers/avfs/link.c Normal file
View file

@ -0,0 +1,455 @@
/* This file handles the LINK and UNLINK system calls. It also deals with
* deallocating the storage used by a file when the last UNLINK is done to a
* file and the blocks must be returned to the free block pool.
*
* The entry points into this file are
* do_link: perform the LINK system call
* do_unlink: perform the UNLINK and RMDIR system calls
* do_rename: perform the RENAME system call
* do_truncate: perform the TRUNCATE system call
* do_ftruncate: perform the FTRUNCATE system call
* do_rdlink: perform the RDLNK system call
*/
#include "fs.h"
#include <sys/stat.h>
#include <string.h>
#include <minix/com.h>
#include <minix/callnr.h>
#include <minix/vfsif.h>
#include <dirent.h>
#include <assert.h>
#include "file.h"
#include "fproc.h"
#include "path.h"
#include "vnode.h"
#include "param.h"
/*===========================================================================*
* do_link *
*===========================================================================*/
PUBLIC int do_link()
{
/* Perform the link(name1, name2) system call. */
int r = OK;
struct vnode *vp = NULL, *dirp = NULL;
struct vmnt *vmp1 = NULL, *vmp2 = NULL;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp1, &vp);
resolve.l_vmnt_lock = VMNT_WRITE;
resolve.l_vnode_lock = VNODE_READ;
/* See if 'name1' (file to be linked to) exists. */
if (fetch_name(m_in.name1, m_in.name1_length, M1, fullpath) != OK)
return(err_code);
if ((vp = eat_path(&resolve, fp)) == NULL) return(err_code);
/* Does the final directory of 'name2' exist? */
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp2, &dirp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
if (fetch_name(m_in.name2, m_in.name2_length, M1, fullpath) != OK)
r = err_code;
else if ((dirp = last_dir(&resolve, fp)) == NULL)
r = err_code;
if (r != OK) {
unlock_vnode(vp);
unlock_vmnt(vmp1);
put_vnode(vp);
return(r);
}
/* Check for links across devices. */
if (vp->v_fs_e != dirp->v_fs_e)
r = EXDEV;
else
r = forbidden(dirp, W_BIT | X_BIT);
if (r == OK)
r = req_link(vp->v_fs_e, dirp->v_inode_nr, fullpath,
vp->v_inode_nr);
unlock_vnode(vp);
unlock_vnode(dirp);
if (vmp2 != NULL) unlock_vmnt(vmp2);
unlock_vmnt(vmp1);
put_vnode(vp);
put_vnode(dirp);
return(r);
}
/*===========================================================================*
* do_unlink *
*===========================================================================*/
PUBLIC int do_unlink()
{
/* Perform the unlink(name) or rmdir(name) system call. The code for these two
* is almost the same. They differ only in some condition testing. Unlink()
* may be used by the superuser to do dangerous things; rmdir() may not.
*/
struct vnode *dirp, *vp;
struct vmnt *vmp, *vmp2;
int r;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &dirp);
resolve.l_vmnt_lock = VMNT_WRITE;
resolve.l_vnode_lock = VNODE_READ;
/* Get the last directory in the path. */
if (fetch_name(m_in.name, m_in.name_length, M3, fullpath) != OK)
return(err_code);
if ((dirp = last_dir(&resolve, fp)) == NULL) return(err_code);
/* Make sure that the object is a directory */
if ((dirp->v_mode & I_TYPE) != I_DIRECTORY) {
unlock_vnode(dirp);
unlock_vmnt(vmp);
put_vnode(dirp);
return(ENOTDIR);
}
/* The caller must have both search and execute permission */
if ((r = forbidden(dirp, X_BIT | W_BIT)) != OK) {
unlock_vnode(dirp);
unlock_vmnt(vmp);
put_vnode(dirp);
return(r);
}
/* Also, if the sticky bit is set, only the owner of the file or a privileged
user is allowed to unlink */
if ((dirp->v_mode & S_ISVTX) == S_ISVTX) {
/* Look up inode of file to unlink to retrieve owner */
resolve.l_flags = PATH_RET_SYMLINK;
resolve.l_vmp = &vmp2; /* Shouldn't actually get locked */
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode = &vp;
resolve.l_vnode_lock = VNODE_READ;
vp = advance(dirp, &resolve, fp);
assert(vmp2 == NULL);
if (vp != NULL) {
if (vp->v_uid != fp->fp_effuid && fp->fp_effuid != SU_UID)
r = EPERM;
unlock_vnode(vp);
put_vnode(vp);
} else
r = err_code;
if (r != OK) {
unlock_vnode(dirp);
unlock_vmnt(vmp);
put_vnode(dirp);
return(r);
}
}
tll_upgrade(&vmp->m_lock);
if(call_nr == UNLINK)
r = req_unlink(dirp->v_fs_e, dirp->v_inode_nr, fullpath);
else
r = req_rmdir(dirp->v_fs_e, dirp->v_inode_nr, fullpath);
unlock_vnode(dirp);
unlock_vmnt(vmp);
put_vnode(dirp);
return(r);
}
/*===========================================================================*
* do_rename *
*===========================================================================*/
PUBLIC int do_rename()
{
/* Perform the rename(name1, name2) system call. */
int r = OK, r1;
struct vnode *old_dirp, *new_dirp = NULL, *vp;
struct vmnt *oldvmp, *newvmp, *vmp2;
char old_name[PATH_MAX+1];
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &oldvmp, &old_dirp);
/* Do not yet request exclusive lock on vmnt to prevent deadlocks later on */
resolve.l_vmnt_lock = VMNT_WRITE;
resolve.l_vnode_lock = VNODE_READ;
/* See if 'name1' (existing file) exists. Get dir and file inodes. */
if (fetch_name(m_in.name1, m_in.name1_length, M1, fullpath) != OK)
return(err_code);
if ((old_dirp = last_dir(&resolve, fp)) == NULL)
return(err_code);
/* If the sticky bit is set, only the owner of the file or a privileged
user is allowed to rename */
if ((old_dirp->v_mode & S_ISVTX) == S_ISVTX) {
/* Look up inode of file to unlink to retrieve owner */
resolve.l_flags = PATH_RET_SYMLINK;
resolve.l_vmp = &vmp2; /* Shouldn't actually get locked */
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode = &vp;
resolve.l_vnode_lock = VNODE_READ;
resolve.l_flags = PATH_RET_SYMLINK;
vp = advance(old_dirp, &resolve, fp);
assert(vmp2 == NULL);
if (vp != NULL) {
if(vp->v_uid != fp->fp_effuid && fp->fp_effuid != SU_UID)
r = EPERM;
unlock_vnode(vp);
put_vnode(vp);
} else
r = err_code;
if (r != OK) {
unlock_vnode(old_dirp);
unlock_vmnt(oldvmp);
put_vnode(old_dirp);
return(r);
}
}
/* Save the last component of the old name */
if(strlen(fullpath) >= sizeof(old_name)) {
unlock_vnode(old_dirp);
unlock_vmnt(oldvmp);
put_vnode(old_dirp);
return(ENAMETOOLONG);
}
strcpy(old_name, fullpath);
/* See if 'name2' (new name) exists. Get dir inode */
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &newvmp, &new_dirp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
if (fetch_name(m_in.name2, m_in.name2_length, M1, fullpath) != OK)
r = err_code;
else if ((new_dirp = last_dir(&resolve, fp)) == NULL)
r = err_code;
if (r != OK) {
unlock_vnode(old_dirp);
unlock_vmnt(oldvmp);
put_vnode(old_dirp);
return(r);
}
/* Both parent directories must be on the same device. */
if (old_dirp->v_fs_e != new_dirp->v_fs_e) r = EXDEV;
/* Parent dirs must be writable, searchable and on a writable device */
if ((r1 = forbidden(old_dirp, W_BIT|X_BIT)) != OK ||
(r1 = forbidden(new_dirp, W_BIT|X_BIT)) != OK) r = r1;
if (r == OK) {
tll_upgrade(&oldvmp->m_lock); /* Upgrade to exclusive access */
r = req_rename(old_dirp->v_fs_e, old_dirp->v_inode_nr, old_name,
new_dirp->v_inode_nr, fullpath);
}
unlock_vnode(old_dirp);
unlock_vnode(new_dirp);
unlock_vmnt(oldvmp);
if (newvmp) unlock_vmnt(newvmp);
put_vnode(old_dirp);
put_vnode(new_dirp);
return(r);
}
/*===========================================================================*
* do_truncate *
*===========================================================================*/
PUBLIC int do_truncate()
{
/* truncate_vnode() does the actual work of do_truncate() and do_ftruncate().
* do_truncate() and do_ftruncate() have to get hold of the inode, either
* by name or fd, do checks on it, and call truncate_inode() to do the
* work.
*/
struct vnode *vp;
struct vmnt *vmp;
int r;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_EXCL;
resolve.l_vnode_lock = VNODE_WRITE;
if ((off_t) m_in.flength < 0) return(EINVAL);
/* Temporarily open file */
if (fetch_name(m_in.m2_p1, m_in.m2_i1, M1, fullpath) != OK) return(err_code);
if ((vp = eat_path(&resolve, fp)) == NULL) return(err_code);
/* Ask FS to truncate the file */
if ((r = forbidden(vp, W_BIT)) == OK)
r = truncate_vnode(vp, m_in.flength);
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return(r);
}
/*===========================================================================*
* do_ftruncate *
*===========================================================================*/
PUBLIC int do_ftruncate()
{
/* As with do_truncate(), truncate_vnode() does the actual work. */
struct filp *rfilp;
int r;
if ((off_t) m_in.flength < 0) return(EINVAL);
/* File is already opened; get a vnode pointer from filp */
if ((rfilp = get_filp(m_in.m2_i1, VNODE_WRITE)) == NULL) return(err_code);
if (!(rfilp->filp_mode & W_BIT))
r = EBADF;
else
r = truncate_vnode(rfilp->filp_vno, m_in.flength);
unlock_filp(rfilp);
return(r);
}
/*===========================================================================*
* truncate_vnode *
*===========================================================================*/
PUBLIC int truncate_vnode(vp, newsize)
struct vnode *vp;
off_t newsize;
{
/* Truncate a regular file or a pipe */
int r, file_type;
assert(tll_locked_by_me(&vp->v_lock));
file_type = vp->v_mode & I_TYPE;
if (file_type != I_REGULAR && file_type != I_NAMED_PIPE) return(EINVAL);
if ((r = req_ftrunc(vp->v_fs_e, vp->v_inode_nr, newsize, 0)) == OK)
vp->v_size = newsize;
return(r);
}
/*===========================================================================*
* do_slink *
*===========================================================================*/
PUBLIC int do_slink()
{
/* Perform the symlink(name1, name2) system call. */
int r;
struct vnode *vp;
struct vmnt *vmp;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_WRITE;
resolve.l_vnode_lock = VNODE_READ;
if (m_in.name1_length <= 1) return(ENOENT);
if (m_in.name1_length >= SYMLINK_MAX) return(ENAMETOOLONG);
/* Get dir inode of 'name2' */
if (fetch_name(m_in.name2, m_in.name2_length, M1, fullpath) != OK)
return(err_code);
if ((vp = last_dir(&resolve, fp)) == NULL) return(err_code);
if ((r = forbidden(vp, W_BIT|X_BIT)) == OK) {
r = req_slink(vp->v_fs_e, vp->v_inode_nr, fullpath, who_e,
m_in.name1, m_in.name1_length - 1, fp->fp_effuid,
fp->fp_effgid);
}
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return(r);
}
/*===========================================================================*
* rdlink_direct *
*===========================================================================*/
PUBLIC int rdlink_direct(orig_path, link_path, rfp)
char *orig_path;
char *link_path; /* should have length PATH_MAX+1 */
struct fproc *rfp;
{
/* Perform a readlink()-like call from within the VFS */
int r;
struct vnode *vp;
struct vmnt *vmp;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_RET_SYMLINK, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
/* Temporarily open the file containing the symbolic link */
strncpy(fullpath, orig_path, PATH_MAX);
if ((vp = eat_path(&resolve, rfp)) == NULL) return(err_code);
/* Make sure this is a symbolic link */
if ((vp->v_mode & I_TYPE) != I_SYMBOLIC_LINK)
r = EINVAL;
else
r = req_rdlink(vp->v_fs_e, vp->v_inode_nr, (endpoint_t) 0,
link_path, PATH_MAX+1, 1);
if (r > 0) link_path[r] = '\0'; /* Terminate string when succesful */
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return r;
}
/*===========================================================================*
* do_rdlink *
*===========================================================================*/
PUBLIC int do_rdlink()
{
/* Perform the readlink(name, buf, bufsize) system call. */
int r, copylen;
struct vnode *vp;
struct vmnt *vmp;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_RET_SYMLINK, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
copylen = m_in.nbytes;
if (copylen < 0) return(EINVAL);
/* Temporarily open the file containing the symbolic link */
if (fetch_name(m_in.name1, m_in.name1_length, M1, fullpath) != OK)
return(err_code);
if ((vp = eat_path(&resolve, fp)) == NULL) return(err_code);
/* Make sure this is a symbolic link */
if ((vp->v_mode & I_TYPE) != I_SYMBOLIC_LINK)
r = EINVAL;
else
r = req_rdlink(vp->v_fs_e, vp->v_inode_nr, who_e, m_in.name2,
copylen, 0);
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return(r);
}

191
servers/avfs/lock.c Normal file
View file

@ -0,0 +1,191 @@
/* This file handles advisory file locking as required by POSIX.
*
* The entry points into this file are
* lock_op: perform locking operations for FCNTL system call
* lock_revive: revive processes when a lock is released
*/
#include "fs.h"
#include <minix/com.h>
#include <minix/u64.h>
#include <fcntl.h>
#include <unistd.h>
#include "file.h"
#include "fproc.h"
#include "lock.h"
#include "vnode.h"
#include "param.h"
/*===========================================================================*
* lock_op *
*===========================================================================*/
PUBLIC int lock_op(f, req)
struct filp *f;
int req; /* either F_SETLK or F_SETLKW */
{
/* Perform the advisory locking required by POSIX. */
int r, ltype, i, conflict = 0, unlocking = 0;
mode_t mo;
off_t first, last;
struct flock flock;
vir_bytes user_flock;
struct file_lock *flp, *flp2, *empty;
/* Fetch the flock structure from user space. */
user_flock = (vir_bytes) m_in.name1;
r = sys_datacopy(who_e, (vir_bytes) user_flock, VFS_PROC_NR,
(vir_bytes) &flock, (phys_bytes) sizeof(flock));
if (r != OK) return(EINVAL);
/* Make some error checks. */
ltype = flock.l_type;
mo = f->filp_mode;
if (ltype != F_UNLCK && ltype != F_RDLCK && ltype != F_WRLCK) return(EINVAL);
if (req == F_GETLK && ltype == F_UNLCK) return(EINVAL);
if ( (f->filp_vno->v_mode & I_TYPE) != I_REGULAR) return(EINVAL);
if (req != F_GETLK && ltype == F_RDLCK && (mo & R_BIT) == 0) return(EBADF);
if (req != F_GETLK && ltype == F_WRLCK && (mo & W_BIT) == 0) return(EBADF);
/* Compute the first and last bytes in the lock region. */
switch (flock.l_whence) {
case SEEK_SET: first = 0; break;
case SEEK_CUR:
if (ex64hi(f->filp_pos) != 0)
panic("lock_op: position in file too high");
first = ex64lo(f->filp_pos);
break;
case SEEK_END: first = f->filp_vno->v_size; break;
default: return(EINVAL);
}
/* Check for overflow. */
if (((long) flock.l_start > 0) && ((first + flock.l_start) < first))
return(EINVAL);
if (((long) flock.l_start < 0) && ((first + flock.l_start) > first))
return(EINVAL);
first = first + flock.l_start;
last = first + flock.l_len - 1;
if (flock.l_len == 0) last = MAX_FILE_POS;
if (last < first) return(EINVAL);
/* Check if this region conflicts with any existing lock. */
empty = NULL;
for (flp = &file_lock[0]; flp < &file_lock[NR_LOCKS]; flp++) {
if (flp->lock_type == 0) {
if (empty == NULL) empty = flp;
continue; /* 0 means unused slot */
}
if (flp->lock_vnode != f->filp_vno) continue; /* different file */
if (last < flp->lock_first) continue; /* new one is in front */
if (first > flp->lock_last) continue; /* new one is afterwards */
if (ltype == F_RDLCK && flp->lock_type == F_RDLCK) continue;
if (ltype != F_UNLCK && flp->lock_pid == fp->fp_pid) continue;
/* There might be a conflict. Process it. */
conflict = 1;
if (req == F_GETLK) break;
/* If we are trying to set a lock, it just failed. */
if (ltype == F_RDLCK || ltype == F_WRLCK) {
if (req == F_SETLK) {
/* For F_SETLK, just report back failure. */
return(EAGAIN);
} else {
/* For F_SETLKW, suspend the process. */
suspend(FP_BLOCKED_ON_LOCK);
return(SUSPEND);
}
}
/* We are clearing a lock and we found something that overlaps. */
unlocking = 1;
if (first <= flp->lock_first && last >= flp->lock_last) {
flp->lock_type = 0; /* mark slot as unused */
nr_locks--; /* number of locks is now 1 less */
continue;
}
/* Part of a locked region has been unlocked. */
if (first <= flp->lock_first) {
flp->lock_first = last + 1;
continue;
}
if (last >= flp->lock_last) {
flp->lock_last = first - 1;
continue;
}
/* Bad luck. A lock has been split in two by unlocking the middle. */
if (nr_locks == NR_LOCKS) return(ENOLCK);
for (i = 0; i < NR_LOCKS; i++)
if (file_lock[i].lock_type == 0) break;
flp2 = &file_lock[i];
flp2->lock_type = flp->lock_type;
flp2->lock_pid = flp->lock_pid;
flp2->lock_vnode = flp->lock_vnode;
flp2->lock_first = last + 1;
flp2->lock_last = flp->lock_last;
flp->lock_last = first - 1;
nr_locks++;
}
if (unlocking) lock_revive();
if (req == F_GETLK) {
if (conflict) {
/* GETLK and conflict. Report on the conflicting lock. */
flock.l_type = flp->lock_type;
flock.l_whence = SEEK_SET;
flock.l_start = flp->lock_first;
flock.l_len = flp->lock_last - flp->lock_first + 1;
flock.l_pid = flp->lock_pid;
} else {
/* It is GETLK and there is no conflict. */
flock.l_type = F_UNLCK;
}
/* Copy the flock structure back to the caller. */
r = sys_datacopy(VFS_PROC_NR, (vir_bytes) &flock,
who_e, (vir_bytes) user_flock, (phys_bytes) sizeof(flock));
return(r);
}
if (ltype == F_UNLCK) return(OK); /* unlocked a region with no locks */
/* There is no conflict. If space exists, store new lock in the table. */
if (empty == NULL) return(ENOLCK); /* table full */
empty->lock_type = ltype;
empty->lock_pid = fp->fp_pid;
empty->lock_vnode = f->filp_vno;
empty->lock_first = first;
empty->lock_last = last;
nr_locks++;
return(OK);
}
/*===========================================================================*
* lock_revive *
*===========================================================================*/
PUBLIC void lock_revive()
{
/* Go find all the processes that are waiting for any kind of lock and
* revive them all. The ones that are still blocked will block again when
* they run. The others will complete. This strategy is a space-time
* tradeoff. Figuring out exactly which ones to unblock now would take
* extra code, and the only thing it would win would be some performance in
* extremely rare circumstances (namely, that somebody actually used
* locking).
*/
struct fproc *fptr;
for (fptr = &fproc[0]; fptr < &fproc[NR_PROCS]; fptr++){
if (fptr->fp_pid == PID_FREE) continue;
if (fptr->fp_blocked_on == FP_BLOCKED_ON_LOCK) {
revive(fptr->fp_endpoint, 0);
}
}
}

15
servers/avfs/lock.h Normal file
View file

@ -0,0 +1,15 @@
#ifndef __VFS_LOCK_H__
#define __VFS_LOCK_H__
/* This is the file locking table. Like the filp table, it points to the
* inode table, however, in this case to achieve advisory locking.
*/
EXTERN struct file_lock {
short lock_type; /* F_RDLOCK or F_WRLOCK; 0 means unused slot */
pid_t lock_pid; /* pid of the process holding the lock */
struct vnode *lock_vnode;
off_t lock_first; /* offset of first byte locked */
off_t lock_last; /* offset of last byte locked */
} file_lock[NR_LOCKS];
#endif

967
servers/avfs/main.c Normal file
View file

@ -0,0 +1,967 @@
/*
* a loop that gets messages requesting work, carries out the work, and sends
* replies.
*
* The entry points into this file are:
* main: main program of the Virtual File System
* reply: send a reply to a process after the requested work is done
*
*/
#include "fs.h"
#include <fcntl.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>
#include <assert.h>
#include <stdlib.h>
#include <sys/ioc_memory.h>
#include <sys/svrctl.h>
#include <sys/select.h>
#include <minix/callnr.h>
#include <minix/com.h>
#include <minix/keymap.h>
#include <minix/const.h>
#include <minix/endpoint.h>
#include <minix/safecopies.h>
#include <minix/debug.h>
#include <minix/vfsif.h>
#include "file.h"
#include "dmap.h"
#include "fproc.h"
#include "vmnt.h"
#include "vnode.h"
#include "job.h"
#include "param.h"
#if ENABLE_SYSCALL_STATS
EXTERN unsigned long calls_stats[NCALLS];
#endif
/* Thread related prototypes */
FORWARD _PROTOTYPE( void thread_cleanup_f, (struct fproc *rfp, char *f,
int l) );
#define thread_cleanup(x) thread_cleanup_f(x, __FILE__, __LINE__)
FORWARD _PROTOTYPE( void *do_async_dev_result, (void *arg) );
FORWARD _PROTOTYPE( void *do_control_msgs, (void *arg) );
FORWARD _PROTOTYPE( void *do_fs_reply, (struct job *job) );
FORWARD _PROTOTYPE( void *do_work, (void *arg) );
FORWARD _PROTOTYPE( void *do_pm, (void *arg) );
FORWARD _PROTOTYPE( void *do_init_root, (void *arg) );
FORWARD _PROTOTYPE( void handle_work, (void *(*func)(void *arg)) );
FORWARD _PROTOTYPE( void get_work, (void) );
FORWARD _PROTOTYPE( void lock_pm, (void) );
FORWARD _PROTOTYPE( void unlock_pm, (void) );
FORWARD _PROTOTYPE( void service_pm, (void) );
FORWARD _PROTOTYPE( void service_pm_postponed, (void) );
FORWARD _PROTOTYPE( int unblock, (struct fproc *rfp) );
/* SEF functions and variables. */
FORWARD _PROTOTYPE( void sef_local_startup, (void) );
FORWARD _PROTOTYPE( int sef_cb_init_fresh, (int type, sef_init_info_t *info) );
PRIVATE mutex_t pm_lock;
/*===========================================================================*
* main *
*===========================================================================*/
PUBLIC int main(void)
{
/* This is the main program of the file system. The main loop consists of
* three major activities: getting new work, processing the work, and sending
* the reply. This loop never terminates as long as the file system runs.
*/
int transid, req;
struct job *job;
/* SEF local startup. */
sef_local_startup();
printf("Started AVFS\n");
verbose = 0;
/* This is the main loop that gets work, processes it, and sends replies. */
while (TRUE) {
yield_all(); /* let other threads run */
send_work();
get_work();
transid = TRNS_GET_ID(m_in.m_type);
req = TRNS_DEL_ID(m_in.m_type);
job = worker_getjob( (thread_t) transid - VFS_TRANSID);
/* Transaction encoding changes original m_type value; restore. */
if (job == NULL)
m_in.m_type = transid;
else
m_in.m_type = req;
if (job != NULL) {
do_fs_reply(job);
continue;
} else if (who_e == PM_PROC_NR) { /* Calls from PM */
/* Special control messages from PM */
sys_worker_start(do_pm);
continue;
} else if (is_notify(call_nr)) {
/* A task notify()ed us */
sys_worker_start(do_control_msgs);
continue;
} else if (who_p < 0) { /* i.e., message comes from a task */
/* We're going to ignore this message. Tasks should
* send notify()s only.
*/
printf("VFS: ignoring message from %d (%d)\n", who_e, call_nr);
continue;
}
/* At this point we either have results from an asynchronous device
* or a new system call. In both cases a new worker thread has to be
* started and there might not be one available from the pool. This is
* not a problem (requests/replies are simply queued), except when
* they're from an FS endpoint, because these can cause a deadlock.
* handle_work() takes care of the details. */
if (IS_DEV_RS(call_nr)) {
/* We've got results for a device request */
handle_work(do_async_dev_result);
continue;
} else {
/* Normal syscall. */
handle_work(do_work);
}
}
return(OK); /* shouldn't come here */
}
/*===========================================================================*
* handle_work *
*===========================================================================*/
PRIVATE void handle_work(void *(*func)(void *arg))
{
/* Handle asynchronous device replies and new system calls. If the originating
* endpoint is an FS endpoint, take extra care not to get in deadlock. */
struct vmnt *vmp;
if ((vmp = find_vmnt(who_e)) != NULL) {
/* A back call or dev result from an FS endpoint */
if (worker_available() == 0) {
/* No worker threads available to handle call */
if (deadlock_resolving) {
/* Already trying to resolve a deadlock, can't
* handle more, sorry */
reply(who_e, EAGAIN);
return;
}
deadlock_resolving = 1;
vmp->m_flags |= VMNT_BACKCALL;
dl_worker_start(func);
return;
}
}
worker_start(func);
}
/*===========================================================================*
* do_async_dev_result *
*===========================================================================*/
PRIVATE void *do_async_dev_result(void *arg)
{
endpoint_t endpt;
struct job my_job;
my_job = *((struct job *) arg);
fp = my_job.j_fp;
m_in = my_job.j_m_in;
/* An asynchronous character driver has results for us */
if (call_nr == DEV_REVIVE) {
endpt = m_in.REP_ENDPT;
if (endpt == VFS_PROC_NR)
endpt = find_suspended_ep(m_in.m_source, m_in.REP_IO_GRANT);
if (endpt == NONE) {
printf("VFS: proc with grant %d from %d not found\n",
m_in.REP_IO_GRANT, m_in.m_source);
} else if (m_in.REP_STATUS == SUSPEND) {
printf("VFS: got SUSPEND on DEV_REVIVE: not reviving proc\n");
} else
revive(endpt, m_in.REP_STATUS);
}
else if (call_nr == DEV_OPEN_REPL) open_reply();
else if (call_nr == DEV_REOPEN_REPL) reopen_reply();
else if (call_nr == DEV_CLOSE_REPL) close_reply();
else if (call_nr == DEV_SEL_REPL1)
select_reply1(m_in.m_source, m_in.DEV_MINOR, m_in.DEV_SEL_OPS);
else if (call_nr == DEV_SEL_REPL2)
select_reply2(m_in.m_source, m_in.DEV_MINOR, m_in.DEV_SEL_OPS);
if (deadlock_resolving) {
struct vmnt *vmp;
if ((vmp = find_vmnt(who_e)) != NULL)
vmp->m_flags &= ~VMNT_BACKCALL;
if (fp != NULL && fp->fp_wtid == dl_worker.w_tid)
deadlock_resolving = 0;
}
thread_cleanup(NULL);
return(NULL);
}
/*===========================================================================*
* do_control_msgs *
*===========================================================================*/
PRIVATE void *do_control_msgs(void *arg)
{
struct job my_job;
my_job = *((struct job *) arg);
fp = my_job.j_fp;
m_in = my_job.j_m_in;
/* Check for special control messages. */
if (who_e == CLOCK) {
/* Alarm timer expired. Used only for select(). Check it. */
expire_timers(m_in.NOTIFY_TIMESTAMP);
} else if (who_e == DS_PROC_NR) {
/* DS notifies us of an event. */
ds_event();
} else {
/* Device notifies us of an event. */
dev_status(&m_in);
}
thread_cleanup(NULL);
return(NULL);
}
/*===========================================================================*
* do_fs_reply *
*===========================================================================*/
PRIVATE void *do_fs_reply(struct job *job)
{
struct vmnt *vmp;
struct fproc *rfp;
if (verbose) printf("VFS: reply to request!\n");
if ((vmp = find_vmnt(who_e)) == NULL)
panic("Couldn't find vmnt for endpoint %d", who_e);
rfp = job->j_fp;
if (rfp == NULL || rfp->fp_endpoint == NONE) {
printf("VFS: spurious reply from %d\n", who_e);
return(NULL);
}
*rfp->fp_sendrec = m_in;
vmp->m_comm.c_cur_reqs--; /* We've got our reply, make room for others */
worker_signal(worker_get(rfp->fp_wtid));/* Continue this worker thread */
return(NULL);
}
/*===========================================================================*
* lock_pm *
*===========================================================================*/
PRIVATE void lock_pm(void)
{
message org_m_in;
struct fproc *org_fp;
struct worker_thread *org_self;
/* First try to get it right off the bat */
if (mutex_trylock(&pm_lock) == 0)
return;
org_m_in = m_in;
org_fp = fp;
org_self = self;
if (mutex_lock(&pm_lock) != 0)
panic("Could not obtain lock on pm\n");
m_in = org_m_in;
fp = org_fp;
self = org_self;
}
/*===========================================================================*
* unlock_pm *
*===========================================================================*/
PRIVATE void unlock_pm(void)
{
if (mutex_unlock(&pm_lock) != 0)
panic("Could not release lock on pm");
}
/*===========================================================================*
* do_pm *
*===========================================================================*/
PRIVATE void *do_pm(void *arg)
{
struct job my_job;
struct fproc *rfp;
my_job = *((struct job *) arg);
rfp = fp = my_job.j_fp;
m_in = my_job.j_m_in;
lock_pm();
service_pm();
unlock_pm();
thread_cleanup(NULL);
return(NULL);
}
/*===========================================================================*
* do_pending_pipe *
*===========================================================================*/
PRIVATE void *do_pending_pipe(void *arg)
{
int r, fd_nr;
struct filp *f;
struct job my_job;
tll_access_t locktype;
my_job = *((struct job *) arg);
fp = my_job.j_fp;
m_in = my_job.j_m_in;
lock_proc(fp, 1 /* force lock */);
fd_nr = fp->fp_block_fd;
locktype = (call_nr == READ) ? VNODE_READ : VNODE_WRITE;
f = get_filp(fd_nr, locktype);
assert(f != NULL);
r = rw_pipe((call_nr == READ) ? READING : WRITING, who_e, fd_nr, f,
fp->fp_buffer, fp->fp_nbytes);
if (r != SUSPEND) /* Do we have results to report? */
reply(who_e, r);
unlock_filp(f);
thread_cleanup(fp);
return(NULL);
}
/*===========================================================================*
* do_dummy *
*===========================================================================*/
PUBLIC void *do_dummy(void *arg)
{
struct job my_job;
int r;
my_job = *((struct job *) arg);
fp = my_job.j_fp;
m_in = my_job.j_m_in;
if ((r = mutex_trylock(&fp->fp_lock)) == 0) {
thread_cleanup(fp);
} else {
/* Proc is busy, let that worker thread carry out the work */
thread_cleanup(NULL);
}
return(NULL);
}
/*===========================================================================*
* do_work *
*===========================================================================*/
PRIVATE void *do_work(void *arg)
{
int error;
struct job my_job;
my_job = *((struct job *) arg);
fp = my_job.j_fp;
m_in = my_job.j_m_in;
lock_proc(fp, 0); /* This proc is busy */
if (call_nr == MAPDRIVER) {
error = do_mapdriver();
} else if (call_nr == COMMON_GETSYSINFO) {
error = do_getsysinfo();
} else if (IS_PFS_VFS_RQ(call_nr)) {
if (who_e != PFS_PROC_NR) {
printf("VFS: only PFS is allowed to make nested VFS calls\n");
error = ENOSYS;
} else if (call_nr <= PFS_BASE || call_nr >= PFS_BASE + PFS_NREQS) {
error = ENOSYS;
} else {
call_nr -= PFS_BASE;
error = (*pfs_call_vec[call_nr])();
}
} else {
/* We're dealing with a POSIX system call from a normal
* process. Call the internal function that does the work.
*/
if (call_nr < 0 || call_nr >= NCALLS) {
error = ENOSYS;
} else if (fp->fp_flags & FP_EXITING) {
error = SUSPEND;
} else if (fp->fp_pid == PID_FREE) {
/* Process vanished before we were able to handle request.
* Replying has no use. Just drop it. */
error = SUSPEND;
} else {
#if ENABLE_SYSCALL_STATS
calls_stats[call_nr]++;
#endif
error = (*call_vec[call_nr])();
}
}
/* Copy the results back to the user and send reply. */
if (error != SUSPEND) {
if (deadlock_resolving) {
struct vmnt *vmp;
if ((vmp = find_vmnt(who_e)) != NULL)
vmp->m_flags &= ~VMNT_BACKCALL;
if (fp->fp_wtid == dl_worker.w_tid)
deadlock_resolving = 0;
}
reply(who_e, error );
}
thread_cleanup(fp);
return(NULL);
}
/*===========================================================================*
* sef_local_startup *
*===========================================================================*/
PRIVATE void sef_local_startup()
{
/* Register init callbacks. */
sef_setcb_init_fresh(sef_cb_init_fresh);
sef_setcb_init_restart(sef_cb_init_fail);
/* No live update support for now. */
/* Let SEF perform startup. */
sef_startup();
}
/*===========================================================================*
* sef_cb_init_fresh *
*===========================================================================*/
PRIVATE int sef_cb_init_fresh(int type, sef_init_info_t *info)
{
/* Initialize the virtual file server. */
int s, i;
struct fproc *rfp;
message mess;
struct rprocpub rprocpub[NR_BOOT_PROCS];
force_sync = 0;
/* Initialize proc endpoints to NONE */
for (rfp = &fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {
rfp->fp_endpoint = NONE;
rfp->fp_pid = PID_FREE;
}
/* Initialize the process table with help of the process manager messages.
* Expect one message for each system process with its slot number and pid.
* When no more processes follow, the magic process number NONE is sent.
* Then, stop and synchronize with the PM.
*/
do {
if ((s = sef_receive(PM_PROC_NR, &mess)) != OK)
panic("VFS: couldn't receive from PM: %d", s);
if (mess.m_type != PM_INIT)
panic("unexpected message from PM: %d", mess.m_type);
if (NONE == mess.PM_PROC) break;
rfp = &fproc[mess.PM_SLOT];
rfp->fp_flags = FP_NOFLAGS;
rfp->fp_pid = mess.PM_PID;
rfp->fp_endpoint = mess.PM_PROC;
rfp->fp_grant = GRANT_INVALID;
rfp->fp_blocked_on = FP_BLOCKED_ON_NONE;
rfp->fp_realuid = (uid_t) SYS_UID;
rfp->fp_effuid = (uid_t) SYS_UID;
rfp->fp_realgid = (gid_t) SYS_GID;
rfp->fp_effgid = (gid_t) SYS_GID;
rfp->fp_umask = ~0;
} while (TRUE); /* continue until process NONE */
mess.m_type = OK; /* tell PM that we succeeded */
s = send(PM_PROC_NR, &mess); /* send synchronization message */
/* All process table entries have been set. Continue with initialization. */
fp = &fproc[_ENDPOINT_P(VFS_PROC_NR)];/* During init all communication with
* FSes is on behalf of myself */
init_dmap(); /* Initialize device table. */
system_hz = sys_hz();
/* Map all the services in the boot image. */
if ((s = sys_safecopyfrom(RS_PROC_NR, info->rproctab_gid, 0,
(vir_bytes) rprocpub, sizeof(rprocpub), S)) != OK){
panic("sys_safecopyfrom failed: %d", s);
}
for (i = 0; i < NR_BOOT_PROCS; i++) {
if (rprocpub[i].in_use) {
if ((s = map_service(&rprocpub[i])) != OK) {
panic("VFS: unable to map service: %d", s);
}
}
}
/* Subscribe to driver events for VFS drivers. */
if ((s = ds_subscribe("drv\\.vfs\\..*", DSF_INITIAL | DSF_OVERWRITE) != OK)){
panic("VFS: can't subscribe to driver events (%d)", s);
}
#if DO_SANITYCHECKS
FIXME("VFS: DO_SANITYCHECKS is on");
#endif
/* Initialize worker threads */
for (i = 0; i < NR_WTHREADS; i++) {
worker_init(&workers[i]);
}
worker_init(&sys_worker); /* exclusive system worker thread */
worker_init(&dl_worker); /* exclusive worker thread to resolve deadlocks */
/* Initialize global locks */
if (mthread_mutex_init(&pm_lock, NULL) != 0)
panic("VFS: couldn't initialize pm lock mutex");
if (mthread_mutex_init(&exec_lock, NULL) != 0)
panic("VFS: couldn't initialize exec lock");
if (mthread_mutex_init(&bsf_lock, NULL) != 0)
panic("VFS: couldn't initialize block special file lock");
/* Initialize event resources for boot procs and locks for all procs */
for (rfp = &fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {
assert(mutex_init(&rfp->fp_lock, NULL) == 0);
#if LOCK_DEBUG
rfp->fp_vp_rdlocks = 0;
rfp->fp_vmnt_rdlocks = 0;
#endif
}
init_vnodes(); /* init vnodes */
init_vmnts(); /* init vmnt structures */
init_select(); /* init select() structures */
init_filps(); /* Init filp structures */
mount_pfs(); /* mount Pipe File Server */
worker_start(do_init_root); /* mount initial ramdisk as file system root */
return(OK);
}
/*===========================================================================*
* do_init_root *
*===========================================================================*/
PRIVATE void *do_init_root(void *arg)
{
struct fproc *rfp;
struct job my_job;
int r;
char *mount_label = "fs_imgrd"; /* FIXME: obtain this from RS */
my_job = *((struct job *) arg);
fp = my_job.j_fp;
lock_proc(fp, 1 /* force lock */); /* This proc is busy */
lock_pm();
/* Initialize process directories. mount_fs will set them to the correct
* values */
for (rfp = &fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {
FD_ZERO(&(rfp->fp_filp_inuse));
rfp->fp_rd = NULL;
rfp->fp_wd = NULL;
}
if ((r = mount_fs(DEV_IMGRD, "/", MFS_PROC_NR, 0, mount_label)) != OK)
panic("Failed to initialize root");
unlock_pm();
thread_cleanup(fp);
return(NULL);
}
/*===========================================================================*
* lock_proc *
*===========================================================================*/
PUBLIC void lock_proc(struct fproc *rfp, int force_lock)
{
int r;
message org_m_in;
struct fproc *org_fp;
struct worker_thread *org_self;
r = mutex_trylock(&rfp->fp_lock);
/* Were we supposed to obtain this lock immediately? */
if (force_lock) {
assert(r == 0);
return;
}
if (r == 0) return;
org_m_in = m_in;
org_fp = fp;
org_self = self;
assert(mutex_lock(&rfp->fp_lock) == 0);
m_in = org_m_in;
fp = org_fp;
self = org_self;
}
/*===========================================================================*
* unlock_proc *
*===========================================================================*/
PUBLIC void unlock_proc(struct fproc *rfp)
{
int r;
if ((r = mutex_unlock(&rfp->fp_lock)) != 0)
panic("Failed to unlock: %d", r);
}
/*===========================================================================*
* thread_cleanup *
*===========================================================================*/
PRIVATE void thread_cleanup_f(struct fproc *rfp, char *f, int l)
{
/* Clean up worker thread. Skip parts if this thread is not associated
* with a particular process (i.e., rfp is NULL) */
if (verbose) printf("AVFS: thread %d is cleaning up for fp=%p (%s:%d)\n",
mthread_self(), rfp, f, l);
assert(mthread_self() != -1);
#if LOCK_DEBUG
if (rfp != NULL) {
check_filp_locks_by_me();
check_vnode_locks_by_me(rfp);
check_vmnt_locks_by_me(rfp);
}
#endif
if (rfp != NULL && rfp->fp_flags & FP_PM_PENDING) { /* Postponed PM call */
m_in = rfp->fp_job.j_m_in;
rfp->fp_flags &= ~FP_PM_PENDING;
service_pm_postponed();
}
#if LOCK_DEBUG
if (rfp != NULL) {
check_filp_locks_by_me();
check_vnode_locks_by_me(rfp);
check_vmnt_locks_by_me(rfp);
}
#endif
if (rfp != NULL) unlock_proc(rfp);
#if 0
mthread_exit(NULL);
#endif
}
/*===========================================================================*
* get_work *
*===========================================================================*/
PRIVATE void get_work()
{
/* Normally wait for new input. However, if 'reviving' is
* nonzero, a suspended process must be awakened.
*/
int r, found_one, proc_p;
register struct fproc *rp;
if (verbose) printf("VFS: get_work looking for work\n");
while (reviving != 0) {
found_one = FALSE;
/* Find a suspended process. */
for (rp = &fproc[0]; rp < &fproc[NR_PROCS]; rp++)
if (rp->fp_pid != PID_FREE && (rp->fp_flags & FP_REVIVED)) {
found_one = TRUE; /* Found a suspended process */
if (unblock(rp))
return; /* So main loop can process job */
send_work();
}
if (!found_one) /* Consistency error */
panic("VFS: get_work couldn't revive anyone");
}
for(;;) {
/* Normal case. No one to revive. Get a useful request. */
if ((r = sef_receive(ANY, &m_in)) != OK) {
panic("VFS: sef_receive error: %d", r);
}
proc_p = _ENDPOINT_P(m_in.m_source);
if (proc_p < 0) fp = NULL;
else fp = &fproc[proc_p];
if (m_in.m_type == EDEADSRCDST) return; /* Failed 'sendrec' */
if (verbose) printf("AVFS: got work from %d (fp=%p)\n", m_in.m_source,
fp);
/* Negative who_p is never used to access the fproc array. Negative
* numbers (kernel tasks) are treated in a special way.
*/
if (who_p >= (int)(sizeof(fproc) / sizeof(struct fproc)))
panic("receive process out of range: %d", who_p);
if (who_p >= 0 && fproc[who_p].fp_endpoint == NONE) {
printf("VFS: ignoring request from %d, endpointless slot %d (%d)\n",
m_in.m_source, who_p, m_in.m_type);
continue;
}
/* Internal consistency check; our mental image of process numbers and
* endpoints must match with how the rest of the system thinks of them.
*/
if (who_p >= 0 && fproc[who_p].fp_endpoint != who_e) {
if (fproc[who_p].fp_endpoint == NONE)
printf("slot unknown even\n");
printf("VFS: receive endpoint inconsistent (source %d, who_p "
"%d, stored ep %d, who_e %d).\n", m_in.m_source, who_p,
fproc[who_p].fp_endpoint, who_e);
panic("VFS: inconsistent endpoint ");
}
return;
}
}
/*===========================================================================*
* reply *
*===========================================================================*/
PUBLIC void reply(whom, result)
int whom; /* process to reply to */
int result; /* result of the call (usually OK or error #) */
{
/* Send a reply to a user process. If the send fails, just ignore it. */
int r;
m_out.reply_type = result;
r = sendnb(whom, &m_out);
if (r != OK) {
printf("VFS: couldn't send reply %d to %d: %d\n", result, whom, r);
panic("Yikes %d", call_nr);
}
}
/*===========================================================================*
* service_pm_postponed *
*===========================================================================*/
PRIVATE void service_pm_postponed(void)
{
int r;
vir_bytes pc;
#if 0
printf("executing postponed: ");
if (call_nr == PM_EXEC) printf("PM_EXEC");
if (call_nr == PM_EXIT) printf("PM_EXIT");
if (call_nr == PM_DUMPCORE) printf("PM_DUMPCORE");
printf("\n");
#endif
switch(call_nr) {
case PM_EXEC:
r = pm_exec(m_in.PM_PROC, m_in.PM_PATH, m_in.PM_PATH_LEN,
m_in.PM_FRAME, m_in.PM_FRAME_LEN, &pc);
/* Reply status to PM */
m_out.m_type = PM_EXEC_REPLY;
m_out.PM_PROC = m_in.PM_PROC;
m_out.PM_PC = (void*)pc;
m_out.PM_STATUS = r;
break;
case PM_EXIT:
pm_exit(m_in.PM_PROC);
/* Reply dummy status to PM for synchronization */
m_out.m_type = PM_EXIT_REPLY;
m_out.PM_PROC = m_in.PM_PROC;
break;
case PM_DUMPCORE:
r = pm_dumpcore(m_in.PM_PROC,
NULL /* (struct mem_map *) m_in.PM_SEGPTR */);
/* Reply status to PM */
m_out.m_type = PM_CORE_REPLY;
m_out.PM_PROC = m_in.PM_PROC;
m_out.PM_STATUS = r;
break;
default:
panic("Unhandled postponed PM call %d", m_in.m_type);
}
r = send(PM_PROC_NR, &m_out);
if (r != OK)
panic("service_pm_postponed: send failed: %d", r);
}
/*===========================================================================*
* service_pm *
*===========================================================================*/
PRIVATE void service_pm()
{
int r, slot;
if (verbose) printf("service_pm: %d (%d)\n", call_nr, mthread_self());
switch (call_nr) {
case PM_SETUID:
pm_setuid(m_in.PM_PROC, m_in.PM_EID, m_in.PM_RID);
m_out.m_type = PM_SETUID_REPLY;
m_out.PM_PROC = m_in.PM_PROC;
break;
case PM_SETGID:
pm_setgid(m_in.PM_PROC, m_in.PM_EID, m_in.PM_RID);
m_out.m_type = PM_SETGID_REPLY;
m_out.PM_PROC = m_in.PM_PROC;
break;
case PM_SETSID:
pm_setsid(m_in.PM_PROC);
m_out.m_type = PM_SETSID_REPLY;
m_out.PM_PROC = m_in.PM_PROC;
break;
case PM_EXEC:
case PM_EXIT:
case PM_DUMPCORE:
okendpt(m_in.PM_PROC, &slot);
fp = &fproc[slot];
assert(!(fp->fp_flags & FP_PENDING));
fp->fp_job.j_m_in = m_in;
fp->fp_flags |= FP_PM_PENDING;
#if 0
printf("Postponing: ");
if (call_nr == PM_EXEC) printf("PM_EXEC");
if (call_nr == PM_EXIT) printf("PM_EXIT");
if (call_nr == PM_DUMPCORE) printf("PM_DUMPCORE");
printf("\n");
#endif
/* PM requests on behalf of a proc are handled after the system call
* that might be in progress for that proc has finished. If the proc
* is not busy, we start a dummy call */
if (!(fp->fp_flags & FP_PENDING) && mutex_trylock(&fp->fp_lock) == 0) {
mutex_unlock(&fp->fp_lock);
worker_start(do_dummy);
yield();
}
return;
case PM_FORK:
case PM_SRV_FORK:
pm_fork(m_in.PM_PPROC, m_in.PM_PROC, m_in.PM_CPID);
m_out.m_type = (call_nr == PM_FORK) ? PM_FORK_REPLY : PM_SRV_FORK_REPLY;
m_out.PM_PROC = m_in.PM_PROC;
break;
case PM_SETGROUPS:
pm_setgroups(m_in.PM_PROC, m_in.PM_GROUP_NO, m_in.PM_GROUP_ADDR);
m_out.m_type = PM_SETGROUPS_REPLY;
m_out.PM_PROC = m_in.PM_PROC;
break;
case PM_UNPAUSE:
unpause(m_in.PM_PROC);
m_out.m_type = PM_UNPAUSE_REPLY;
m_out.PM_PROC = m_in.PM_PROC;
break;
case PM_REBOOT:
pm_reboot();
/* Reply dummy status to PM for synchronization */
m_out.m_type = PM_REBOOT_REPLY;
break;
default:
printf("VFS: don't know how to handle PM request %d\n", call_nr);
return;
}
r = send(PM_PROC_NR, &m_out);
if (r != OK)
panic("service_pm: send failed: %d", r);
}
/*===========================================================================*
* unblock *
*===========================================================================*/
PRIVATE int unblock(rfp)
struct fproc *rfp;
{
int blocked_on;
fp = rfp;
blocked_on = rfp->fp_blocked_on;
m_in.m_type = rfp->fp_block_callnr;
m_in.fd = rfp->fp_block_fd;
m_in.buffer = rfp->fp_buffer;
m_in.nbytes = rfp->fp_nbytes;
rfp->fp_blocked_on = FP_BLOCKED_ON_NONE; /* no longer blocked */
rfp->fp_flags &= ~FP_REVIVED;
reviving--;
assert(reviving >= 0);
/* This should be a pipe I/O, not a device I/O. If it is, it'll 'leak'
* grants.
*/
assert(!GRANT_VALID(rfp->fp_grant));
/* Pending pipe reads/writes can be handled directly */
if (blocked_on == FP_BLOCKED_ON_PIPE) {
worker_start(do_pending_pipe);
yield(); /* Give thread a chance to run */
return(0); /* Retrieve more work */
}
return(1); /* We've unblocked a process */
}

617
servers/avfs/misc.c Normal file
View file

@ -0,0 +1,617 @@
/* This file contains a collection of miscellaneous procedures. Some of them
* perform simple system calls. Some others do a little part of system calls
* that are mostly performed by the Memory Manager.
*
* The entry points into this file are
* do_dup: perform the DUP system call
* do_fcntl: perform the FCNTL system call
* do_sync: perform the SYNC system call
* do_fsync: perform the FSYNC system call
* pm_reboot: sync disks and prepare for shutdown
* pm_fork: adjust the tables after PM has performed a FORK system call
* do_exec: handle files with FD_CLOEXEC on after PM has done an EXEC
* do_exit: a process has exited; note that in the tables
* do_set: set uid or gid for some process
* do_revive: revive a process that was waiting for something (e.g. TTY)
* do_svrctl: file system control
* do_getsysinfo: request copy of FS data structure
* pm_dumpcore: create a core dump
*/
#include "fs.h"
#include <fcntl.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <minix/callnr.h>
#include <minix/safecopies.h>
#include <minix/endpoint.h>
#include <minix/com.h>
#include <minix/sysinfo.h>
#include <minix/u64.h>
#include <sys/ptrace.h>
#include <sys/svrctl.h>
#include "file.h"
#include "fproc.h"
#include "dmap.h"
#include <minix/vfsif.h>
#include "vnode.h"
#include "vmnt.h"
#include "param.h"
#define CORE_NAME "core"
#define CORE_MODE 0777 /* mode to use on core image files */
#if ENABLE_SYSCALL_STATS
PUBLIC unsigned long calls_stats[NCALLS];
#endif
FORWARD _PROTOTYPE( void free_proc, (struct fproc *freed, int flags) );
/*
FORWARD _PROTOTYPE( int dumpcore, (int proc_e, struct mem_map *seg_ptr) );
FORWARD _PROTOTYPE( int write_bytes, (struct inode *rip, off_t off,
char *buf, size_t bytes) );
FORWARD _PROTOTYPE( int write_seg, (struct inode *rip, off_t off, int proc_e,
int seg, off_t seg_off, phys_bytes seg_bytes) );
*/
/*===========================================================================*
* do_getsysinfo *
*===========================================================================*/
PUBLIC int do_getsysinfo()
{
vir_bytes src_addr, dst_addr;
size_t len;
/* Only su may call do_getsysinfo. This call may leak information (and is not
* stable enough to be part of the API/ABI).
*/
if (!super_user) return(EPERM);
/* This call should no longer be used by user applications. In the future,
* requests from non-system processes should be denied. For now, just warn.
*/
if (call_nr == GETSYSINFO) {
printf("VFS: obsolete call of do_getsysinfo() by proc %d\n",
fp->fp_endpoint);
}
switch(m_in.info_what) {
case SI_PROC_TAB:
src_addr = (vir_bytes) fproc;
len = sizeof(struct fproc) * NR_PROCS;
break;
case SI_DMAP_TAB:
src_addr = (vir_bytes) dmap;
len = sizeof(struct dmap) * NR_DEVICES;
break;
#if ENABLE_SYSCALL_STATS
case SI_CALL_STATS:
src_addr = (vir_bytes) calls_stats;
len = sizeof(calls_stats);
break;
#endif
default:
return(EINVAL);
}
dst_addr = (vir_bytes) m_in.info_where;
return sys_datacopy(SELF, src_addr, who_e, dst_addr, len);
}
/*===========================================================================*
* do_dup *
*===========================================================================*/
PUBLIC int do_dup()
{
/* Perform the dup(fd) or dup2(fd,fd2) system call. These system calls are
* obsolete. In fact, it is not even possible to invoke them using the
* current library because the library routines call fcntl(). They are
* provided to permit old binary programs to continue to run.
*/
register int rfd;
register struct filp *f;
int r = OK;
/* Is the file descriptor valid? */
rfd = m_in.fd & ~DUP_MASK; /* kill off dup2 bit, if on */
if ((f = get_filp(rfd, VNODE_READ)) == NULL) return(err_code);
/* Distinguish between dup and dup2. */
if (m_in.fd == rfd) { /* bit not on */
/* dup(fd) */
r = get_fd(0, 0, &m_in.fd2, NULL);
} else {
/* dup2(old_fd, new_fd) */
if (m_in.fd2 < 0 || m_in.fd2 >= OPEN_MAX) {
r = EBADF;
} else if (rfd == m_in.fd2) { /* ignore the call: dup2(x, x) */
r = m_in.fd2;
} else {
/* All is fine, close new_fd if necessary */
m_in.fd = m_in.fd2; /* prepare to close fd2 */
unlock_filp(f); /* or it might deadlock on do_close */
(void) do_close(); /* cannot fail */
f = get_filp(rfd, VNODE_READ); /* lock old_fd again */
}
}
if (r == OK) {
/* Success. Set up new file descriptors. */
f->filp_count++;
fp->fp_filp[m_in.fd2] = f;
FD_SET(m_in.fd2, &fp->fp_filp_inuse);
r = m_in.fd2;
}
unlock_filp(f);
return(r);
}
/*===========================================================================*
* do_fcntl *
*===========================================================================*/
PUBLIC int do_fcntl()
{
/* Perform the fcntl(fd, request, ...) system call. */
register struct filp *f;
int new_fd, fl, r = OK;
tll_access_t locktype;
/* Is the file descriptor valid? */
locktype = (m_in.request == F_FREESP) ? VNODE_WRITE : VNODE_READ;
if ((f = get_filp(m_in.fd, locktype)) == NULL) return(err_code);
switch (m_in.request) {
case F_DUPFD:
/* This replaces the old dup() system call. */
if (m_in.addr < 0 || m_in.addr >= OPEN_MAX) r = EINVAL;
else if ((r = get_fd(m_in.addr, 0, &new_fd, NULL)) == OK) {
f->filp_count++;
fp->fp_filp[new_fd] = f;
r = new_fd;
}
break;
case F_GETFD:
/* Get close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */
r = FD_ISSET(m_in.fd, &fp->fp_cloexec_set) ? FD_CLOEXEC : 0;
break;
case F_SETFD:
/* Set close-on-exec flag (FD_CLOEXEC in POSIX Table 6-2). */
if(m_in.addr & FD_CLOEXEC)
FD_SET(m_in.fd, &fp->fp_cloexec_set);
else
FD_CLR(m_in.fd, &fp->fp_cloexec_set);
break;
case F_GETFL:
/* Get file status flags (O_NONBLOCK and O_APPEND). */
fl = f->filp_flags & (O_NONBLOCK | O_APPEND | O_ACCMODE);
r = fl;
break;
case F_SETFL:
/* Set file status flags (O_NONBLOCK and O_APPEND). */
fl = O_NONBLOCK | O_APPEND | O_REOPEN;
f->filp_flags = (f->filp_flags & ~fl) | (m_in.addr & fl);
break;
case F_GETLK:
case F_SETLK:
case F_SETLKW:
/* Set or clear a file lock. */
r = lock_op(f, m_in.request);
break;
case F_FREESP:
{
/* Free a section of a file. Preparation is done here, actual freeing
* in freesp_inode().
*/
off_t start, end;
struct flock flock_arg;
signed long offset;
/* Check if it's a regular file. */
if ((f->filp_vno->v_mode & I_TYPE) != I_REGULAR) r = EINVAL;
else if (!(f->filp_mode & W_BIT)) r = EBADF;
else
/* Copy flock data from userspace. */
r = sys_datacopy(who_e, (vir_bytes) m_in.name1, SELF,
(vir_bytes) &flock_arg,
(phys_bytes) sizeof(flock_arg));
if (r != OK) break;
/* Convert starting offset to signed. */
offset = (signed long) flock_arg.l_start;
/* Figure out starting position base. */
switch(flock_arg.l_whence) {
case SEEK_SET: start = 0; break;
case SEEK_CUR:
if (ex64hi(f->filp_pos) != 0)
panic("do_fcntl: position in file too high");
start = ex64lo(f->filp_pos);
break;
case SEEK_END: start = f->filp_vno->v_size; break;
default: r = EINVAL;
}
if (r != OK) break;
/* Check for overflow or underflow. */
if (offset > 0 && start + offset < start) r = EINVAL;
else if (offset < 0 && start + offset > start) r = EINVAL;
else {
start += offset;
if (start < 0) r = EINVAL;
}
if (r != OK) break;
if (flock_arg.l_len != 0) {
if (start >= f->filp_vno->v_size) r = EINVAL;
else if ((end = start + flock_arg.l_len) <= start) r = EINVAL;
else if (end > f->filp_vno->v_size) end = f->filp_vno->v_size;
} else {
end = 0;
}
if (r != OK) break;
r = req_ftrunc(f->filp_vno->v_fs_e, f->filp_vno->v_inode_nr,start,end);
if (r == OK && flock_arg.l_len == 0)
f->filp_vno->v_size = start;
break;
}
default:
r = EINVAL;
}
unlock_filp(f);
return(r);
}
/*===========================================================================*
* do_sync *
*===========================================================================*/
PUBLIC int do_sync()
{
struct vmnt *vmp;
for (vmp = &vmnt[0]; vmp < &vmnt[NR_MNTS]; ++vmp) {
lock_vmnt(vmp, VMNT_EXCL);
if (vmp->m_dev != NO_DEV && vmp->m_fs_e != NONE)
req_sync(vmp->m_fs_e);
unlock_vmnt(vmp);
}
return(OK);
}
/*===========================================================================*
* do_fsync *
*===========================================================================*/
PUBLIC int do_fsync()
{
/* Perform the fsync() system call. For now, don't be unnecessarily smart. */
struct filp *rfilp;
struct vmnt *vmp;
dev_t dev;
if ((rfilp = get_filp(m_in.m1_i1, VNODE_READ)) == NULL) return(err_code);
dev = rfilp->filp_vno->v_dev;
for (vmp = &vmnt[0]; vmp < &vmnt[NR_MNTS]; ++vmp) {
lock_vmnt(vmp, VMNT_EXCL);
if (vmp->m_dev != NO_DEV && vmp->m_dev == dev && vmp->m_fs_e != NONE)
req_sync(vmp->m_fs_e);
unlock_vmnt(vmp);
}
unlock_filp(rfilp);
return(OK);
}
/*===========================================================================*
* pm_reboot *
*===========================================================================*/
PUBLIC void pm_reboot()
{
/* Perform the VFS side of the reboot call. */
int i;
struct fproc *rfp;
do_sync();
/* Do exit processing for all leftover processes and servers,
* but don't actually exit them (if they were really gone, PM
* will tell us about it).
*/
for (i = 0; i < NR_PROCS; i++) {
/* Don't just free the proc right away, but let it finish what it was
* doing first */
rfp = &fproc[i];
if (rfp->fp_endpoint != NONE) {
lock_proc(rfp, 0);
free_proc(rfp, 0);
unlock_proc(rfp);
}
}
unmount_all();
}
/*===========================================================================*
* pm_fork *
*===========================================================================*/
PUBLIC void pm_fork(pproc, cproc, cpid)
int pproc; /* Parent process */
int cproc; /* Child process */
int cpid; /* Child process id */
{
/* Perform those aspects of the fork() system call that relate to files.
* In particular, let the child inherit its parent's file descriptors.
* The parent and child parameters tell who forked off whom. The file
* system uses the same slot numbers as the kernel. Only PM makes this call.
*/
register struct fproc *cp, *pp;
int i, parentno, childno;
mutex_t c_fp_lock;
/* Check up-to-dateness of fproc. */
okendpt(pproc, &parentno);
/* PM gives child endpoint, which implies process slot information.
* Don't call isokendpt, because that will verify if the endpoint
* number is correct in fproc, which it won't be.
*/
childno = _ENDPOINT_P(cproc);
if (childno < 0 || childno >= NR_PROCS)
panic("VFS: bogus child for forking: %d", m_in.child_endpt);
if (fproc[childno].fp_pid != PID_FREE)
panic("VFS: forking on top of in-use child: %d", childno);
/* Copy the parent's fproc struct to the child. */
/* However, the mutex variables belong to a slot and must stay the same. */
c_fp_lock = fproc[childno].fp_lock;
fproc[childno] = fproc[parentno];
fproc[childno].fp_lock = c_fp_lock;
/* Increase the counters in the 'filp' table. */
cp = &fproc[childno];
pp = &fproc[parentno];
for (i = 0; i < OPEN_MAX; i++)
if (cp->fp_filp[i] != NULL) cp->fp_filp[i]->filp_count++;
/* Fill in new process and endpoint id. */
cp->fp_pid = cpid;
cp->fp_endpoint = cproc;
/* A forking process never has an outstanding grant, as it isn't blocking on
* I/O. */
if(GRANT_VALID(pp->fp_grant)) {
panic("VFS: fork: pp (endpoint %d) has grant %d\n", pp->fp_endpoint,
pp->fp_grant);
}
if(GRANT_VALID(cp->fp_grant)) {
panic("VFS: fork: cp (endpoint %d) has grant %d\n", cp->fp_endpoint,
cp->fp_grant);
}
/* A child is not a process leader, not being revived, etc. */
cp->fp_flags = FP_NOFLAGS;
/* Record the fact that both root and working dir have another user. */
if (cp->fp_rd) dup_vnode(cp->fp_rd);
if (cp->fp_wd) dup_vnode(cp->fp_wd);
}
/*===========================================================================*
* free_proc *
*===========================================================================*/
PRIVATE void free_proc(struct fproc *exiter, int flags)
{
int i;
register struct fproc *rfp;
register struct filp *rfilp;
register struct vnode *vp;
dev_t dev;
if (exiter->fp_endpoint == NONE)
panic("free_proc: already free");
if (fp_is_blocked(exiter))
unpause(exiter->fp_endpoint);
/* Loop on file descriptors, closing any that are open. */
for (i = 0; i < OPEN_MAX; i++) {
(void) close_fd(exiter, i);
}
/* Check if any process is SUSPENDed on this driver.
* If a driver exits, unmap its entries in the dmap table.
* (unmapping has to be done after the first step, because the
* dmap table is used in the first step.)
*/
unsuspend_by_endpt(exiter->fp_endpoint);
/* Release root and working directories. */
if (exiter->fp_rd) { put_vnode(exiter->fp_rd); exiter->fp_rd = NULL; }
if (exiter->fp_wd) { put_vnode(exiter->fp_wd); exiter->fp_wd = NULL; }
/* The rest of these actions is only done when processes actually exit. */
if (!(flags & FP_EXITING)) return;
/* Invalidate endpoint number for error and sanity checks. */
exiter->fp_endpoint = NONE;
exiter->fp_flags |= FP_EXITING;
/* If a session leader exits and it has a controlling tty, then revoke
* access to its controlling tty from all other processes using it.
*/
if ((exiter->fp_flags & FP_SESLDR) && exiter->fp_tty != 0) {
dev = exiter->fp_tty;
for (rfp = &fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {
if(rfp->fp_pid == PID_FREE) continue;
if (rfp->fp_tty == dev) rfp->fp_tty = 0;
for (i = 0; i < OPEN_MAX; i++) {
if ((rfilp = rfp->fp_filp[i]) == NULL) continue;
if (rfilp->filp_mode == FILP_CLOSED) continue;
vp = rfilp->filp_vno;
if ((vp->v_mode & I_TYPE) != I_CHAR_SPECIAL) continue;
if ((dev_t) vp->v_sdev != dev) continue;
lock_filp(rfilp, VNODE_READ);
(void) dev_close(dev, rfilp-filp); /* Ignore any errors, even
* SUSPEND. */
rfilp->filp_mode = FILP_CLOSED;
unlock_filp(rfilp);
}
}
}
/* Exit done. Mark slot as free. */
exiter->fp_pid = PID_FREE;
if (exiter->fp_flags & FP_PENDING)
pending--; /* No longer pending job, not going to do it */
exiter->fp_flags = FP_NOFLAGS;
}
/*===========================================================================*
* pm_exit *
*===========================================================================*/
PUBLIC void pm_exit(proc)
int proc;
{
/* Perform the file system portion of the exit(status) system call. */
int exitee_p;
/* Nevertheless, pretend that the call came from the user. */
okendpt(proc, &exitee_p);
fp = &fproc[exitee_p];
free_proc(fp, FP_EXITING);
}
/*===========================================================================*
* pm_setgid *
*===========================================================================*/
PUBLIC void pm_setgid(proc_e, egid, rgid)
int proc_e;
int egid;
int rgid;
{
register struct fproc *tfp;
int slot;
okendpt(proc_e, &slot);
tfp = &fproc[slot];
tfp->fp_effgid = egid;
tfp->fp_realgid = rgid;
}
/*===========================================================================*
* pm_setgroups *
*===========================================================================*/
PUBLIC void pm_setgroups(proc_e, ngroups, groups)
int proc_e;
int ngroups;
gid_t *groups;
{
struct fproc *rfp;
int slot;
okendpt(proc_e, &slot);
rfp = &fproc[slot];
if (ngroups * sizeof(gid_t) > sizeof(rfp->fp_sgroups))
panic("VFS: pm_setgroups: too much data to copy");
if (sys_datacopy(who_e, (vir_bytes) groups, SELF, (vir_bytes) rfp->fp_sgroups,
ngroups * sizeof(gid_t)) == OK) {
rfp->fp_ngroups = ngroups;
} else
panic("VFS: pm_setgroups: datacopy failed");
}
/*===========================================================================*
* pm_setuid *
*===========================================================================*/
PUBLIC void pm_setuid(proc_e, euid, ruid)
int proc_e;
int euid;
int ruid;
{
struct fproc *tfp;
int slot;
okendpt(proc_e, &slot);
tfp = &fproc[slot];
tfp->fp_effuid = euid;
tfp->fp_realuid = ruid;
}
/*===========================================================================*
* do_svrctl *
*===========================================================================*/
PUBLIC int do_svrctl()
{
switch (m_in.svrctl_req) {
/* No control request implemented yet. */
default:
return(EINVAL);
}
}
/*===========================================================================*
* pm_dumpcore *
*===========================================================================*/
PUBLIC int pm_dumpcore(proc_e, seg_ptr)
int proc_e;
struct mem_map *seg_ptr;
{
int slot;
okendpt(proc_e, &slot);
free_proc(&fproc[slot], FP_EXITING);
return(OK);
}
/*===========================================================================*
* ds_event *
*===========================================================================*/
PUBLIC void ds_event()
{
char key[DS_MAX_KEYLEN];
char *drv_prefix = "drv.vfs.";
u32_t value;
int type, r;
endpoint_t owner_endpoint;
/* Get the event and the owner from DS. */
if ((r = ds_check(key, &type, &owner_endpoint)) != OK) {
if(r != ENOENT) printf("VFS: ds_event: ds_check failed: %d\n", r);
return;
}
if ((r = ds_retrieve_u32(key, &value)) != OK) {
printf("VFS: ds_event: ds_retrieve_u32 failed\n");
return;
}
/* Only check for VFS driver up events. */
if (strncmp(key, drv_prefix, sizeof(drv_prefix)) || value != DS_DRIVER_UP)
return;
/* Perform up. */
dmap_endpt_up(owner_endpoint);
}

605
servers/avfs/mount.c Normal file
View file

@ -0,0 +1,605 @@
/* This file performs the MOUNT and UMOUNT system calls.
*
* The entry points into this file are
* do_fsready: perform the FS_READY system call
* do_mount: perform the MOUNT system call
* do_umount: perform the UMOUNT system call
* unmount: unmount a file system
*/
#include "fs.h"
#include <fcntl.h>
#include <string.h>
#include <minix/callnr.h>
#include <minix/com.h>
#include <minix/keymap.h>
#include <minix/const.h>
#include <minix/endpoint.h>
#include <minix/syslib.h>
#include <minix/bitmap.h>
#include <minix/ds.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/mount.h>
#include <dirent.h>
#include <assert.h>
#include "file.h"
#include "fproc.h"
#include "dmap.h"
#include <minix/vfsif.h>
#include "vnode.h"
#include "vmnt.h"
#include "path.h"
#include "param.h"
/* Allow the root to be replaced before the first 'real' mount. */
PRIVATE int have_root = 0;
/* Bitmap of in-use "none" pseudo devices. */
PRIVATE bitchunk_t nonedev[BITMAP_CHUNKS(NR_NONEDEVS)] = { 0 };
#define alloc_nonedev(dev) SET_BIT(nonedev, minor(dev) - 1)
#define free_nonedev(dev) UNSET_BIT(nonedev, minor(dev) - 1)
FORWARD _PROTOTYPE( dev_t name_to_dev, (int allow_mountpt,
char path[PATH_MAX+1]) );
FORWARD _PROTOTYPE( int is_nonedev, (dev_t dev) );
FORWARD _PROTOTYPE( dev_t find_free_nonedev, (void) );
FORWARD _PROTOTYPE( void update_bspec, (dev_t dev, endpoint_t fs_e,
int send_drv_e) );
/*===========================================================================*
* update_bspec *
*===========================================================================*/
PRIVATE void update_bspec(dev_t dev, endpoint_t fs_e, int send_drv_e)
{
/* Update all block special files for a certain device, to use a new FS endpt
* to route raw block I/O requests through.
*/
struct vnode *vp;
struct dmap *dp;
int r, major;
for (vp = &vnode[0]; vp < &vnode[NR_VNODES]; ++vp)
if (vp->v_ref_count > 0 && S_ISBLK(vp->v_mode) && vp->v_sdev == dev) {
vp->v_bfs_e = fs_e;
if (send_drv_e) {
major = major(dev);
if (major < 0 || major >= NR_DEVICES) {
/* Can't update driver endpoint for out of
* range major */
continue;
}
dp = &dmap[major(dev)];
if (dp->dmap_driver == NONE) {
/* Can't send new driver endpoint for
* vanished driver */
printf("VFS: can't send new driver endpt\n");
continue;
}
if ((r = req_newdriver(fs_e, vp->v_sdev,
dp->dmap_driver)) != OK) {
printf("VFS: Failed to send new driver endpoint"
" for moved block special file\n");
}
}
}
}
/*===========================================================================*
* do_fsready *
*===========================================================================*/
PUBLIC int do_fsready()
{
/* deprecated */
return(SUSPEND);
}
/*===========================================================================*
* do_mount *
*===========================================================================*/
PUBLIC int do_mount()
{
/* Perform the mount(name, mfile, mount_flags) system call. */
endpoint_t fs_e;
int r, slot, rdonly, nodev;
char fullpath[PATH_MAX+1];
char mount_label[LABEL_MAX];
dev_t dev;
/* Only the super-user may do MOUNT. */
if (!super_user) return(EPERM);
/* FS process' endpoint number */
if (m_in.mount_flags & MS_LABEL16) {
/* Get the label from the caller, and ask DS for the endpoint. */
r = sys_datacopy(who_e, (vir_bytes) m_in.fs_label, SELF,
(vir_bytes) mount_label, (phys_bytes) sizeof(mount_label));
if (r != OK) return(r);
mount_label[sizeof(mount_label)-1] = 0;
r = ds_retrieve_label_endpt(mount_label, &fs_e);
if (r != OK) return(r);
} else {
/* Legacy support: get the endpoint from the request itself. */
fs_e = (endpoint_t) m_in.fs_label;
mount_label[0] = 0;
}
/* Sanity check on process number. */
if (isokendpt(fs_e, &slot) != OK) return(EINVAL);
/* Should the file system be mounted read-only? */
rdonly = (m_in.mount_flags & MS_RDONLY);
/* A null string for block special device means don't use a device at all. */
nodev = (m_in.name1_length == 0);
if (!nodev) {
/* If 'name' is not for a block special file, return error. */
if (fetch_name(m_in.name1, m_in.name1_length, M1, fullpath) != OK)
return(err_code);
if ((dev = name_to_dev(FALSE /*allow_mountpt*/, fullpath)) == NO_DEV)
return(err_code);
} else {
/* Find a free pseudo-device as substitute for an actual device. */
if ((dev = find_free_nonedev()) == NO_DEV)
return(err_code);
}
/* Fetch the name of the mountpoint */
if (fetch_name(m_in.name2, m_in.name2_length, M1, fullpath) != OK)
return(err_code);
/* Do the actual job */
return mount_fs(dev, fullpath, fs_e, rdonly, mount_label);
}
/*===========================================================================*
* mount_fs *
*===========================================================================*/
PUBLIC int mount_fs(
dev_t dev,
char mountpoint[PATH_MAX+1],
endpoint_t fs_e,
int rdonly,
char mount_label[LABEL_MAX] )
{
int rdir, mdir; /* TRUE iff {root|mount} file is dir */
int i, r = OK, found, isroot, mount_root;
struct fproc *tfp;
struct dmap *dp;
struct vnode *root_node, *vp = NULL, *bspec;
struct vmnt *new_vmp, *parent_vmp;
char *label;
struct node_details res;
struct lookup resolve;
/* Look up block device driver label when dev is not a pseudo-device */
label = "";
if (!is_nonedev(dev)) {
/* Get driver process' endpoint */
dp = &dmap[major(dev)];
if (dp->dmap_driver == NONE) {
printf("VFS: no driver for dev %d\n", dev);
return(EINVAL);
}
label = dp->dmap_label;
assert(strlen(label) > 0);
}
lock_bsf();
/* Check whether there is a block special file open which uses the
* same device (partition) */
for (bspec = &vnode[0]; bspec < &vnode[NR_VNODES]; ++bspec) {
if (bspec->v_ref_count > 0 && bspec->v_sdev == dev) {
/* Found, flush and invalidate any blocks for this device. */
req_flush(bspec->v_fs_e, dev);
break;
}
}
/* Scan vmnt table to see if dev already mounted. If not, find a free slot.*/
found = FALSE;
for (i = 0; i < NR_MNTS; ++i) {
if (vmnt[i].m_dev == dev) found = TRUE;
}
if (found) {
unlock_bsf();
return(EBUSY);
} else if ((new_vmp = get_free_vmnt()) == NULL) {
unlock_bsf();
return(ENOMEM);
}
lock_vmnt(new_vmp, VMNT_EXCL);
isroot = (strcmp(mountpoint, "/") == 0);
mount_root = (isroot && have_root < 2); /* Root can be mounted twice:
* 1: ramdisk
* 2: boot disk (e.g., harddisk)
*/
if (!mount_root) {
/* Get vnode of mountpoint */
lookup_init(&resolve, mountpoint, PATH_NOFLAGS, &parent_vmp, &vp);
resolve.l_vmnt_lock = VMNT_EXCL;
resolve.l_vnode_lock = VNODE_WRITE;
if ((vp = eat_path(&resolve, fp)) == NULL)
r = err_code;
else if (vp->v_ref_count == 1) {
/*Tell FS on which vnode it is mounted (glue into mount tree)*/
r = req_mountpoint(vp->v_fs_e, vp->v_inode_nr);
} else
r = EBUSY;
if (r != OK) {
if (vp != NULL) {
unlock_vnode(vp);
unlock_vmnt(parent_vmp);
put_vnode(vp);
}
unlock_vmnt(new_vmp);
unlock_bsf();
return(r);
}
}
/* XXX: move this upwards before lookup after proper locking. */
/* We'll need a vnode for the root inode */
if ((root_node = get_free_vnode()) == NULL || dev == 266) {
if (vp != NULL) {
unlock_vnode(vp);
unlock_vmnt(parent_vmp);
put_vnode(vp);
}
unlock_vmnt(new_vmp);
unlock_bsf();
return(err_code);
}
lock_vnode(root_node, VNODE_OPCL);
/* Store some essential vmnt data first */
new_vmp->m_fs_e = fs_e;
new_vmp->m_dev = dev;
if (rdonly) new_vmp->m_flags |= VMNT_READONLY;
else new_vmp->m_flags &= ~VMNT_READONLY;
/* Tell FS which device to mount */
if ((r = req_readsuper(fs_e, label, dev, rdonly, isroot, &res)) != OK) {
if (vp != NULL) {
unlock_vnode(vp);
unlock_vmnt(parent_vmp);
put_vnode(vp);
}
new_vmp->m_fs_e = NONE;
new_vmp->m_dev = NO_DEV;
unlock_vnode(root_node);
unlock_vmnt(new_vmp);
unlock_bsf();
return(r);
}
/* Fill in root node's fields */
root_node->v_fs_e = res.fs_e;
root_node->v_inode_nr = res.inode_nr;
root_node->v_mode = res.fmode;
root_node->v_uid = res.uid;
root_node->v_gid = res.gid;
root_node->v_size = res.fsize;
root_node->v_sdev = NO_DEV;
root_node->v_fs_count = 1;
root_node->v_ref_count = 1;
/* Root node is indeed on the partition */
root_node->v_vmnt = new_vmp;
root_node->v_dev = new_vmp->m_dev;
if(mount_root) {
/* Superblock and root node already read.
* Nothing else can go wrong. Perform the mount. */
new_vmp->m_root_node = root_node;
new_vmp->m_mounted_on = NULL;
strcpy(new_vmp->m_label, mount_label);
if (is_nonedev(dev)) alloc_nonedev(dev);
update_bspec(dev, fs_e, 0 /* Don't send new driver endpoint */);
ROOT_DEV = dev;
ROOT_FS_E = fs_e;
/* Replace all root and working directories */
for (i = 0, tfp = fproc; i < NR_PROCS; i++, tfp++) {
if (tfp->fp_pid == PID_FREE)
continue;
#define MAKEROOT(what) { \
if (what) put_vnode(what); \
dup_vnode(root_node); \
what = root_node; \
}
MAKEROOT(tfp->fp_rd);
MAKEROOT(tfp->fp_wd);
}
unlock_vnode(root_node);
unlock_vmnt(new_vmp);
have_root++; /* We have a (new) root */
unlock_bsf();
return(OK);
}
/* File types may not conflict. */
mdir = ((vp->v_mode & I_TYPE) == I_DIRECTORY); /*TRUE iff dir*/
rdir = ((root_node->v_mode & I_TYPE) == I_DIRECTORY);
if (!mdir && rdir) r = EISDIR;
/* If error, return the super block and both inodes; release the vmnt. */
if (r != OK) {
unlock_vnode(vp);
unlock_vmnt(parent_vmp);
unlock_vnode(root_node);
unlock_vmnt(new_vmp);
put_vnode(vp);
put_vnode(root_node);
new_vmp->m_dev = NO_DEV;
unlock_bsf();
return(r);
}
/* Nothing else can go wrong. Perform the mount. */
new_vmp->m_mounted_on = vp;
new_vmp->m_root_node = root_node;
strcpy(new_vmp->m_label, mount_label);
/* Allocate the pseudo device that was found, if not using a real device. */
if (is_nonedev(dev)) alloc_nonedev(dev);
/* The new FS will handle block I/O requests for its device now. */
update_bspec(dev, fs_e, 0 /* Don't send new driver endpoint */);
unlock_vnode(vp);
unlock_vmnt(parent_vmp);
unlock_vnode(root_node);
unlock_vmnt(new_vmp);
unlock_bsf();
return(r);
}
/*===========================================================================*
* mount_pfs *
*===========================================================================*/
PUBLIC void mount_pfs(void)
{
/* Mount the Pipe File Server. It's not really mounted onto the file system,
but it's necessary it has a vmnt entry to make locking easier */
dev_t dev;
struct vmnt *vmp;
if ((dev = find_free_nonedev()) == NO_DEV)
panic("VFS: no nonedev to initialize PFS");
if ((vmp = get_free_vmnt()) == NULL)
panic("VFS: no vmnt to initialize PFS");
alloc_nonedev(dev);
vmp->m_dev = dev;
vmp->m_fs_e = PFS_PROC_NR;
strcpy(vmp->m_label, "pfs");
}
/*===========================================================================*
* do_umount *
*===========================================================================*/
PUBLIC int do_umount(void)
{
/* Perform the umount(name) system call. */
char label[LABEL_MAX];
dev_t dev;
int r;
char fullpath[PATH_MAX+1];
/* Only the super-user may do umount. */
if (!super_user) return(EPERM);
/* If 'name' is not for a block special file or mountpoint, return error. */
if (fetch_name(m_in.name, m_in.name_length, M3, fullpath) != OK)
return(err_code);
if ((dev = name_to_dev(TRUE /*allow_mountpt*/, fullpath)) == NO_DEV)
return(err_code);
if ((r = unmount(dev, label)) != OK) return(r);
/* Return the label of the mounted file system, so that the caller
* can shut down the corresponding server process.
*/
if (strlen(label) >= M3_LONG_STRING) /* should never evaluate to true */
label[M3_LONG_STRING-1] = 0;
strcpy(m_out.umount_label, label);
return(OK);
}
/*===========================================================================*
* unmount *
*===========================================================================*/
PUBLIC int unmount(
dev_t dev, /* block-special device */
char *label /* buffer to retrieve label, or NULL */
)
{
struct vnode *vp;
struct vmnt *vmp_i = NULL, *vmp = NULL;
int count, locks, r;
/* Find vmnt that is to be unmounted */
for (vmp_i = &vmnt[0]; vmp_i < &vmnt[NR_MNTS]; ++vmp_i) {
if (vmp_i->m_dev == dev) {
if(vmp) panic("device mounted more than once: %d", dev);
vmp = vmp_i;
}
}
/* Did we find the vmnt (i.e., was dev a mounted device)? */
if(!vmp) return(EINVAL);
lock_bsf();
assert(lock_vmnt(vmp, VMNT_EXCL) == OK);
/* See if the mounted device is busy. Only 1 vnode using it should be
* open -- the root vnode -- and that inode only 1 time. */
locks = count = 0;
for (vp = &vnode[0]; vp < &vnode[NR_VNODES]; vp++)
if (vp->v_ref_count > 0 && vp->v_dev == dev) {
count += vp->v_ref_count;
if (is_vnode_locked(vp)) locks++;
}
if (count > 1 || locks > 1) {
unlock_vmnt(vmp);
unlock_bsf();
return(EBUSY); /* can't umount a busy file system */
}
/* Tell FS to drop all inode references for root inode except 1. */
vnode_clean_refs(vmp->m_root_node);
if (vmp->m_mounted_on) {
put_vnode(vmp->m_mounted_on);
vmp->m_mounted_on = NULL;
}
vmp->m_comm.c_max_reqs = 1; /* Force max concurrent reqs to just one, so
* we won't send any messages after the
* unmount request */
/* Tell FS to unmount */
if ((r = req_unmount(vmp->m_fs_e)) != OK) /* Not recoverable. */
printf("VFS: ignoring failed umount attempt FS endpoint: %d (%d)\n",
vmp->m_fs_e, r);
if (is_nonedev(vmp->m_dev)) free_nonedev(vmp->m_dev);
if (label != NULL) strcpy(label, vmp->m_label);
if (vmp->m_root_node) { /* PFS lacks a root node */
vmp->m_root_node->v_ref_count = 0;
vmp->m_root_node->v_fs_count = 0;
vmp->m_root_node->v_sdev = NO_DEV;
vmp->m_root_node = NULL;
}
vmp->m_dev = NO_DEV;
vmp->m_fs_e = NONE;
/* The root FS will handle block I/O requests for this device now. */
update_bspec(dev, ROOT_FS_E, 1 /* send new driver endpoint */);
unlock_vmnt(vmp);
unlock_bsf();
return(OK);
}
/*===========================================================================*
* unmount_all *
*===========================================================================*/
PUBLIC void unmount_all(void)
{
/* Unmount all filesystems. File systems are mounted on other file systems,
* so you have to pull off the loose bits repeatedly to get it all undone.
*/
int i;
struct vmnt *vmp;
/* Now unmount the rest */
for (i = 0; i < NR_MNTS; i++) {
/* Unmount at least one. */
for (vmp = &vmnt[0]; vmp < &vmnt[NR_MNTS]; vmp++) {
if (vmp->m_dev != NO_DEV)
unmount(vmp->m_dev, NULL);
}
}
check_vnode_locks();
check_vmnt_locks();
check_filp_locks();
check_bsf_lock();
}
/*===========================================================================*
* name_to_dev *
*===========================================================================*/
PRIVATE dev_t name_to_dev(int allow_mountpt, char path[PATH_MAX+1])
{
/* Convert the block special file in 'user_fullpath' to a device number.
* If the given path is not a block special file, but 'allow_mountpt' is set
* and the path is the root node of a mounted file system, return that device
* number. In all other cases, return NO_DEV and an error code in 'err_code'.
*/
dev_t dev;
struct vnode *vp;
struct vmnt *vmp;
struct lookup resolve;
lookup_init(&resolve, path, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
/* Request lookup */
if ((vp = eat_path(&resolve, fp)) == NULL) return(NO_DEV);
if ((vp->v_mode & I_TYPE) == I_BLOCK_SPECIAL) {
dev = vp->v_sdev;
} else if (allow_mountpt && vp->v_vmnt->m_root_node == vp) {
dev = vp->v_dev;
} else {
err_code = ENOTBLK;
dev = NO_DEV;
}
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return(dev);
}
/*===========================================================================*
* is_nonedev *
*===========================================================================*/
PRIVATE int is_nonedev(dev_t dev)
{
/* Return whether the given device is a "none" pseudo device.
*/
return (major(dev) == NONE_MAJOR &&
minor(dev) > 0 && minor(dev) <= NR_NONEDEVS);
}
/*===========================================================================*
* find_free_nonedev *
*===========================================================================*/
PRIVATE dev_t find_free_nonedev(void)
{
/* Find a free "none" pseudo device. Do not allocate it yet.
*/
int i;
for (i = 0; i < NR_NONEDEVS; i++)
if (!GET_BIT(nonedev, i))
return makedev(NONE_MAJOR, i + 1);
err_code = EMFILE;
return NO_DEV;
}

734
servers/avfs/open.c Normal file
View file

@ -0,0 +1,734 @@
/* This file contains the procedures for creating, opening, closing, and
* seeking on files.
*
* The entry points into this file are
* do_creat: perform the CREAT system call
* do_open: perform the OPEN system call
* do_mknod: perform the MKNOD system call
* do_mkdir: perform the MKDIR system call
* do_close: perform the CLOSE system call
* do_lseek: perform the LSEEK system call
* do_llseek: perform the LLSEEK system call
*/
#include "fs.h"
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <minix/callnr.h>
#include <minix/com.h>
#include <minix/u64.h>
#include "file.h"
#include "fproc.h"
#include "dmap.h"
#include "lock.h"
#include "param.h"
#include <dirent.h>
#include <assert.h>
#include <minix/vfsif.h>
#include "vnode.h"
#include "vmnt.h"
#include "path.h"
PRIVATE char mode_map[] = {R_BIT, W_BIT, R_BIT|W_BIT, 0};
FORWARD _PROTOTYPE( int common_open, (char path[PATH_MAX+1], int oflags,
mode_t omode) );
FORWARD _PROTOTYPE( struct vnode *new_node, (struct lookup *resolve,
int oflags, mode_t bits) );
FORWARD _PROTOTYPE( int pipe_open, (struct vnode *vp, mode_t bits,
int oflags) );
/*===========================================================================*
* do_creat *
*===========================================================================*/
PUBLIC int do_creat()
{
/* Perform the creat(name, mode) system call. */
int r;
char fullpath[PATH_MAX+1];
if (fetch_name(m_in.name, m_in.name_length, M3, fullpath) != OK)
return(err_code);
r = common_open(fullpath, O_WRONLY | O_CREAT | O_TRUNC, (mode_t) m_in.mode);
return(r);
}
/*===========================================================================*
* do_open *
*===========================================================================*/
PUBLIC int do_open()
{
/* Perform the open(name, flags,...) system call. */
int create_mode = 0; /* is really mode_t but this gives problems */
int r;
char fullpath[PATH_MAX+1];
/* If O_CREAT is set, open has three parameters, otherwise two. */
if (m_in.mode & O_CREAT) {
create_mode = m_in.c_mode;
r = fetch_name(m_in.c_name, m_in.name1_length, M1, fullpath);
} else {
r = fetch_name(m_in.name, m_in.name_length, M3, fullpath);
}
if (r != OK) return(err_code); /* name was bad */
r = common_open(fullpath, m_in.mode, create_mode);
return(r);
}
/*===========================================================================*
* common_open *
*===========================================================================*/
PRIVATE int common_open(char path[PATH_MAX+1], int oflags, mode_t omode)
{
/* Common code from do_creat and do_open. */
int b, r, exist = TRUE, major_dev;
dev_t dev;
mode_t bits;
struct filp *filp, *filp2;
struct vnode *vp;
struct vmnt *vmp;
struct dmap *dp;
struct lookup resolve;
/* Remap the bottom two bits of oflags. */
bits = (mode_t) mode_map[oflags & O_ACCMODE];
if (!bits) return(EINVAL);
/* See if file descriptor and filp slots are available. */
if ((r = get_fd(0, bits, &m_in.fd, &filp)) != OK) return(r);
lookup_init(&resolve, path, PATH_NOFLAGS, &vmp, &vp);
/* If O_CREATE is set, try to make the file. */
if (oflags & O_CREAT) {
omode = I_REGULAR | (omode & ALL_MODES & fp->fp_umask);
vp = new_node(&resolve, oflags, omode);
r = err_code;
if (r == OK) exist = FALSE; /* We just created the file */
else if (r != EEXIST) { /* other error */
if (vp) unlock_vnode(vp);
unlock_filp(filp);
return(r);
}
else exist = !(oflags & O_EXCL);/* file exists, if the O_EXCL
flag is set this is an error */
} else {
/* Scan path name */
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_OPCL;
if ((vp = eat_path(&resolve, fp)) == NULL) {
unlock_filp(filp);
return(err_code);
}
if (vmp != NULL) unlock_vmnt(vmp);
}
/* Claim the file descriptor and filp slot and fill them in. */
fp->fp_filp[m_in.fd] = filp;
FD_SET(m_in.fd, &fp->fp_filp_inuse);
filp->filp_count = 1;
filp->filp_vno = vp;
filp->filp_flags = oflags;
/* Only do the normal open code if we didn't just create the file. */
if (exist) {
/* Check protections. */
if ((r = forbidden(vp, bits)) == OK) {
/* Opening reg. files, directories, and special files differ */
switch (vp->v_mode & I_TYPE) {
case I_REGULAR:
/* Truncate regular file if O_TRUNC. */
if (oflags & O_TRUNC) {
if ((r = forbidden(vp, W_BIT)) != OK)
break;
truncate_vnode(vp, 0);
}
break;
case I_DIRECTORY:
/* Directories may be read but not written. */
r = (bits & W_BIT ? EISDIR : OK);
break;
case I_CHAR_SPECIAL:
/* Invoke the driver for special processing. */
dev = (dev_t) vp->v_sdev;
r = dev_open(dev, who_e, bits | (oflags & ~O_ACCMODE));
if (r == SUSPEND) suspend(FP_BLOCKED_ON_DOPEN);
else vp = filp->filp_vno; /* Might be updated by
* dev_open/clone_opcl */
break;
case I_BLOCK_SPECIAL:
lock_bsf();
/* Invoke the driver for special processing. */
dev = (dev_t) vp->v_sdev;
r = dev_open(dev, who_e, bits | (oflags & ~O_ACCMODE));
if (r != OK) {
unlock_bsf();
break;
}
/* Check whether the device is mounted or not. If so,
* then that FS is responsible for this device. Else
* we default to ROOT_FS. */
vp->v_bfs_e = ROOT_FS_E; /* By default */
for (vmp = &vmnt[0]; vmp < &vmnt[NR_MNTS]; ++vmp)
if (vmp->m_dev == vp->v_sdev)
vp->v_bfs_e = vmp->m_fs_e;
/* Get the driver endpoint of the block spec device */
major_dev = major(vp->v_sdev);
if (major_dev < 0 || major_dev >= NR_DEVICES)
r = ENXIO;
else
dp = &dmap[major_dev];
if (r != OK || dp->dmap_driver == NONE) {
printf("VFS: driver not found for device %d\n",
vp->v_sdev);
r = ENXIO;
unlock_bsf();
break;
}
/* Send the driver endpoint (even when known already)*/
if (vp->v_bfs_e != ROOT_FS_E) {
/* but only when it's the ROOT_FS */
unlock_bsf();
break;
}
if ((r = req_newdriver(vp->v_bfs_e, vp->v_sdev,
dp->dmap_driver)) != OK) {
printf("VFS: error sending driver endpoint\n");
r = ENXIO;
}
unlock_bsf();
break;
case I_NAMED_PIPE:
/* Create a mapped inode on PFS which handles reads
and writes to this named pipe. */
tll_upgrade(&vp->v_lock);
r = map_vnode(vp, PFS_PROC_NR);
if (r == OK) {
vp->v_pipe = I_PIPE;
if (vp->v_ref_count == 1) {
vp->v_pipe_rd_pos = 0;
vp->v_pipe_wr_pos = 0;
if (vp->v_size != 0)
r = truncate_vnode(vp, 0);
}
oflags |= O_APPEND; /* force append mode */
filp->filp_flags = oflags;
}
if (r == OK) {
r = pipe_open(vp, bits, oflags);
}
if (r != ENXIO) {
/* See if someone else is doing a rd or wt on
* the FIFO. If so, use its filp entry so the
* file position will be automatically shared.
*/
b = (bits & R_BIT ? R_BIT : W_BIT);
filp->filp_count = 0; /* don't find self */
if ((filp2 = find_filp(vp, b)) != NULL) {
/* Co-reader or writer found. Use it.*/
fp->fp_filp[m_in.fd] = filp2;
filp2->filp_count++;
filp2->filp_vno = vp;
filp2->filp_flags = oflags;
/* v_count was incremented after the
* vnode has been found. i_count was
* incremented incorrectly in FS, not
* knowing that we were going to use an
* existing filp entry. Correct this
* error.
*/
unlock_vnode(vp);
put_vnode(vp);
} else {
/* Nobody else found. Restore filp. */
filp->filp_count = 1;
}
}
break;
}
}
}
unlock_filp(filp);
/* If error, release inode. */
if (r != OK) {
if (r != SUSPEND) {
fp->fp_filp[m_in.fd] = NULL;
FD_CLR(m_in.fd, &fp->fp_filp_inuse);
filp->filp_count = 0;
filp->filp_vno = NULL;
put_vnode(vp);
}
} else {
r = m_in.fd;
}
return(r);
}
/*===========================================================================*
* new_node *
*===========================================================================*/
PRIVATE struct vnode *new_node(struct lookup *resolve, int oflags, mode_t bits)
{
/* Try to create a new inode and return a pointer to it. If the inode already
exists, return a pointer to it as well, but set err_code accordingly.
NULL is returned if the path cannot be resolved up to the last
directory, or when the inode cannot be created due to permissions or
otherwise. */
struct vnode *dirp, *vp;
struct vmnt *dir_vmp, *vp_vmp;
int r;
struct node_details res;
struct lookup findnode;
char *path;
path = resolve->l_path; /* For easy access */
lookup_init(&findnode, path, resolve->l_flags, &dir_vmp, &dirp);
findnode.l_vmnt_lock = VMNT_WRITE;
findnode.l_vnode_lock = VNODE_WRITE; /* dir node */
/* When O_CREAT and O_EXCL flags are set, the path may not be named by a
* symbolic link. */
if (oflags & O_EXCL) findnode.l_flags |= PATH_RET_SYMLINK;
/* See if the path can be opened down to the last directory. */
if ((dirp = last_dir(&findnode, fp)) == NULL) return(NULL);
/* The final directory is accessible. Get final component of the path. */
findnode.l_vmp = &vp_vmp;
findnode.l_vnode = &vp;
findnode.l_vnode_lock = (oflags & O_TRUNC) ? VNODE_WRITE : VNODE_OPCL;
vp = advance(dirp, &findnode, fp);
assert(vp_vmp == NULL); /* Lookup to last dir should have yielded lock
* on vmp or final component does not exist. */
/* The combination of a symlink with absolute path followed by a danglink
* symlink results in a new path that needs to be re-resolved entirely. */
if (path[0] == '/') {
printf("XXX: dangling symlink needs re-resolving\n");
unlock_vnode(dirp);
unlock_vmnt(dir_vmp);
put_vnode(dirp);
if (vp != NULL) {
unlock_vnode(vp);
put_vnode(vp);
}
return new_node(resolve, oflags, bits);
}
if (vp == NULL && err_code == ENOENT) {
/* Last path component does not exist. Make a new directory entry. */
if ((vp = get_free_vnode()) == NULL) {
/* Can't create new entry: out of vnodes. */
unlock_vnode(dirp);
unlock_vmnt(dir_vmp);
put_vnode(dirp);
return(NULL);
}
lock_vnode(vp, VNODE_OPCL);
if ((r = forbidden(dirp, W_BIT|X_BIT)) != OK ||
(r = req_create(dirp->v_fs_e, dirp->v_inode_nr,bits, fp->fp_effuid,
fp->fp_effgid, path, &res)) != OK ) {
/* Can't create inode either due to permissions or some other
* problem. In case r is EEXIST, we might be dealing with a
* dangling symlink.*/
if (r == EEXIST) {
struct vnode *slp, *old_wd;
/* Resolve path up to symlink */
findnode.l_flags = PATH_RET_SYMLINK;
findnode.l_vnode_lock = VNODE_READ;
findnode.l_vnode = &slp;
slp = advance(dirp, &findnode, fp);
if (slp != NULL) {
if (S_ISLNK(slp->v_mode)) {
/* Get contents of link */
r = req_rdlink(slp->v_fs_e,
slp->v_inode_nr,
VFS_PROC_NR,
path,
PATH_MAX, 0);
if (r < 0) {
/* Failed to read link */
unlock_vnode(slp);
unlock_vnode(dirp);
unlock_vmnt(dir_vmp);
put_vnode(slp);
put_vnode(dirp);
err_code = r;
return(NULL);
}
path[r] = '\0'; /* Terminate path */
}
unlock_vnode(slp);
put_vnode(slp);
}
/* Try to create the inode the dangling symlink was
* pointing to. We have to use dirp as starting point
* as there might be multiple successive symlinks
* crossing multiple mountpoints. */
old_wd = fp->fp_wd; /* Save orig. working dirp */
fp->fp_wd = dirp;
vp = new_node(resolve, oflags, bits);
fp->fp_wd = old_wd; /* Restore */
if (vp != NULL) {
unlock_vnode(dirp);
unlock_vmnt(dir_vmp);
put_vnode(dirp);
*(resolve->l_vnode) = vp;
return(vp);
}
r = err_code;
}
if (r == EEXIST)
err_code = EIO; /* Impossible, we have verified that
* the last component doesn't exist and
* is not a dangling symlink. */
else
err_code = r;
unlock_vnode(dirp);
unlock_vnode(vp);
unlock_vmnt(dir_vmp);
put_vnode(dirp);
return(NULL);
}
/* Store results and mark vnode in use */
vp->v_fs_e = res.fs_e;
vp->v_inode_nr = res.inode_nr;
vp->v_mode = res.fmode;
vp->v_size = res.fsize;
vp->v_uid = res.uid;
vp->v_gid = res.gid;
vp->v_sdev = res.dev;
vp->v_vmnt = dirp->v_vmnt;
vp->v_dev = vp->v_vmnt->m_dev;
vp->v_fs_count = 1;
vp->v_ref_count = 1;
} else {
/* Either last component exists, or there is some other problem. */
if (vp != NULL) {
r = EEXIST; /* File exists or a symlink names a file while
* O_EXCL is set. */
} else
r = err_code; /* Other problem. */
}
err_code = r;
/* When dirp equals vp, we shouldn't release the lock as a vp is locked only
* once. Releasing the lock would cause the resulting vp not be locked and
* cause mayhem later on. */
if (dirp != vp) {
unlock_vnode(dirp);
}
unlock_vmnt(dir_vmp);
put_vnode(dirp);
*(resolve->l_vnode) = vp;
return(vp);
}
/*===========================================================================*
* pipe_open *
*===========================================================================*/
PRIVATE int pipe_open(register struct vnode *vp, register mode_t bits,
register int oflags)
{
/* This function is called from common_open. It checks if
* there is at least one reader/writer pair for the pipe, if not
* it suspends the caller, otherwise it revives all other blocked
* processes hanging on the pipe.
*/
vp->v_pipe = I_PIPE;
if((bits & (R_BIT|W_BIT)) == (R_BIT|W_BIT)) return(ENXIO);
/* Find the reader/writer at the other end of the pipe */
if (find_filp(vp, bits & W_BIT ? R_BIT : W_BIT) == NULL) {
/* Not found */
if (oflags & O_NONBLOCK) {
if (bits & W_BIT) return(ENXIO);
} else {
/* Let's wait for the other side to show up */
suspend(FP_BLOCKED_ON_POPEN); /* suspend caller */
return(SUSPEND);
}
} else if (susp_count > 0) { /* revive blocked processes */
release(vp, OPEN, susp_count);
release(vp, CREAT, susp_count);
}
return(OK);
}
/*===========================================================================*
* do_mknod *
*===========================================================================*/
PUBLIC int do_mknod()
{
/* Perform the mknod(name, mode, addr) system call. */
register mode_t bits, mode_bits;
int r;
struct vnode *vp;
struct vmnt *vmp;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_WRITE;
resolve.l_vnode_lock = VNODE_READ;
/* Only the super_user may make nodes other than fifos. */
mode_bits = (mode_t) m_in.mk_mode; /* mode of the inode */
if (!super_user && (((mode_bits & I_TYPE) != I_NAMED_PIPE) &&
((mode_bits & I_TYPE) != I_UNIX_SOCKET))) {
return(EPERM);
}
bits = (mode_bits & I_TYPE) | (mode_bits & ALL_MODES & fp->fp_umask);
/* Open directory that's going to hold the new node. */
if (fetch_name(m_in.name1, m_in.name1_length, M1, fullpath) != OK)
return(err_code);
if ((vp = last_dir(&resolve, fp)) == NULL) return(err_code);
/* Make sure that the object is a directory */
if ((vp->v_mode & I_TYPE) != I_DIRECTORY) {
r = ENOTDIR;
} else if ((r = forbidden(vp, W_BIT|X_BIT)) == OK) {
r = req_mknod(vp->v_fs_e, vp->v_inode_nr, fullpath, fp->fp_effuid,
fp->fp_effgid, bits, m_in.mk_z0);
}
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return(r);
}
/*===========================================================================*
* do_mkdir *
*===========================================================================*/
PUBLIC int do_mkdir()
{
/* Perform the mkdir(name, mode) system call. */
mode_t bits; /* mode bits for the new inode */
int r;
struct vnode *vp;
struct vmnt *vmp;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_WRITE;
resolve.l_vnode_lock = VNODE_READ;
if (fetch_name(m_in.name1, m_in.name1_length, M1, fullpath) != OK)
return(err_code);
bits = I_DIRECTORY | (m_in.mode & RWX_MODES & fp->fp_umask);
if ((vp = last_dir(&resolve, fp)) == NULL) return(err_code);
/* Make sure that the object is a directory */
if ((vp->v_mode & I_TYPE) != I_DIRECTORY) {
r = ENOTDIR;
} else if ((r = forbidden(vp, W_BIT|X_BIT)) == OK) {
r = req_mkdir(vp->v_fs_e, vp->v_inode_nr, fullpath, fp->fp_effuid,
fp->fp_effgid, bits);
}
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return(r);
}
/*===========================================================================*
* do_lseek *
*===========================================================================*/
PUBLIC int do_lseek()
{
/* Perform the lseek(ls_fd, offset, whence) system call. */
register struct filp *rfilp;
int r = OK;
long offset;
u64_t pos, newpos;
/* Check to see if the file descriptor is valid. */
if ( (rfilp = get_filp(m_in.ls_fd, VNODE_READ)) == NULL) return(err_code);
/* No lseek on pipes. */
if (rfilp->filp_vno->v_pipe == I_PIPE) {
unlock_filp(rfilp);
return(ESPIPE);
}
/* The value of 'whence' determines the start position to use. */
switch(m_in.whence) {
case SEEK_SET: pos = cvu64(0); break;
case SEEK_CUR: pos = rfilp->filp_pos; break;
case SEEK_END: pos = cvul64(rfilp->filp_vno->v_size); break;
default: unlock_filp(rfilp); return(EINVAL);
}
offset = m_in.offset_lo;
if (offset >= 0)
newpos = add64ul(pos, offset);
else
newpos = sub64ul(pos, -offset);
/* Check for overflow. */
if (ex64hi(newpos) != 0)
r = EINVAL;
else {
rfilp->filp_pos = newpos;
/* insert the new position into the output message */
m_out.reply_l1 = ex64lo(newpos);
if (cmp64(newpos, rfilp->filp_pos) != 0) {
/* Inhibit read ahead request */
r = req_inhibread(rfilp->filp_vno->v_fs_e,
rfilp->filp_vno->v_inode_nr);
}
}
unlock_filp(rfilp);
return(r);
}
/*===========================================================================*
* do_llseek *
*===========================================================================*/
PUBLIC int do_llseek()
{
/* Perform the llseek(ls_fd, offset, whence) system call. */
register struct filp *rfilp;
u64_t pos, newpos;
int r = OK;
/* Check to see if the file descriptor is valid. */
if ( (rfilp = get_filp(m_in.ls_fd, VNODE_READ)) == NULL) return(err_code);
/* No lseek on pipes. */
if (rfilp->filp_vno->v_pipe == I_PIPE) {
unlock_filp(rfilp);
return(ESPIPE);
}
/* The value of 'whence' determines the start position to use. */
switch(m_in.whence) {
case SEEK_SET: pos = cvu64(0); break;
case SEEK_CUR: pos = rfilp->filp_pos; break;
case SEEK_END: pos = cvul64(rfilp->filp_vno->v_size); break;
default: unlock_filp(rfilp); return(EINVAL);
}
newpos = add64(pos, make64(m_in.offset_lo, m_in.offset_high));
/* Check for overflow. */
if (( (long) m_in.offset_high > 0) && cmp64(newpos, pos) < 0)
r = EINVAL;
else if (( (long) m_in.offset_high < 0) && cmp64(newpos, pos) > 0)
r = EINVAL;
else {
rfilp->filp_pos = newpos;
/* insert the new position into the output message */
m_out.reply_l1 = ex64lo(newpos);
m_out.reply_l2 = ex64hi(newpos);
if (cmp64(newpos, rfilp->filp_pos) != 0) {
/* Inhibit read ahead request */
r = req_inhibread(rfilp->filp_vno->v_fs_e,
rfilp->filp_vno->v_inode_nr);
}
}
unlock_filp(rfilp);
return(r);
}
/*===========================================================================*
* do_close *
*===========================================================================*/
PUBLIC int do_close()
{
/* Perform the close(fd) system call. */
return close_fd(fp, m_in.fd);
}
/*===========================================================================*
* close_fd *
*===========================================================================*/
PUBLIC int close_fd(rfp, fd_nr)
struct fproc *rfp;
int fd_nr;
{
/* Perform the close(fd) system call. */
register struct filp *rfilp;
register struct vnode *vp;
struct file_lock *flp;
int lock_count;
/* First locate the vnode that belongs to the file descriptor. */
if ( (rfilp = get_filp2(rfp, fd_nr, VNODE_OPCL)) == NULL) return(err_code);
vp = rfilp->filp_vno;
close_filp(rfilp);
rfp->fp_filp[fd_nr] = NULL;
FD_CLR(fd_nr, &rfp->fp_cloexec_set);
FD_CLR(fd_nr, &rfp->fp_filp_inuse);
/* Check to see if the file is locked. If so, release all locks. */
if (nr_locks > 0) {
lock_count = nr_locks; /* save count of locks */
for (flp = &file_lock[0]; flp < &file_lock[NR_LOCKS]; flp++) {
if (flp->lock_type == 0) continue; /* slot not in use */
if (flp->lock_vnode == vp && flp->lock_pid == rfp->fp_pid) {
flp->lock_type = 0;
nr_locks--;
}
}
if (nr_locks < lock_count)
lock_revive(); /* one or more locks released */
}
return(OK);
}
/*===========================================================================*
* close_reply *
*===========================================================================*/
PUBLIC void close_reply()
{
/* No need to do anything */
}

63
servers/avfs/param.h Normal file
View file

@ -0,0 +1,63 @@
#ifndef __VFS_PARAM_H__
#define __VFS_PARAM_H__
/* The following names are synonyms for the variables in the input message. */
#define addr m1_i3
#define buffer m1_p1
#define child_endpt m1_i2
#define co_mode m1_i1
#define fd m1_i1
#define fd2 m1_i2
#define group m1_i3
#define ls_fd m2_i1
#define mk_mode m1_i2
#define mk_z0 m1_i3
#define mode m3_i2
#define c_mode m1_i3
#define c_name m1_p1
#define name m3_p1
#define flength m2_l1
#define name1 m1_p1
#define name2 m1_p2
#define name_length m3_i1
#define name1_length m1_i1
#define name2_length m1_i2
#define nbytes m1_i2
#define owner m1_i2
#define pathname m3_ca1
#define pid m1_i3
#define ENDPT m1_i1
#define offset_lo m2_l1
#define offset_high m2_l2
#define ctl_req m4_l1
#define mount_flags m1_i3
#define request m1_i2
#define sig m1_i2
#define endpt1 m1_i1
#define fs_label m1_p3
#define umount_label m3_ca1
#define tp m2_l1
#define utime_actime m2_l1
#define utime_modtime m2_l2
#define utime_file m2_p1
#define utime_length m2_i1
#define utime_strlen m2_i2
#define whence m2_i2
#define svrctl_req m2_i1
#define svrctl_argp m2_p1
#define info_what m1_i1
#define info_where m1_p1
#define md_label m2_p1
#define md_label_len m2_l1
#define md_major m2_i1
#define md_style m2_i2
#define md_flags m2_i3
/* The following names are synonyms for the variables in the output message. */
#define reply_type m_type
#define reply_l1 m2_l1
#define reply_l2 m2_l2
#define reply_i1 m1_i1
#define reply_i2 m1_i2
#endif

687
servers/avfs/path.c Normal file
View file

@ -0,0 +1,687 @@
/* lookup() is the main routine that controls the path name lookup. It
* handles mountpoints and symbolic links. The actual lookup requests
* are sent through the req_lookup wrapper function.
*/
#include "fs.h"
#include <string.h>
#include <minix/callnr.h>
#include <minix/com.h>
#include <minix/keymap.h>
#include <minix/const.h>
#include <minix/endpoint.h>
#include <unistd.h>
#include <assert.h>
#include <minix/vfsif.h>
#include <sys/stat.h>
#include <sys/un.h>
#include <dirent.h>
#include "threads.h"
#include "vmnt.h"
#include "vnode.h"
#include "path.h"
#include "fproc.h"
#include "param.h"
/* Set to following define to 1 if you really want to use the POSIX definition
* (IEEE Std 1003.1, 2004) of pathname resolution. POSIX requires pathnames
* with a traling slash (and that do not entirely consist of slash characters)
* to be treated as if a single dot is appended. This means that for example
* mkdir("dir/", ...) and rmdir("dir/") will fail because the call tries to
* create or remove the directory '.'. Historically, Unix systems just ignore
* trailing slashes.
*/
#define DO_POSIX_PATHNAME_RES 0
FORWARD _PROTOTYPE( int lookup, (struct vnode *dirp, struct lookup *resolve,
node_details_t *node, struct fproc *rfp));
FORWARD _PROTOTYPE( int check_perms, (endpoint_t ep, cp_grant_id_t io_gr,
size_t pathlen) );
/*===========================================================================*
* advance *
*===========================================================================*/
PUBLIC struct vnode *advance(dirp, resolve, rfp)
struct vnode *dirp;
struct lookup *resolve;
struct fproc *rfp;
{
/* Resolve a path name starting at dirp to a vnode. */
int r;
int do_downgrade = 1;
struct vnode *new_vp, *vp;
struct vmnt *vmp;
struct node_details res = {0,0,0,0,0,0,0};
tll_access_t initial_locktype;
assert(dirp);
assert(resolve->l_vnode_lock != TLL_NONE);
assert(resolve->l_vmnt_lock != TLL_NONE);
if (resolve->l_vnode_lock == VNODE_READ)
initial_locktype = VNODE_OPCL;
else
initial_locktype = resolve->l_vnode_lock;
/* Get a free vnode and lock it */
if ((new_vp = get_free_vnode()) == NULL) return(NULL);
lock_vnode(new_vp, initial_locktype);
/* Lookup vnode belonging to the file. */
if ((r = lookup(dirp, resolve, &res, rfp)) != OK) {
err_code = r;
unlock_vnode(new_vp);
return(NULL);
}
/* Check whether we already have a vnode for that file */
if ((vp = find_vnode(res.fs_e, res.inode_nr)) != NULL) {
unlock_vnode(new_vp); /* Don't need this anymore */
do_downgrade = (lock_vnode(vp, initial_locktype) != EBUSY);
/* Unfortunately, by the time we get the lock, another thread might've
* rid of the vnode (e.g., find_vnode found the vnode while a
* req_putnode was being processed). */
if (vp->v_ref_count == 0) { /* vnode vanished! */
/* As the lookup before increased the usage counters in the FS,
* we can simply set the usage counters to 1 and proceed as
* normal, because the putnode resulted in a use count of 1 in
* the FS. Other data is still valid, because the vnode was
* marked as pending lock, so get_free_vnode hasn't
* reinitialized the vnode yet. */
vp->v_fs_count = 1;
if (vp->v_mapfs_e != NONE) vp->v_mapfs_count = 1;
} else {
vp->v_fs_count++; /* We got a reference from the FS */
}
} else {
/* Vnode not found, fill in the free vnode's fields */
new_vp->v_fs_e = res.fs_e;
new_vp->v_inode_nr = res.inode_nr;
new_vp->v_mode = res.fmode;
new_vp->v_size = res.fsize;
new_vp->v_uid = res.uid;
new_vp->v_gid = res.gid;
new_vp->v_sdev = res.dev;
if( (vmp = find_vmnt(new_vp->v_fs_e)) == NULL)
panic("advance: vmnt not found");
new_vp->v_vmnt = vmp;
new_vp->v_dev = vmp->m_dev;
new_vp->v_fs_count = 1;
vp = new_vp;
}
dup_vnode(vp);
if (do_downgrade) {
/* Only downgrade a lock if we managed to lock it in the first place */
*(resolve->l_vnode) = vp;
if (initial_locktype != resolve->l_vnode_lock)
tll_downgrade(&vp->v_lock);
#if LOCK_DEBUG
if (resolve->l_vnode_lock == VNODE_READ)
fp->fp_vp_rdlocks++;
#endif
}
return(vp);
}
/*===========================================================================*
* eat_path *
*===========================================================================*/
PUBLIC struct vnode *eat_path(resolve, rfp)
struct lookup *resolve;
struct fproc *rfp;
{
/* Resolve path to a vnode. advance does the actual work. */
struct vnode *start_dir;
start_dir = (resolve->l_path[0] == '/' ? rfp->fp_rd : rfp->fp_wd);
return advance(start_dir, resolve, rfp);
}
/*===========================================================================*
* last_dir *
*===========================================================================*/
PUBLIC struct vnode *last_dir(resolve, rfp)
struct lookup *resolve;
struct fproc *rfp;
{
/* Parse a path, as far as the last directory, fetch the vnode
* for the last directory into the vnode table, and return a pointer to the
* vnode. In addition, return the final component of the path in 'string'. If
* the last directory can't be opened, return NULL and the reason for
* failure in 'err_code'. We can't parse component by component as that would
* be too expensive. Alternatively, we cut off the last component of the path,
* and parse the path up to the penultimate component.
*/
size_t len;
char *cp;
char dir_entry[PATH_MAX+1];
struct vnode *start_dir, *res;
/* Is the path absolute or relative? Initialize 'start_dir' accordingly. */
start_dir = (resolve->l_path[0] == '/' ? rfp->fp_rd : rfp->fp_wd);
len = strlen(resolve->l_path);
/* If path is empty, return ENOENT. */
if (len == 0) {
err_code = ENOENT;
return(NULL);
}
#if !DO_POSIX_PATHNAME_RES
/* Remove trailing slashes */
while (len > 1 && resolve->l_path[len-1] == '/') {
len--;
resolve->l_path[len]= '\0';
}
#endif
cp = strrchr(resolve->l_path, '/');
if (cp == NULL) {
/* Just one entry in the current working directory */
struct vmnt *vmp;
vmp = find_vmnt(start_dir->v_fs_e);
if (lock_vmnt(vmp, resolve->l_vmnt_lock) != EBUSY)
*resolve->l_vmp = vmp;
lock_vnode(start_dir, resolve->l_vnode_lock);
*resolve->l_vnode = start_dir;
dup_vnode(start_dir);
return(start_dir);
} else if (cp[1] == '\0') {
/* Path ends in a slash. The directory entry is '.' */
strcpy(dir_entry, ".");
} else {
/* A path name for the directory and a directory entry */
strcpy(dir_entry, cp+1);
cp[1] = '\0';
}
/* Remove trailing slashes */
while(cp > resolve->l_path && cp[0] == '/') {
cp[0]= '\0';
cp--;
}
resolve->l_flags = PATH_NOFLAGS;
res = advance(start_dir, resolve, rfp);
if (res == NULL) return(NULL);
/* Copy the directory entry back to user_fullpath */
strncpy(resolve->l_path, dir_entry, PATH_MAX);
return(res);
}
/*===========================================================================*
* lookup *
*===========================================================================*/
PRIVATE int lookup(start_node, resolve, result_node, rfp)
struct vnode *start_node;
struct lookup *resolve;
node_details_t *result_node;
struct fproc *rfp;
{
/* Resolve a path name relative to start_node. */
int r, symloop;
endpoint_t fs_e;
size_t path_off, path_left_len;
ino_t dir_ino, root_ino;
uid_t uid;
gid_t gid;
struct vnode *dir_vp;
struct vmnt *vmp, *vmpres;
struct lookup_res res;
assert(resolve->l_vmp);
assert(resolve->l_vnode);
*(resolve->l_vmp) = vmpres = NULL; /* No vmnt found nor locked yet */
/* Empty (start) path? */
if (resolve->l_path[0] == '\0') {
result_node->inode_nr = 0;
return(ENOENT);
}
if (!rfp->fp_rd || !rfp->fp_wd) {
printf("VFS: lookup %d: no rd/wd\n", rfp->fp_endpoint);
return(ENOENT);
}
fs_e = start_node->v_fs_e;
dir_ino = start_node->v_inode_nr;
vmpres = find_vmnt(fs_e);
/* Is the process' root directory on the same partition?,
* if so, set the chroot directory too. */
if (rfp->fp_rd->v_dev == rfp->fp_wd->v_dev)
root_ino = rfp->fp_rd->v_inode_nr;
else
root_ino = 0;
/* Set user and group ids according to the system call */
uid = (call_nr == ACCESS ? rfp->fp_realuid : rfp->fp_effuid);
gid = (call_nr == ACCESS ? rfp->fp_realgid : rfp->fp_effgid);
symloop = 0; /* Number of symlinks seen so far */
/* Lock vmnt */
if ((r = lock_vmnt(vmpres, resolve->l_vmnt_lock)) != OK) {
if (r == EBUSY) /* vmnt already locked */
vmpres = NULL;
}
*(resolve->l_vmp) = vmpres;
/* Issue the request */
r = req_lookup(fs_e, dir_ino, root_ino, uid, gid, resolve, &res, rfp);
if (r != OK && r != EENTERMOUNT && r != ELEAVEMOUNT && r != ESYMLINK) {
if (vmpres) unlock_vmnt(vmpres);
*(resolve->l_vmp) = NULL;
return(r); /* i.e., an error occured */
}
/* While the response is related to mount control set the
* new requests respectively */
while (r == EENTERMOUNT || r == ELEAVEMOUNT || r == ESYMLINK) {
/* Update user_fullpath to reflect what's left to be parsed. */
path_off = res.char_processed;
path_left_len = strlen(&resolve->l_path[path_off]);
memmove(resolve->l_path, &resolve->l_path[path_off], path_left_len);
resolve->l_path[path_left_len] = '\0'; /* terminate string */
/* Update the current value of the symloop counter */
symloop += res.symloop;
if (symloop > SYMLOOP_MAX) {
if (vmpres) unlock_vmnt(vmpres);
*(resolve->l_vmp) = NULL;
return(ELOOP);
}
/* Symlink encountered with absolute path */
if (r == ESYMLINK) {
dir_vp = rfp->fp_rd;
vmp = NULL;
} else if (r == EENTERMOUNT) {
/* Entering a new partition */
dir_vp = 0;
/* Start node is now the mounted partition's root node */
for (vmp = &vmnt[0]; vmp != &vmnt[NR_MNTS]; ++vmp) {
if (vmp->m_dev != NO_DEV && vmp->m_mounted_on) {
if (vmp->m_mounted_on->v_inode_nr == res.inode_nr &&
vmp->m_mounted_on->v_fs_e == res.fs_e) {
dir_vp = vmp->m_root_node;
break;
}
}
}
assert(dir_vp);
} else {
/* Climbing up mount */
/* Find the vmnt that represents the partition on
* which we "climb up". */
if ((vmp = find_vmnt(res.fs_e)) == NULL) {
panic("VFS lookup: can't find parent vmnt");
}
/* Make sure that the child FS does not feed a bogus path
* to the parent FS. That is, when we climb up the tree, we
* must've encountered ".." in the path, and that is exactly
* what we're going to feed to the parent */
if(strncmp(resolve->l_path, "..", 2) != 0 ||
(resolve->l_path[2] != '\0' && resolve->l_path[2] != '/')) {
printf("VFS: bogus path: %s\n", resolve->l_path);
if (vmpres) unlock_vmnt(vmpres);
*(resolve->l_vmp) = NULL;
return(ENOENT);
}
/* Start node is the vnode on which the partition is
* mounted */
dir_vp = vmp->m_mounted_on;
}
/* Set the starting directories inode number and FS endpoint */
fs_e = dir_vp->v_fs_e;
dir_ino = dir_vp->v_inode_nr;
/* Is the process' root directory on the same partition?,
* if so, set the chroot directory too. */
if (dir_vp->v_dev == rfp->fp_rd->v_dev)
root_ino = rfp->fp_rd->v_inode_nr;
else
root_ino = 0;
/* Unlock a previously locked vmnt if locked and lock new vmnt */
if (vmpres) unlock_vmnt(vmpres);
vmpres = find_vmnt(fs_e);
if ((r = lock_vmnt(vmpres, resolve->l_vmnt_lock)) != OK) {
if (r == EBUSY)
vmpres = NULL; /* Already locked */
}
*(resolve->l_vmp) = vmpres;
r = req_lookup(fs_e, dir_ino, root_ino, uid, gid, resolve, &res, rfp);
if (r != OK && r != EENTERMOUNT && r != ELEAVEMOUNT && r != ESYMLINK) {
if (vmpres) unlock_vmnt(vmpres);
*(resolve->l_vmp) = NULL;
return(r);
}
}
/* Fill in response fields */
result_node->inode_nr = res.inode_nr;
result_node->fmode = res.fmode;
result_node->fsize = res.fsize;
result_node->dev = res.dev;
result_node->fs_e = res.fs_e;
result_node->uid = res.uid;
result_node->gid = res.gid;
return(r);
}
/*===========================================================================*
* lookup_init *
*===========================================================================*/
PUBLIC void lookup_init(resolve, path, flags, vmp, vp)
struct lookup *resolve;
char *path;
int flags;
struct vmnt **vmp;
struct vnode **vp;
{
assert(vmp != NULL);
assert(vp != NULL);
resolve->l_path = path;
resolve->l_flags = flags;
resolve->l_vmp = vmp;
resolve->l_vnode = vp;
resolve->l_vmnt_lock = TLL_NONE;
resolve->l_vnode_lock = TLL_NONE;
*vmp = NULL; /* Initialize lookup result to NULL */
*vp = NULL;
}
/*===========================================================================*
* get_name *
*===========================================================================*/
PUBLIC int get_name(dirp, entry, ename)
struct vnode *dirp;
struct vnode *entry;
char ename[NAME_MAX + 1];
{
u64_t pos, new_pos;
int r, consumed, totalbytes;
char buf[(sizeof(struct dirent) + NAME_MAX) * 8];
struct dirent *cur;
pos = make64(0, 0);
if ((dirp->v_mode & I_TYPE) != I_DIRECTORY) {
return(EBADF);
}
do {
r = req_getdents(dirp->v_fs_e, dirp->v_inode_nr, pos, buf, sizeof(buf),
&new_pos, 1);
if (r == 0) {
return(ENOENT); /* end of entries -- matching inode !found */
} else if (r < 0) {
return(r); /* error */
}
consumed = 0; /* bytes consumed */
totalbytes = r; /* number of bytes to consume */
do {
cur = (struct dirent *) (buf + consumed);
if (entry->v_inode_nr == cur->d_ino) {
/* found the entry we were looking for */
strncpy(ename, cur->d_name, NAME_MAX);
ename[NAME_MAX] = '\0';
return(OK);
}
/* not a match -- move on to the next dirent */
consumed += cur->d_reclen;
} while (consumed < totalbytes);
pos = new_pos;
} while (1);
}
/*===========================================================================*
* canonical_path *
*===========================================================================*/
PUBLIC int canonical_path(orig_path, canon_path, rfp)
char *orig_path;
char canon_path[PATH_MAX+1]; /* should have length PATH_MAX+1 */
struct fproc *rfp;
{
int len = 0;
int r, symloop = 0;
struct vnode *dir_vp, *parent_dir;
struct vmnt *dir_vmp, *parent_vmp;
char component[NAME_MAX+1];
char link_path[PATH_MAX+1];
char temp_path[PATH_MAX+1];
struct lookup resolve;
dir_vp = NULL;
strncpy(temp_path, orig_path, PATH_MAX);
do {
if (dir_vp) {
unlock_vnode(dir_vp);
unlock_vmnt(dir_vmp);
put_vnode(dir_vp);
}
/* Resolve to the last directory holding the file */
lookup_init(&resolve, temp_path, PATH_NOFLAGS, &dir_vmp, &dir_vp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
if ((dir_vp = last_dir(&resolve, rfp)) == NULL) return(err_code);
/* dir_vp points to dir and resolve path now contains only the
* filename.
*/
strcpy(canon_path, resolve.l_path); /* Store file name */
/* check if the file is a symlink, if so resolve it */
r = rdlink_direct(canon_path, link_path, rfp);
if (r <= 0) {
strcpy(temp_path, canon_path);
break;
}
/* encountered a symlink -- loop again */
strcpy(temp_path, link_path);
symloop++;
} while (symloop < SYMLOOP_MAX);
if (symloop >= SYMLOOP_MAX) {
if (dir_vp) {
unlock_vnode(dir_vp);
unlock_vmnt(dir_vmp);
put_vnode(dir_vp);
}
return(ELOOP);
}
while(dir_vp != rfp->fp_rd) {
strcpy(temp_path, "..");
/* check if we're at the root node of the file system */
if (dir_vp->v_vmnt->m_root_node == dir_vp) {
unlock_vnode(dir_vp);
unlock_vmnt(dir_vmp);
put_vnode(dir_vp);
dir_vp = dir_vp->v_vmnt->m_mounted_on;
dir_vmp = dir_vp->v_vmnt;
assert(lock_vmnt(dir_vmp, VMNT_READ) == OK);
assert(lock_vnode(dir_vp, VNODE_READ) == OK);
dup_vnode(dir_vp);
}
lookup_init(&resolve, temp_path, PATH_NOFLAGS, &parent_vmp,
&parent_dir);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
if ((parent_dir = advance(dir_vp, &resolve, rfp)) == NULL) {
unlock_vnode(dir_vp);
unlock_vmnt(dir_vmp);
put_vnode(dir_vp);
return(err_code);
}
/* now we have to retrieve the name of the parent directory */
if (get_name(parent_dir, dir_vp, component) != OK) {
unlock_vnode(parent_dir);
unlock_vmnt(parent_vmp);
unlock_vnode(dir_vp);
unlock_vmnt(dir_vmp);
put_vnode(parent_dir);
put_vnode(dir_vp);
return(ENOENT);
}
len += strlen(component) + 1;
if (len > PATH_MAX) {
/* adding the component to canon_path would exceed PATH_MAX */
unlock_vnode(parent_dir);
unlock_vmnt(parent_vmp);
unlock_vnode(dir_vp);
unlock_vmnt(dir_vmp);
put_vnode(parent_dir);
put_vnode(dir_vp);
return(ENOMEM);
}
/* store result of component in canon_path */
/* first make space by moving the contents of canon_path to
* the right. Move strlen + 1 bytes to include the terminating '\0'.
*/
memmove(canon_path+strlen(component)+1, canon_path,
strlen(canon_path) + 1);
/* Copy component into canon_path */
memmove(canon_path, component, strlen(component));
/* Put slash into place */
canon_path[strlen(component)] = '/';
/* Store parent_dir result, and continue the loop once more */
unlock_vnode(dir_vp);
unlock_vmnt(dir_vmp);
put_vnode(dir_vp);
dir_vp = parent_dir;
}
unlock_vnode(dir_vp);
unlock_vmnt(parent_vmp);
put_vnode(dir_vp);
/* add the leading slash */
if (strlen(canon_path) >= PATH_MAX) return(ENAMETOOLONG);
memmove(canon_path+1, canon_path, strlen(canon_path));
canon_path[0] = '/';
return(OK);
}
/*===========================================================================*
* check_perms *
*===========================================================================*/
PRIVATE int check_perms(ep, io_gr, pathlen)
endpoint_t ep;
cp_grant_id_t io_gr;
size_t pathlen;
{
int r, slot;
struct vnode *vp;
struct vmnt *vmp;
struct fproc *rfp;
char orig_path[PATH_MAX+1];
char canon_path[PATH_MAX+1];
char temp_path[PATH_MAX+1];
struct lookup resolve;
if (isokendpt(ep, &slot) != OK) return(EINVAL);
if (pathlen < UNIX_PATH_MAX || pathlen > PATH_MAX) return(EINVAL);
rfp = &(fproc[slot]);
memset(canon_path, '\0', PATH_MAX+1);
r = sys_safecopyfrom(PFS_PROC_NR, io_gr, (vir_bytes) 0,
(vir_bytes) temp_path, pathlen, D);
if (r != OK) return(r);
temp_path[pathlen] = '\0';
/* save path from pfs before permissions checking modifies it */
memcpy(orig_path, temp_path, PATH_MAX+1);
/* get the canonical path to the socket file */
if ((r = canonical_path(orig_path, canon_path, rfp)) != OK)
return(r);
if (strlen(canon_path) >= pathlen) return(ENAMETOOLONG);
/* copy canon_path back to PFS */
r = sys_safecopyto(PFS_PROC_NR, (cp_grant_id_t) io_gr, (vir_bytes) 0,
(vir_bytes) canon_path, strlen(canon_path)+1,
D);
if (r != OK) return(r);
/* reload user_fullpath for permissions checking */
memcpy(temp_path, orig_path, PATH_MAX+1);
lookup_init(&resolve, temp_path, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
if ((vp = eat_path(&resolve, rfp)) == NULL) return(err_code);
/* check permissions */
r = forbidden(vp, (R_BIT | W_BIT));
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return(r);
}
/*===========================================================================*
* do_check_perms *
*===========================================================================*/
PUBLIC int do_check_perms(void)
{
return check_perms(m_in.USER_ENDPT, (cp_grant_id_t) m_in.IO_GRANT,
(size_t) m_in.COUNT);
}

13
servers/avfs/path.h Normal file
View file

@ -0,0 +1,13 @@
#ifndef __VFS_PATH_H__
#define __VFS_PATH_H__
struct lookup {
char *l_path; /* Path to lookup */
int l_flags; /* VFS/FS flags (see <minix/vfsif.h>) */
tll_access_t l_vmnt_lock; /* Lock to obtain on vmnt */
tll_access_t l_vnode_lock; /* Lock to obtain on vnode */
struct vmnt **l_vmp; /* vmnt object that was locked */
struct vnode **l_vnode; /* vnode object that was locked */
};
#endif

637
servers/avfs/pipe.c Normal file
View file

@ -0,0 +1,637 @@
/* This file deals with the suspension and revival of processes. A process can
* be suspended because it wants to read or write from a pipe and can't, or
* because it wants to read or write from a special file and can't. When a
* process can't continue it is suspended, and revived later when it is able
* to continue.
*
* The entry points into this file are
* do_pipe: perform the PIPE system call
* pipe_check: check to see that a read or write on a pipe is feasible now
* suspend: suspend a process that cannot do a requested read or write
* release: check to see if a suspended process can be released and do
* it
* revive: mark a suspended process as able to run again
* unsuspend_by_endpt: revive all processes blocking on a given process
* do_unpause: a signal has been sent to a process; see if it suspended
*/
#include "fs.h"
#include <fcntl.h>
#include <signal.h>
#include <assert.h>
#include <minix/callnr.h>
#include <minix/endpoint.h>
#include <minix/com.h>
#include <minix/u64.h>
#include <sys/select.h>
#include <sys/time.h>
#include "file.h"
#include "fproc.h"
#include "dmap.h"
#include "param.h"
#include "select.h"
#include <minix/vfsif.h>
#include "vnode.h"
#include "vmnt.h"
/*===========================================================================*
* do_pipe *
*===========================================================================*/
PUBLIC int do_pipe()
{
/* Perform the pipe(fil_des) system call. */
register struct fproc *rfp;
int r;
struct filp *fil_ptr0, *fil_ptr1;
int fil_des[2]; /* reply goes here */
struct vnode *vp;
struct vmnt *vmp;
struct node_details res;
/* See if a free vnode is available */
if ((vp = get_free_vnode()) == NULL) return(err_code);
lock_vnode(vp, VNODE_OPCL);
/* Get a lock on PFS */
if ((vmp = find_vmnt(PFS_PROC_NR)) == NULL) panic("PFS gone");
lock_vmnt(vmp, VMNT_WRITE);
/* Acquire two file descriptors. */
rfp = fp;
if ((r = get_fd(0, R_BIT, &fil_des[0], &fil_ptr0)) != OK) {
unlock_vnode(vp);
unlock_vmnt(vmp);
return(r);
}
rfp->fp_filp[fil_des[0]] = fil_ptr0;
FD_SET(fil_des[0], &rfp->fp_filp_inuse);
fil_ptr0->filp_count = 1; /* mark filp in use */
if ((r = get_fd(0, W_BIT, &fil_des[1], &fil_ptr1)) != OK) {
rfp->fp_filp[fil_des[0]] = NULL;
FD_CLR(fil_des[0], &rfp->fp_filp_inuse);
fil_ptr0->filp_count = 0; /* mark filp free */
unlock_filp(fil_ptr0);
unlock_vnode(vp);
unlock_vmnt(vmp);
return(r);
}
rfp->fp_filp[fil_des[1]] = fil_ptr1;
FD_SET(fil_des[1], &rfp->fp_filp_inuse);
fil_ptr1->filp_count = 1;
/* Create a named pipe inode on PipeFS */
r = req_newnode(PFS_PROC_NR, fp->fp_effuid, fp->fp_effgid, I_NAMED_PIPE,
NO_DEV, &res);
if (r != OK) {
rfp->fp_filp[fil_des[0]] = NULL;
FD_CLR(fil_des[0], &rfp->fp_filp_inuse);
fil_ptr0->filp_count = 0;
rfp->fp_filp[fil_des[1]] = NULL;
FD_CLR(fil_des[1], &rfp->fp_filp_inuse);
fil_ptr1->filp_count = 0;
unlock_filp(fil_ptr1);
unlock_filp(fil_ptr0);
unlock_vnode(vp);
unlock_vmnt(vmp);
return(r);
}
/* Fill in vnode */
vp->v_fs_e = res.fs_e;
vp->v_mapfs_e = res.fs_e;
vp->v_inode_nr = res.inode_nr;
vp->v_mapinode_nr = res.inode_nr;
vp->v_mode = res.fmode;
vp->v_pipe = I_PIPE;
vp->v_pipe_rd_pos= 0;
vp->v_pipe_wr_pos= 0;
vp->v_fs_count = 1;
vp->v_mapfs_count = 1;
vp->v_ref_count = 1;
vp->v_size = 0;
vp->v_vmnt = NULL;
vp->v_dev = NO_DEV;
/* Fill in filp objects */
fil_ptr0->filp_vno = vp;
dup_vnode(vp);
fil_ptr1->filp_vno = vp;
fil_ptr0->filp_flags = O_RDONLY;
fil_ptr1->filp_flags = O_WRONLY;
m_out.reply_i1 = fil_des[0];
m_out.reply_i2 = fil_des[1];
unlock_filps(fil_ptr0, fil_ptr1);
unlock_vmnt(vmp);
return(OK);
}
/*===========================================================================*
* map_vnode *
*===========================================================================*/
PUBLIC int map_vnode(vp, map_to_fs_e)
struct vnode *vp;
endpoint_t map_to_fs_e;
{
int r;
struct vmnt *vmp;
struct node_details res;
if(vp->v_mapfs_e != NONE) return(OK); /* Already mapped; nothing to do. */
if ((vmp = find_vmnt(map_to_fs_e)) == NULL)
panic("Can't map to unknown endpoint");
if (lock_vmnt(vmp, VMNT_WRITE) == EBUSY)
vmp = NULL; /* Already locked, do not unlock */
/* Create a temporary mapping of this inode to another FS. Read and write
* operations on data will be handled by that FS. The rest by the 'original'
* FS that holds the inode. */
if ((r = req_newnode(map_to_fs_e, fp->fp_effuid, fp->fp_effgid, I_NAMED_PIPE,
vp->v_dev, &res)) == OK) {
vp->v_mapfs_e = res.fs_e;
vp->v_mapinode_nr = res.inode_nr;
vp->v_mapfs_count = 1;
}
if (vmp) unlock_vmnt(vmp);
return(r);
}
/*===========================================================================*
* pipe_check *
*===========================================================================*/
PUBLIC int pipe_check(vp, rw_flag, oflags, bytes, position, notouch)
register struct vnode *vp; /* the inode of the pipe */
int rw_flag; /* READING or WRITING */
int oflags; /* flags set by open or fcntl */
register int bytes; /* bytes to be read or written (all chunks) */
u64_t position; /* current file position */
int notouch; /* check only */
{
/* Pipes are a little different. If a process reads from an empty pipe for
* which a writer still exists, suspend the reader. If the pipe is empty
* and there is no writer, return 0 bytes. If a process is writing to a
* pipe and no one is reading from it, give a broken pipe error.
*/
off_t pos;
int r = OK;
if (ex64hi(position) != 0)
panic("pipe_check: position too large in pipe");
pos = ex64lo(position);
/* If reading, check for empty pipe. */
if (rw_flag == READING) {
if (pos >= vp->v_size) {
/* Process is reading from an empty pipe. */
if (find_filp(vp, W_BIT) != NULL) {
/* Writer exists */
if (oflags & O_NONBLOCK)
r = EAGAIN;
else
r = SUSPEND;
/* If need be, activate sleeping writers. */
if (susp_count > 0)
release(vp, WRITE, susp_count);
}
return(r);
}
return(bytes);
}
/* Process is writing to a pipe. */
if (find_filp(vp, R_BIT) == NULL) {
/* Process is writing, but there is no reader. Tell kernel to generate
* a SIGPIPE signal. */
if (!notouch) sys_kill(fp->fp_endpoint, SIGPIPE);
return(EPIPE);
}
/* Calculate how many bytes can be written. */
if (pos + bytes > PIPE_BUF) {
if (oflags & O_NONBLOCK) {
if (bytes <= PIPE_BUF) {
/* Write has to be atomic */
return(EAGAIN);
}
/* Compute available space */
bytes = PIPE_BUF - pos;
if (bytes > 0) {
/* Do a partial write. Need to wakeup reader */
if (!notouch)
release(vp, READ, susp_count);
return(bytes);
} else {
/* Pipe is full */
return(EAGAIN);
}
}
if (bytes > PIPE_BUF) {
/* Compute available space */
bytes = PIPE_BUF - pos;
if (bytes > 0) {
/* Do a partial write. Need to wakeup reader
* since we'll suspend ourself in read_write()
*/
if (!notouch)
release(vp, READ, susp_count);
return(bytes);
}
}
/* Pipe is full */
return(SUSPEND);
}
/* Writing to an empty pipe. Search for suspended reader. */
if (pos == 0 && !notouch)
release(vp, READ, susp_count);
/* Requested amount fits */
return(bytes);
}
/*===========================================================================*
* suspend *
*===========================================================================*/
PUBLIC void suspend(int why)
{
/* Take measures to suspend the processing of the present system call.
* Store the parameters to be used upon resuming in the process table.
* (Actually they are not used when a process is waiting for an I/O device,
* but they are needed for pipes, and it is not worth making the distinction.)
* The SUSPEND pseudo error should be returned after calling suspend().
*/
#if DO_SANITYCHECKS
if (why == FP_BLOCKED_ON_PIPE)
panic("suspend: called for FP_BLOCKED_ON_PIPE");
if(fp_is_blocked(fp))
panic("suspend: called for suspended process");
if(why == FP_BLOCKED_ON_NONE)
panic("suspend: called for FP_BLOCKED_ON_NONE");
#endif
if (why == FP_BLOCKED_ON_POPEN)
/* #procs susp'ed on pipe*/
susp_count++;
fp->fp_blocked_on = why;
assert(fp->fp_grant == GRANT_INVALID || !GRANT_VALID(fp->fp_grant));
fp->fp_block_fd = m_in.fd;
fp->fp_block_callnr = call_nr;
fp->fp_flags &= ~FP_SUSP_REOPEN; /* Clear this flag. The caller
* can set it when needed.
*/
if (why == FP_BLOCKED_ON_LOCK) {
fp->fp_buffer = (char *) m_in.name1; /* third arg to fcntl() */
fp->fp_nbytes = m_in.request; /* second arg to fcntl() */
} else {
fp->fp_buffer = m_in.buffer; /* for reads and writes */
fp->fp_nbytes = m_in.nbytes;
}
}
/*===========================================================================*
* wait_for *
*===========================================================================*/
PUBLIC void wait_for(endpoint_t who)
{
if(who == NONE || who == ANY)
panic("suspend on NONE or ANY");
suspend(FP_BLOCKED_ON_OTHER);
fp->fp_task = who;
}
/*===========================================================================*
* pipe_suspend *
*===========================================================================*/
PUBLIC void pipe_suspend(rw_flag, fd_nr, buf, size)
int rw_flag;
int fd_nr;
char *buf;
size_t size;
{
/* Take measures to suspend the processing of the present system call.
* Store the parameters to be used upon resuming in the process table.
* (Actually they are not used when a process is waiting for an I/O device,
* but they are needed for pipes, and it is not worth making the distinction.)
* The SUSPEND pseudo error should be returned after calling suspend().
*/
#if DO_SANITYCHECKS
if(fp_is_blocked(fp))
panic("pipe_suspend: called for suspended process");
#endif
susp_count++; /* #procs susp'ed on pipe*/
fp->fp_blocked_on = FP_BLOCKED_ON_PIPE;
assert(!GRANT_VALID(fp->fp_grant));
fp->fp_block_fd = fd_nr;
fp->fp_block_callnr = ((rw_flag == READING) ? READ : WRITE);
fp->fp_buffer = buf;
fp->fp_nbytes = size;
}
/*===========================================================================*
* unsuspend_by_endpt *
*===========================================================================*/
PUBLIC void unsuspend_by_endpt(endpoint_t proc_e)
{
/* Revive processes waiting for drivers (SUSPENDed) that have disappeared with
* return code EAGAIN.
*/
struct fproc *rp;
for (rp = &fproc[0]; rp < &fproc[NR_PROCS]; rp++) {
if (rp->fp_pid == PID_FREE) continue;
if (rp->fp_blocked_on == FP_BLOCKED_ON_OTHER && rp->fp_task == proc_e)
revive(rp->fp_endpoint, EAGAIN);
}
/* Revive processes waiting in drivers on select()s with EAGAIN too */
select_unsuspend_by_endpt(proc_e);
return;
}
/*===========================================================================*
* release *
*===========================================================================*/
PUBLIC void release(vp, op, count)
register struct vnode *vp; /* inode of pipe */
int op; /* READ, WRITE, OPEN or CREAT */
int count; /* max number of processes to release */
{
/* Check to see if any process is hanging on the pipe whose inode is in 'ip'.
* If one is, and it was trying to perform the call indicated by 'call_nr',
* release it.
*/
register struct fproc *rp;
struct filp *f;
int selop;
/* Trying to perform the call also includes SELECTing on it with that
* operation.
*/
if (op == READ || op == WRITE) {
if (op == READ)
selop = SEL_RD;
else
selop = SEL_WR;
for (f = &filp[0]; f < &filp[NR_FILPS]; f++) {
if (f->filp_count < 1 || !(f->filp_pipe_select_ops & selop) ||
f->filp_vno != vp)
continue;
select_callback(f, selop);
f->filp_pipe_select_ops &= ~selop;
}
}
/* Search the proc table. */
for (rp = &fproc[0]; rp < &fproc[NR_PROCS] && count > 0; rp++) {
if (rp->fp_pid != PID_FREE && fp_is_blocked(rp) &&
!(rp->fp_flags & FP_REVIVED) && rp->fp_block_callnr == op &&
rp->fp_filp[rp->fp_block_fd] != NULL &&
rp->fp_filp[rp->fp_block_fd]->filp_vno == vp) {
revive(rp->fp_endpoint, 0);
susp_count--; /* keep track of who is suspended */
if(susp_count < 0)
panic("susp_count now negative: %d", susp_count);
if (--count == 0) return;
}
}
}
/*===========================================================================*
* revive *
*===========================================================================*/
PUBLIC void revive(proc_nr_e, returned)
int proc_nr_e; /* process to revive */
int returned; /* if hanging on task, how many bytes read */
{
/* Revive a previously blocked process. When a process hangs on tty, this
* is the way it is eventually released.
*/
register struct fproc *rfp;
int blocked_on;
int fd_nr, slot;
struct filp *fil_ptr;
if (proc_nr_e == NONE || isokendpt(proc_nr_e, &slot) != OK) return;
rfp = &fproc[slot];
if (!fp_is_blocked(rfp) || (rfp->fp_flags & FP_REVIVED)) return;
/* The 'reviving' flag only applies to pipes. Processes waiting for TTY get
* a message right away. The revival process is different for TTY and pipes.
* For select and TTY revival, the work is already done, for pipes it is not:
* the proc must be restarted so it can try again.
*/
blocked_on = rfp->fp_blocked_on;
if (blocked_on == FP_BLOCKED_ON_PIPE || blocked_on == FP_BLOCKED_ON_LOCK) {
/* Revive a process suspended on a pipe or lock. */
rfp->fp_flags |= FP_REVIVED;
reviving++; /* process was waiting on pipe or lock */
} else if (blocked_on == FP_BLOCKED_ON_DOPEN) {
rfp->fp_blocked_on = FP_BLOCKED_ON_NONE;
fd_nr = rfp->fp_block_fd;
if (returned < 0) {
fil_ptr = rfp->fp_filp[fd_nr];
lock_filp(fil_ptr, VNODE_OPCL);
rfp->fp_filp[fd_nr] = NULL;
FD_CLR(fd_nr, &rfp->fp_filp_inuse);
if (fil_ptr->filp_count != 1) {
panic("VFS: revive: bad count in filp: %d",
fil_ptr->filp_count);
}
fil_ptr->filp_count = 0;
unlock_filp(fil_ptr);
put_vnode(fil_ptr->filp_vno);
fil_ptr->filp_vno = NULL;
reply(proc_nr_e, returned);
} else {
reply(proc_nr_e, fd_nr);
}
} else {
rfp->fp_blocked_on = FP_BLOCKED_ON_NONE;
if (blocked_on == FP_BLOCKED_ON_POPEN) {
/* process blocked in open or create */
reply(proc_nr_e, rfp->fp_block_fd);
} else if (blocked_on == FP_BLOCKED_ON_SELECT) {
reply(proc_nr_e, returned);
} else {
/* Revive a process suspended on TTY or other device.
* Pretend it wants only what there is.
*/
rfp->fp_nbytes = returned;
/* If a grant has been issued by FS for this I/O, revoke
* it again now that I/O is done.
*/
if (GRANT_VALID(rfp->fp_grant)) {
if(cpf_revoke(rfp->fp_grant)) {
panic("VFS: revoke failed for grant: %d",
rfp->fp_grant);
}
rfp->fp_grant = GRANT_INVALID;
}
reply(proc_nr_e, returned); /* unblock the process */
}
}
}
/*===========================================================================*
* unpause *
*===========================================================================*/
PUBLIC void unpause(proc_nr_e)
int proc_nr_e;
{
/* A signal has been sent to a user who is paused on the file system.
* Abort the system call with the EINTR error message.
*/
register struct fproc *rfp, *org_fp;
int slot, blocked_on, fild, status = EINTR, major_dev, minor_dev;
struct filp *f;
dev_t dev;
message mess;
int wasreviving = 0;
if (isokendpt(proc_nr_e, &slot) != OK) {
printf("VFS: ignoring unpause for bogus endpoint %d\n", proc_nr_e);
return;
}
rfp = &fproc[slot];
if (!fp_is_blocked(rfp)) return;
blocked_on = rfp->fp_blocked_on;
if (rfp->fp_flags & FP_REVIVED) {
rfp->fp_flags &= ~FP_REVIVED;
reviving--;
wasreviving = 1;
}
switch (blocked_on) {
case FP_BLOCKED_ON_PIPE:/* process trying to read or write a pipe */
break;
case FP_BLOCKED_ON_LOCK:/* process trying to set a lock with FCNTL */
break;
case FP_BLOCKED_ON_SELECT:/* process blocking on select() */
select_forget(proc_nr_e);
break;
case FP_BLOCKED_ON_POPEN: /* process trying to open a fifo */
break;
case FP_BLOCKED_ON_DOPEN:/* process trying to open a device */
/* Don't cancel OPEN. Just wait until the open completes. */
return;
case FP_BLOCKED_ON_OTHER:/* process trying to do device I/O (e.g. tty)*/
if (rfp->fp_flags & FP_SUSP_REOPEN) {
/* Process is suspended while waiting for a reopen.
* Just reply EINTR.
*/
rfp->fp_flags &= ~FP_SUSP_REOPEN;
status = EINTR;
break;
}
fild = rfp->fp_block_fd;
if (fild < 0 || fild >= OPEN_MAX)
panic("file descriptor out-of-range");
f = rfp->fp_filp[fild];
dev = (dev_t) f->filp_vno->v_sdev; /* device hung on */
major_dev = major(dev);
minor_dev = minor(dev);
mess.TTY_LINE = minor_dev;
mess.USER_ENDPT = rfp->fp_ioproc;
mess.IO_GRANT = (char *) rfp->fp_grant;
/* Tell kernel R or W. Mode is from current call, not open. */
mess.COUNT = rfp->fp_block_callnr == READ ? R_BIT : W_BIT;
mess.m_type = CANCEL;
org_fp = fp;
fp = rfp; /* hack - ctty_io uses fp */
(*dmap[major_dev].dmap_io)(rfp->fp_task, &mess);
fp = org_fp;
status = mess.REP_STATUS;
if (status == SUSPEND)
return; /* Process will be revived at a
* later time.
*/
if (status == EAGAIN) status = EINTR;
if (GRANT_VALID(rfp->fp_grant)) {
(void) cpf_revoke(rfp->fp_grant);
rfp->fp_grant = GRANT_INVALID;
}
break;
default :
panic("VFS: unknown block reason: %d", blocked_on);
}
rfp->fp_blocked_on = FP_BLOCKED_ON_NONE;
if ((blocked_on == FP_BLOCKED_ON_PIPE || blocked_on == FP_BLOCKED_ON_POPEN)&&
!wasreviving) {
susp_count--;
}
reply(proc_nr_e, status); /* signal interrupted call */
}
#if DO_SANITYCHECKS
/*===========================================================================*
* check_pipe *
*===========================================================================*/
PUBLIC int check_pipe(void)
{
/* Integrity check; verify that susp_count equals what the fproc table thinks
* is suspended on a pipe */
struct fproc *rfp;
int count = 0;
for (rfp = &fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {
if (rfp->fp_pid == PID_FREE) continue;
if ( !(rfp->fp_flags & FP_REVIVED) &&
(rfp->fp_blocked_on == FP_BLOCKED_ON_PIPE ||
rfp->fp_blocked_on == FP_BLOCKED_ON_POPEN)) {
count++;
}
}
if (count != susp_count) {
printf("check_pipe: count %d susp_count %d\n", count, susp_count);
return(0);
}
return(l);
}
#endif

274
servers/avfs/protect.c Normal file
View file

@ -0,0 +1,274 @@
/* This file deals with protection in the file system. It contains the code
* for four system calls that relate to protection.
*
* The entry points into this file are
* do_chmod: perform the CHMOD and FCHMOD system calls
* do_chown: perform the CHOWN and FCHOWN system calls
* do_umask: perform the UMASK system call
* do_access: perform the ACCESS system call
*/
#include "fs.h"
#include <unistd.h>
#include <minix/callnr.h>
#include "file.h"
#include "fproc.h"
#include "path.h"
#include "param.h"
#include <minix/vfsif.h>
#include "vnode.h"
#include "vmnt.h"
/*===========================================================================*
* do_chmod *
*===========================================================================*/
PUBLIC int do_chmod()
{
/* Perform the chmod(name, mode) and fchmod(fd, mode) system calls. */
struct filp *flp;
struct vnode *vp;
struct vmnt *vmp;
int r;
mode_t new_mode;
char fullpath[PATH_MAX+1];
struct lookup resolve;
flp = NULL;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_WRITE;
resolve.l_vnode_lock = VNODE_WRITE;
if (call_nr == CHMOD) {
/* Temporarily open the file */
if (fetch_name(m_in.name, m_in.name_length, M3, fullpath) != OK)
return(err_code);
if ((vp = eat_path(&resolve, fp)) == NULL) return(err_code);
} else { /* call_nr == FCHMOD */
/* File is already opened; get a pointer to vnode from filp. */
if ((flp = get_filp(m_in.fd, VNODE_WRITE)) == NULL)
return(err_code);
vp = flp->filp_vno;
dup_vnode(vp);
}
/* Only the owner or the super_user may change the mode of a file.
* No one may change the mode of a file on a read-only file system.
*/
if (vp->v_uid != fp->fp_effuid && fp->fp_effuid != SU_UID)
r = EPERM;
else
r = read_only(vp);
if (r == OK) {
/* Now make the change. Clear setgid bit if file is not in caller's
* group */
if (fp->fp_effuid != SU_UID && vp->v_gid != fp->fp_effgid)
m_in.mode &= ~I_SET_GID_BIT;
r = req_chmod(vp->v_fs_e, vp->v_inode_nr, m_in.mode, &new_mode);
if (r == OK)
vp->v_mode = new_mode;
}
if (call_nr == CHMOD) {
unlock_vnode(vp);
unlock_vmnt(vmp);
} else { /* FCHMOD */
unlock_filp(flp);
}
put_vnode(vp);
return(r);
}
/*===========================================================================*
* do_chown *
*===========================================================================*/
PUBLIC int do_chown()
{
/* Perform the chown(path, owner, group) and fchmod(fd, owner, group) system
* calls. */
struct filp *flp;
struct vnode *vp;
struct vmnt *vmp;
int r;
uid_t uid;
gid_t gid;
mode_t new_mode;
char fullpath[PATH_MAX+1];
struct lookup resolve;
flp = NULL;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_WRITE;
resolve.l_vnode_lock = VNODE_WRITE;
if (call_nr == CHOWN) {
/* Temporarily open the file. */
if (fetch_name(m_in.name1, m_in.name1_length, M1, fullpath) != OK)
return(err_code);
if ((vp = eat_path(&resolve, fp)) == NULL) return(err_code);
} else { /* call_nr == FCHOWN */
/* File is already opened; get a pointer to the vnode from filp. */
if ((flp = get_filp(m_in.fd, VNODE_WRITE)) == NULL)
return(err_code);
vp = flp->filp_vno;
dup_vnode(vp);
}
r = read_only(vp);
if (r == OK) {
/* FS is R/W. Whether call is allowed depends on ownership, etc. */
/* The super user can do anything, so check permissions only if we're
a regular user. */
if (fp->fp_effuid != SU_UID) {
/* Regular users can only change groups of their own files. */
if (vp->v_uid != fp->fp_effuid) r = EPERM;
if (vp->v_uid != m_in.owner) r = EPERM; /* no giving away */
if (fp->fp_effgid != m_in.group) r = EPERM;
}
}
if (r == OK) {
/* Do not change uid/gid if new uid/gid is -1. */
uid = (m_in.owner == (uid_t)-1 ? vp->v_uid : m_in.owner);
gid = (m_in.group == (gid_t)-1 ? vp->v_gid : m_in.group);
if ((r = req_chown(vp->v_fs_e, vp->v_inode_nr, uid, gid,
&new_mode)) == OK) {
vp->v_uid = uid;
vp->v_gid = gid;
vp->v_mode = new_mode;
}
}
if (call_nr == CHOWN) {
unlock_vnode(vp);
unlock_vmnt(vmp);
} else { /* FCHOWN */
unlock_filp(flp);
}
put_vnode(vp);
return(r);
}
/*===========================================================================*
* do_umask *
*===========================================================================*/
PUBLIC int do_umask()
{
/* Perform the umask(co_mode) system call. */
register mode_t r;
r = ~fp->fp_umask; /* set 'r' to complement of old mask */
fp->fp_umask = ~(m_in.co_mode & RWX_MODES);
return(r); /* return complement of old mask */
}
/*===========================================================================*
* do_access *
*===========================================================================*/
PUBLIC int do_access()
{
/* Perform the access(name, mode) system call. */
int r;
struct vnode *vp;
struct vmnt *vmp;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
/* First check to see if the mode is correct. */
if ( (m_in.mode & ~(R_OK | W_OK | X_OK)) != 0 && m_in.mode != F_OK)
return(EINVAL);
/* Temporarily open the file. */
if (fetch_name(m_in.name, m_in.name_length, M3, fullpath) != OK)
return(err_code);
if ((vp = eat_path(&resolve, fp)) == NULL) return(err_code);
r = forbidden(vp, m_in.mode);
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return(r);
}
/*===========================================================================*
* forbidden *
*===========================================================================*/
PUBLIC int forbidden(struct vnode *vp, mode_t access_desired)
{
/* Given a pointer to an vnode, 'vp', and the access desired, determine
* if the access is allowed, and if not why not. The routine looks up the
* caller's uid in the 'fproc' table. If access is allowed, OK is returned
* if it is forbidden, EACCES is returned.
*/
register mode_t bits, perm_bits;
uid_t uid;
gid_t gid;
int r, shift;
if (vp->v_uid == (uid_t) -1 || vp->v_gid == (gid_t) -1) return(EACCES);
/* Isolate the relevant rwx bits from the mode. */
bits = vp->v_mode;
uid = (call_nr == ACCESS ? fp->fp_realuid : fp->fp_effuid);
gid = (call_nr == ACCESS ? fp->fp_realgid : fp->fp_effgid);
if (uid == SU_UID) {
/* Grant read and write permission. Grant search permission for
* directories. Grant execute permission (for non-directories) if
* and only if one of the 'X' bits is set.
*/
if ( (bits & I_TYPE) == I_DIRECTORY ||
bits & ((X_BIT << 6) | (X_BIT << 3) | X_BIT))
perm_bits = R_BIT | W_BIT | X_BIT;
else
perm_bits = R_BIT | W_BIT;
} else {
if (uid == vp->v_uid) shift = 6; /* owner */
else if (gid == vp->v_gid) shift = 3; /* group */
else if (in_group(fp, vp->v_gid) == OK) shift = 3; /* suppl. groups */
else shift = 0; /* other */
perm_bits = (bits >> shift) & (R_BIT | W_BIT | X_BIT);
}
/* If access desired is not a subset of what is allowed, it is refused. */
r = OK;
if ((perm_bits | access_desired) != perm_bits) r = EACCES;
/* Check to see if someone is trying to write on a file system that is
* mounted read-only.
*/
if (r == OK)
if (access_desired & W_BIT)
r = read_only(vp);
return(r);
}
/*===========================================================================*
* read_only *
*===========================================================================*/
PUBLIC int read_only(vp)
struct vnode *vp; /* ptr to inode whose file sys is to be cked */
{
/* Check to see if the file system on which the inode 'ip' resides is mounted
* read only. If so, return EROFS, else return OK.
*/
return((vp->v_vmnt->m_flags & VMNT_READONLY) ? EROFS : OK);
}

372
servers/avfs/proto.h Normal file
View file

@ -0,0 +1,372 @@
#ifndef __VFS_PROTO_H__
#define __VFS_PROTO_H__
/* Function prototypes. */
#include "timers.h"
#include "request.h"
#include "tll.h"
#include "threads.h"
#include <minix/rs.h>
/* Structs used in prototypes must be declared as such first. */
struct filp;
struct fproc;
struct vmnt;
struct vnode;
struct lookup;
struct worker_thread;
struct job;
typedef struct filp * filp_id_t;
/* comm.c */
_PROTOTYPE(int fs_sendrec, (endpoint_t fs_e, message *reqm) );
_PROTOTYPE(void fs_sendmore, (struct vmnt *vmp) );
_PROTOTYPE(void send_work, (void) );
/* device.c */
_PROTOTYPE( int dev_open, (dev_t dev, endpoint_t proc_e, int flags) );
_PROTOTYPE( int dev_reopen, (dev_t dev, int filp_no, int flags) );
_PROTOTYPE( int dev_close, (dev_t dev, int filp_no) );
_PROTOTYPE( int dev_io, (int op, dev_t dev, endpoint_t proc_e, void *buf,
u64_t pos, size_t bytes, int flags, int suspend_reopen) );
_PROTOTYPE( int gen_opcl, (int op, dev_t dev, endpoint_t task_nr, int flags));
_PROTOTYPE( int gen_io, (int task_nr, message *mess_ptr) );
_PROTOTYPE( int asyn_io, (int task_nr, message *mess_ptr) );
_PROTOTYPE( int no_dev, (int op, dev_t dev, int proc, int flags) );
_PROTOTYPE( int no_dev_io, (int, message *) );
_PROTOTYPE( int tty_opcl, (int op, dev_t dev, endpoint_t proc, int flags));
_PROTOTYPE( int ctty_opcl, (int op, dev_t dev, endpoint_t proc, int flags));
_PROTOTYPE( int clone_opcl, (int op, dev_t dev, int proc, int flags) );
_PROTOTYPE( int ctty_io, (int task_nr, message *mess_ptr) );
_PROTOTYPE( int do_ioctl, (void) );
_PROTOTYPE( void pm_setsid, (int proc_e) );
_PROTOTYPE( void dev_status, (message *) );
_PROTOTYPE( void dev_up, (int major) );
_PROTOTYPE( endpoint_t find_suspended_ep, (endpoint_t driver,
cp_grant_id_t g) );
_PROTOTYPE( void reopen_reply, (void) );
_PROTOTYPE( void open_reply, (void) );
/* dmap.c */
_PROTOTYPE( int do_mapdriver, (void) );
_PROTOTYPE( void init_dmap, (void) );
_PROTOTYPE( int dmap_driver_match, (endpoint_t proc, int major) );
_PROTOTYPE( void dmap_endpt_up, (int proc_nr) );
_PROTOTYPE( void dmap_unmap_by_endpt, (int proc_nr) );
_PROTOTYPE( struct dmap *get_dmap, (endpoint_t proc_e) );
_PROTOTYPE( int do_mapdriver, (void) );
_PROTOTYPE( int map_service, (struct rprocpub *rpub) );
_PROTOTYPE( void dmap_unmap_by_endpt, (int proc_nr) );
_PROTOTYPE( struct dmap *get_dmap, (endpoint_t proc_e) );
_PROTOTYPE( int map_driver, (const char *label, int major, endpoint_t proc_nr,
int dev_style, int flags) );
_PROTOTYPE( int map_service, (struct rprocpub *rpub) );
/* exec.c */
_PROTOTYPE( int pm_exec, (int proc_e, char *path, vir_bytes path_len,
char *frame, vir_bytes frame_len, vir_bytes *pc));
#define check_bsf_lock() do { \
assert(mutex_trylock(&bsf_lock) == 0); \
unlock_bsf(); \
} while(0)
/* filedes.c */
_PROTOTYPE( void check_filp_locks, (void) );
_PROTOTYPE( void check_filp_locks_by_me, (void) );
_PROTOTYPE( void init_filps, (void) );
_PROTOTYPE( struct filp *find_filp, (struct vnode *vp, mode_t bits) );
_PROTOTYPE( int get_fd, (int start, mode_t bits, int *k,
struct filp **fpt) );
_PROTOTYPE( struct filp *get_filp, (int fild, tll_access_t locktype) );
_PROTOTYPE( struct filp *get_filp2, (struct fproc *rfp, int fild,
tll_access_t locktype) );
_PROTOTYPE( void lock_filp, (struct filp *filp, tll_access_t locktype) );
_PROTOTYPE( void unlock_filp, (struct filp *filp) );
_PROTOTYPE( void unlock_filps, (struct filp *filp1, struct filp *filp2) );
_PROTOTYPE( int invalidate, (struct filp *) );
_PROTOTYPE( int do_verify_fd, (void) );
_PROTOTYPE( int set_filp, (filp_id_t sfilp) );
_PROTOTYPE( int do_set_filp, (void) );
_PROTOTYPE( int copy_filp, (endpoint_t to_ep, filp_id_t cfilp) );
_PROTOTYPE( int do_copy_filp, (void) );
_PROTOTYPE( int put_filp, (filp_id_t pfilp) );
_PROTOTYPE( int do_put_filp, (void) );
_PROTOTYPE( int cancel_fd, (endpoint_t ep, int fd) );
_PROTOTYPE( int do_cancel_fd, (void) );
_PROTOTYPE( void close_filp, (struct filp *fp) );
/* fscall.c */
_PROTOTYPE( void nested_fs_call, (message *m) );
/* link.c */
_PROTOTYPE( int do_link, (void) );
_PROTOTYPE( int do_unlink, (void) );
_PROTOTYPE( int do_rename, (void) );
_PROTOTYPE( int do_truncate, (void) );
_PROTOTYPE( int do_ftruncate, (void) );
_PROTOTYPE( int truncate_vnode, (struct vnode *vp, off_t newsize) );
_PROTOTYPE( int rdlink_direct, (char *orig_path, char *link_path,
struct fproc *rfp) );
/* lock.c */
_PROTOTYPE( int lock_op, (struct filp *f, int req) );
_PROTOTYPE( void lock_revive, (void) );
/* main.c */
_PROTOTYPE( int main, (void) );
_PROTOTYPE( void reply, (int whom, int result) );
_PROTOTYPE( void lock_proc, (struct fproc *rfp, int force_lock) );
_PROTOTYPE( void unlock_proc, (struct fproc *rfp) );
_PROTOTYPE( void *do_dummy, (void *arg) );
/* misc.c */
_PROTOTYPE( int do_dup, (void) );
_PROTOTYPE( void pm_exit, (int proc) );
_PROTOTYPE( int do_fcntl, (void) );
_PROTOTYPE( void pm_fork, (int pproc, int cproc, int cpid) );
_PROTOTYPE( void pm_setgid, (int proc_e, int egid, int rgid) );
_PROTOTYPE( void pm_setuid, (int proc_e, int euid, int ruid) );
_PROTOTYPE( void pm_setgroups, (int proc_e, int ngroups, gid_t *addr) );
_PROTOTYPE( int do_sync, (void) );
_PROTOTYPE( int do_fsync, (void) );
_PROTOTYPE( void pm_reboot, (void) );
_PROTOTYPE( int do_svrctl, (void) );
_PROTOTYPE( int do_getsysinfo, (void) );
_PROTOTYPE( int pm_dumpcore, (int proc_e, struct mem_map *seg_ptr) );
_PROTOTYPE( void ds_event, (void) );
/* mount.c */
_PROTOTYPE( int do_fsready, (void) );
_PROTOTYPE( int do_mount, (void) );
_PROTOTYPE( int do_umount, (void) );
_PROTOTYPE( void mount_pfs, (void) );
_PROTOTYPE( int mount_fs, (dev_t dev, char fullpath[PATH_MAX+1],
endpoint_t fs_e, int rdonly,
char mount_label[LABEL_MAX]) );
_PROTOTYPE( int unmount, (dev_t dev, char *label) );
_PROTOTYPE( void unmount_all, (void) );
/* open.c */
_PROTOTYPE( int do_close, (void) );
_PROTOTYPE( int close_fd, (struct fproc *rfp, int fd_nr) );
_PROTOTYPE( void close_reply, (void) );
_PROTOTYPE( int do_creat, (void) );
_PROTOTYPE( int do_lseek, (void) );
_PROTOTYPE( int do_llseek, (void) );
_PROTOTYPE( int do_mknod, (void) );
_PROTOTYPE( int do_mkdir, (void) );
_PROTOTYPE( int do_open, (void) );
_PROTOTYPE( int do_slink, (void) );
_PROTOTYPE( int do_vm_open, (void) );
_PROTOTYPE( int do_vm_close, (void) );
/* path.c */
_PROTOTYPE( struct vnode *advance, (struct vnode *dirp, struct lookup *resolve,
struct fproc *rfp) );
_PROTOTYPE( struct vnode *eat_path, (struct lookup *resolve,
struct fproc *rfp) );
_PROTOTYPE( struct vnode *last_dir, (struct lookup *resolve,
struct fproc *rfp) );
_PROTOTYPE( void lookup_init, (struct lookup *resolve, char *path, int flags,
struct vmnt **vmp, struct vnode **vp) );
_PROTOTYPE( int get_name, (struct vnode *dirp, struct vnode *entry,
char *_name) );
_PROTOTYPE( int canonical_path, (char *orig_path, char *canon_path,
struct fproc *rfp) );
_PROTOTYPE( int do_check_perms, (void) );
/* pipe.c */
_PROTOTYPE( int do_pipe, (void) );
_PROTOTYPE( int map_vnode, (struct vnode *vp, endpoint_t fs_e) );
_PROTOTYPE( void unpause, (int proc_nr_e) );
_PROTOTYPE( int pipe_check, (struct vnode *vp, int rw_flag,
int oflags, int bytes, u64_t position, int notouch) );
_PROTOTYPE( void release, (struct vnode *vp, int call_nr, int count) );
_PROTOTYPE( void revive, (int proc_nr, int bytes) );
_PROTOTYPE( void suspend, (int task) );
_PROTOTYPE( void pipe_suspend, (int rw_flag, int fd_nr, char *buf,
size_t size) );
_PROTOTYPE( void unsuspend_by_endpt, (endpoint_t) );
_PROTOTYPE( void wait_for, (endpoint_t) );
#if DO_SANITYCHECKS
_PROTOTYPE( int check_pipe, (void) );
#endif
/* protect.c */
_PROTOTYPE( int do_access, (void) );
_PROTOTYPE( int do_chmod, (void) );
_PROTOTYPE( int do_chown, (void) );
_PROTOTYPE( int do_umask, (void) );
_PROTOTYPE( int forbidden, (struct vnode *vp, mode_t access_desired) );
_PROTOTYPE( int read_only, (struct vnode *vp) );
/* read.c */
_PROTOTYPE( int do_read, (void) );
_PROTOTYPE( int do_getdents, (void) );
_PROTOTYPE( void lock_bsf, (void) );
_PROTOTYPE( void unlock_bsf, (void) );
_PROTOTYPE( int read_write, (int rw_flag) );
_PROTOTYPE( int rw_pipe, (int rw_flag, endpoint_t usr,
int fd_nr, struct filp *f, char *buf, size_t req_size) );
/* request.c */
_PROTOTYPE( int req_breadwrite, (endpoint_t fs_e, endpoint_t user_e,
dev_t dev, u64_t pos, unsigned int num_of_bytes,
char *user_addr, int rw_flag,
u64_t *new_posp, unsigned int *cum_iop) );
_PROTOTYPE( int req_chmod, (int fs_e, ino_t inode_nr, mode_t rmode,
mode_t *new_modep) );
_PROTOTYPE( int req_chown, (endpoint_t fs_e, ino_t inode_nr,
uid_t newuid, gid_t newgid, mode_t *new_modep) );
_PROTOTYPE( int req_create, (int fs_e, ino_t inode_nr, int omode,
uid_t uid, gid_t gid, char *path, node_details_t *res) );
_PROTOTYPE( int req_flush, (endpoint_t fs_e, dev_t dev) );
_PROTOTYPE( int req_fstatfs, (int fs_e, int who_e, char *buf) );
_PROTOTYPE( int req_statvfs, (int fs_e, int who_e, char *buf) );
_PROTOTYPE( int req_ftrunc, (endpoint_t fs_e, ino_t inode_nr,
off_t start, off_t end) );
_PROTOTYPE( int req_getdents, (endpoint_t fs_e, ino_t inode_nr,
u64_t pos, char *buf, size_t size,
u64_t *new_pos, int direct) );
_PROTOTYPE( int req_inhibread, (endpoint_t fs_e, ino_t inode_nr) );
_PROTOTYPE( int req_link, (endpoint_t fs_e, ino_t link_parent,
char *lastc, ino_t linked_file) );
_PROTOTYPE( int req_lookup, (endpoint_t fs_e, ino_t dir_ino, ino_t root_ino,
uid_t uid, gid_t gid, struct lookup *resolve,
lookup_res_t *res, struct fproc *rfp) );
_PROTOTYPE( int req_mkdir, (endpoint_t fs_e, ino_t inode_nr,
char *lastc, uid_t uid, gid_t gid, mode_t dmode) );
_PROTOTYPE( int req_mknod, (endpoint_t fs_e, ino_t inode_nr,
char *lastc, uid_t uid, gid_t gid,
mode_t dmode, dev_t dev) );
_PROTOTYPE( int req_mountpoint, (endpoint_t fs_e, ino_t inode_nr) );
_PROTOTYPE( int req_newnode, (endpoint_t fs_e, uid_t uid,
gid_t gid, mode_t dmode,
dev_t dev, struct node_details *res) );
_PROTOTYPE( int req_putnode, (int fs_e, ino_t inode_nr, int count) );
_PROTOTYPE( int req_rdlink, (endpoint_t fs_e, ino_t inode_nr,
endpoint_t who_e, char *buf, size_t len,
int direct) );
_PROTOTYPE( int req_readsuper, (endpoint_t fs_e, char *driver_name,
dev_t dev, int readonly, int isroot,
struct node_details *res_nodep) );
_PROTOTYPE( int req_readwrite, (endpoint_t fs_e, ino_t inode_nr,
u64_t pos, int rw_flag,
endpoint_t user_e, char *user_addr,
unsigned int num_of_bytes, u64_t *new_posp,
unsigned int *cum_iop) );
_PROTOTYPE( int req_rename, (endpoint_t fs_e, ino_t old_dir,
char *old_name, ino_t new_dir, char *new_name) );
_PROTOTYPE( int req_rmdir, (endpoint_t fs_e, ino_t inode_nr,
char *lastc) );
_PROTOTYPE(int req_slink, (endpoint_t fs_e, ino_t inode_nr, char *lastc,
endpoint_t who_e, char *path_addr,
unsigned short path_length, uid_t uid, gid_t gid) );
_PROTOTYPE( int req_stat, (int fs_e, ino_t inode_nr, int who_e,
char *buf, int pos, int stat_version) );
_PROTOTYPE( int req_sync, (endpoint_t fs_e) );
_PROTOTYPE( int req_unlink, (endpoint_t fs_e, ino_t inode_nr,
char *lastc) );
_PROTOTYPE( int req_unmount, (endpoint_t fs_e) );
_PROTOTYPE( int req_utime, (endpoint_t fs_e, ino_t inode_nr,
time_t actime, time_t modtime) );
_PROTOTYPE( int req_newdriver, (endpoint_t fs_e, dev_t dev,
endpoint_t driver_e) );
/* stadir.c */
_PROTOTYPE( int do_chdir, (void) );
_PROTOTYPE( int do_fchdir, (void) );
_PROTOTYPE( int do_chroot, (void) );
_PROTOTYPE( int do_fstat, (void) );
_PROTOTYPE( int do_stat, (void) );
_PROTOTYPE( int do_fstatfs, (void) );
_PROTOTYPE( int do_statvfs, (void) );
_PROTOTYPE( int do_fstatvfs, (void) );
_PROTOTYPE( int do_rdlink, (void) );
_PROTOTYPE( int do_lstat, (void) );
/* time.c */
_PROTOTYPE( int do_utime, (void) );
/* tll.c */
_PROTOTYPE( void tll_downgrade, (tll_t *tllp) );
_PROTOTYPE( int tll_haspendinglock, (tll_t *tllp) );
_PROTOTYPE( void tll_init, (tll_t *tllp) );
_PROTOTYPE( int tll_islocked, (tll_t *tllp) );
_PROTOTYPE( int tll_lock, (tll_t *tllp, tll_access_t locktype) );
_PROTOTYPE( int tll_locked_by_me, (tll_t *tllp) );
_PROTOTYPE( void tll_lockstat, (tll_t *tllp) );
_PROTOTYPE( int tll_unlock, (tll_t *tllp) );
_PROTOTYPE( void tll_upgrade, (tll_t *tllp) );
/* utility.c */
_PROTOTYPE( time_t clock_time, (void) );
_PROTOTYPE( unsigned conv2, (int norm, int w) );
_PROTOTYPE( long conv4, (int norm, long x) );
_PROTOTYPE( int fetch_name, (char *path, int len, int flag, char *dest) );
_PROTOTYPE( int no_sys, (void) );
_PROTOTYPE( int isokendpt_f, (char *f, int l, endpoint_t e, int *p, int ft));
_PROTOTYPE( int in_group, (struct fproc *rfp, gid_t grp) );
#define okendpt(e, p) isokendpt_f(__FILE__, __LINE__, (e), (p), 1)
#define isokendpt(e, p) isokendpt_f(__FILE__, __LINE__, (e), (p), 0)
/* vmnt.c */
_PROTOTYPE( void check_vmnt_locks, (void) );
_PROTOTYPE( void check_vmnt_locks_by_me, (struct fproc *rfp) );
_PROTOTYPE( struct vmnt *get_free_vmnt, (void) );
_PROTOTYPE( struct vmnt *find_vmnt, (endpoint_t fs_e) );
_PROTOTYPE( struct vmnt *get_locked_vmnt, (struct fproc *rfp) );
_PROTOTYPE( void init_vmnts, (void) );
_PROTOTYPE( int lock_vmnt, (struct vmnt *vp, tll_access_t locktype) );
_PROTOTYPE( void unlock_vmnt, (struct vmnt *vp) );
/* vnode.c */
_PROTOTYPE( void check_vnode_locks, (void) );
_PROTOTYPE( void check_vnode_locks_by_me, (struct fproc *rfp) );
_PROTOTYPE( struct vnode *get_free_vnode, (void) );
_PROTOTYPE( struct vnode *find_vnode, (int fs_e, int numb) );
_PROTOTYPE( void init_vnodes, (void) );
_PROTOTYPE( int is_vnode_locked, (struct vnode *vp) );
_PROTOTYPE( int lock_vnode, (struct vnode *vp, tll_access_t locktype) );
_PROTOTYPE( void unlock_vnode, (struct vnode *vp) );
_PROTOTYPE( void dup_vnode, (struct vnode *vp) );
_PROTOTYPE( void put_vnode, (struct vnode *vp) );
_PROTOTYPE( void vnode_clean_refs, (struct vnode *vp) );
#if DO_SANITYCHECKS
_PROTOTYPE( int check_vrefs, (void) );
#endif
/* write.c */
_PROTOTYPE( int do_write, (void) );
/* gcov.c */
_PROTOTYPE( int do_gcov_flush, (void) );
#if ! USE_COVERAGE
#define do_gcov_flush no_sys
#endif
/* select.c */
_PROTOTYPE( int do_select, (void) );
_PROTOTYPE( void init_select, (void) );
_PROTOTYPE( void select_callback, (struct filp *, int ops) );
_PROTOTYPE( void select_forget, (endpoint_t proc_e) );
_PROTOTYPE( void select_reply1, (endpoint_t driver_e, int minor, int status));
_PROTOTYPE( void select_reply2, (endpoint_t driver_e, int minor, int status));
_PROTOTYPE( void select_timeout_check, (timer_t *) );
_PROTOTYPE( void select_unsuspend_by_endpt, (endpoint_t proc) );
/* worker.c */
_PROTOTYPE( int worker_available, (void) );
_PROTOTYPE( struct worker_thread *worker_get, (thread_t worker_tid) );
_PROTOTYPE( struct job *worker_getjob, (thread_t worker_tid) );
_PROTOTYPE( void worker_init, (struct worker_thread *worker) );
_PROTOTYPE( struct worker_thread *worker_self, (void) );
_PROTOTYPE( void worker_start, (void *(*func)(void *arg)) );
_PROTOTYPE( void worker_signal, (struct worker_thread *worker) );
_PROTOTYPE( void worker_wait, (void) );
_PROTOTYPE( void sys_worker_start, (void *(*func)(void *arg)) );
_PROTOTYPE( void dl_worker_start, (void *(*func)(void *arg)) );
#endif

326
servers/avfs/read.c Normal file
View file

@ -0,0 +1,326 @@
/* This file contains the heart of the mechanism used to read (and write)
* files. Read and write requests are split up into chunks that do not cross
* block boundaries. Each chunk is then processed in turn. Reads on special
* files are also detected and handled.
*
* The entry points into this file are
* do_read: perform the READ system call by calling read_write
* do_getdents: read entries from a directory (GETDENTS)
* read_write: actually do the work of READ and WRITE
*
*/
#include "fs.h"
#include <fcntl.h>
#include <unistd.h>
#include <minix/com.h>
#include <minix/u64.h>
#include "file.h"
#include "fproc.h"
#include "param.h"
#include <dirent.h>
#include <assert.h>
#include <minix/vfsif.h>
#include "vnode.h"
#include "vmnt.h"
/*===========================================================================*
* do_read *
*===========================================================================*/
PUBLIC int do_read()
{
return(read_write(READING));
}
/*===========================================================================*
* lock_bsf *
*===========================================================================*/
PUBLIC void lock_bsf(void)
{
message org_m_in;
struct fproc *org_fp;
struct worker_thread *org_self;
if (mutex_trylock(&bsf_lock) == 0)
return;
org_m_in = m_in;
org_fp = fp;
org_self = self;
assert(mutex_lock(&bsf_lock) == 0);
m_in = org_m_in;
fp = org_fp;
self = org_self;
}
/*===========================================================================*
* unlock_bsf *
*===========================================================================*/
PUBLIC void unlock_bsf(void)
{
assert(mutex_unlock(&bsf_lock) == 0);
}
/*===========================================================================*
* read_write *
*===========================================================================*/
PUBLIC int read_write(rw_flag)
int rw_flag; /* READING or WRITING */
{
/* Perform read(fd, buffer, nbytes) or write(fd, buffer, nbytes) call. */
register struct filp *f;
register struct vnode *vp;
u64_t position, res_pos, new_pos;
unsigned int cum_io, cum_io_incr, res_cum_io;
int op, oflags, r, block_spec, char_spec, regular;
tll_access_t locktype;
mode_t mode_word;
/* If the file descriptor is valid, get the vnode, size and mode. */
if (m_in.nbytes < 0) return(EINVAL);
locktype = (rw_flag == READING) ? VNODE_READ : VNODE_WRITE;
if ((f = get_filp(m_in.fd, locktype)) == NULL) return(err_code);
if (((f->filp_mode) & (rw_flag == READING ? R_BIT : W_BIT)) == 0) {
unlock_filp(f);
return(f->filp_mode == FILP_CLOSED ? EIO : EBADF);
}
if (m_in.nbytes == 0) {
unlock_filp(f);
return(0); /* so char special files need not check for 0*/
}
position = f->filp_pos;
oflags = f->filp_flags;
vp = f->filp_vno;
r = OK;
cum_io = 0;
if (vp->v_pipe == I_PIPE) {
if (fp->fp_cum_io_partial != 0) {
panic("VFS: read_write: fp_cum_io_partial not clear");
}
r = rw_pipe(rw_flag, who_e, m_in.fd, f, m_in.buffer, m_in.nbytes);
unlock_filp(f);
return(r);
}
op = (rw_flag == READING ? VFS_DEV_READ : VFS_DEV_WRITE);
mode_word = vp->v_mode & I_TYPE;
regular = mode_word == I_REGULAR;
if ((char_spec = (mode_word == I_CHAR_SPECIAL ? 1 : 0))) {
if (vp->v_sdev == NO_DEV)
panic("VFS: read_write tries to access char dev NO_DEV");
}
if ((block_spec = (mode_word == I_BLOCK_SPECIAL ? 1 : 0))) {
if (vp->v_sdev == NO_DEV)
panic("VFS: read_write tries to access block dev NO_DEV");
}
if (char_spec) { /* Character special files. */
dev_t dev;
int suspend_reopen;
suspend_reopen = (f->filp_state != FS_NORMAL);
dev = (dev_t) vp->v_sdev;
r = dev_io(op, dev, who_e, m_in.buffer, position, m_in.nbytes, oflags,
suspend_reopen);
if (r >= 0) {
cum_io = r;
position = add64ul(position, r);
r = OK;
}
} else if (block_spec) { /* Block special files. */
lock_bsf();
r = req_breadwrite(vp->v_bfs_e, who_e, vp->v_sdev, position,
m_in.nbytes, m_in.buffer, rw_flag, &res_pos, &res_cum_io);
if (r == OK) {
position = res_pos;
cum_io += res_cum_io;
}
unlock_bsf();
} else { /* Regular files */
if (rw_flag == WRITING && block_spec == 0) {
/* Check for O_APPEND flag. */
if (oflags & O_APPEND) position = cvul64(vp->v_size);
}
/* Issue request */
r = req_readwrite(vp->v_fs_e, vp->v_inode_nr, position, rw_flag, who_e,
m_in.buffer, m_in.nbytes, &new_pos, &cum_io_incr);
if (r >= 0) {
if (ex64hi(new_pos))
panic("read_write: bad new pos");
position = new_pos;
cum_io += cum_io_incr;
}
}
/* On write, update file size and access time. */
if (rw_flag == WRITING) {
if (regular || mode_word == I_DIRECTORY) {
if (cmp64ul(position, vp->v_size) > 0) {
if (ex64hi(position) != 0) {
panic("read_write: file size too big ");
}
vp->v_size = ex64lo(position);
}
}
}
f->filp_pos = position;
unlock_filp(f);
if (r == OK) return(cum_io);
return(r);
}
/*===========================================================================*
* do_getdents *
*===========================================================================*/
PUBLIC int do_getdents()
{
/* Perform the getdents(fd, buf, size) system call. */
int r = OK;
u64_t new_pos;
register struct filp *rfilp;
/* Is the file descriptor valid? */
if ( (rfilp = get_filp(m_in.fd, VNODE_READ)) == NULL) return(err_code);
if (!(rfilp->filp_mode & R_BIT))
r = EBADF;
else if ((rfilp->filp_vno->v_mode & I_TYPE) != I_DIRECTORY)
r = EBADF;
if (r == OK) {
if (ex64hi(rfilp->filp_pos) != 0)
panic("do_getdents: can't handle large offsets");
r = req_getdents(rfilp->filp_vno->v_fs_e, rfilp->filp_vno->v_inode_nr,
rfilp->filp_pos, m_in.buffer, m_in.nbytes,&new_pos,0);
if (r > 0) rfilp->filp_pos = new_pos;
}
unlock_filp(rfilp);
return(r);
}
/*===========================================================================*
* rw_pipe *
*===========================================================================*/
PUBLIC int rw_pipe(rw_flag, usr_e, fd_nr, f, buf, req_size)
int rw_flag; /* READING or WRITING */
endpoint_t usr_e;
int fd_nr;
struct filp *f;
char *buf;
size_t req_size;
{
int r, oflags, partial_pipe = 0;
size_t size, cum_io, cum_io_incr;
struct vnode *vp;
u64_t position, new_pos;
/* Must make sure we're operating on locked filp and vnode */
assert(tll_islocked(&f->filp_vno->v_lock));
assert(mutex_trylock(&f->filp_lock) == -EDEADLK);
oflags = f->filp_flags;
vp = f->filp_vno;
position = cvu64((rw_flag == READING) ? vp->v_pipe_rd_pos :
vp->v_pipe_wr_pos);
/* fp->fp_cum_io_partial is only nonzero when doing partial writes */
cum_io = fp->fp_cum_io_partial;
r = pipe_check(vp, rw_flag, oflags, req_size, position, 0);
if (r <= 0) {
if (r == SUSPEND) pipe_suspend(rw_flag, fd_nr, buf, req_size);
return(r);
}
size = r;
if (size < req_size) partial_pipe = 1;
/* Truncate read request at size. */
if((rw_flag == READING) &&
cmp64ul(add64ul(position, size), vp->v_size) > 0) {
/* Position always should fit in an off_t (LONG_MAX). */
off_t pos32;
assert(cmp64ul(position, LONG_MAX) <= 0);
pos32 = cv64ul(position);
assert(pos32 >= 0);
assert(pos32 <= LONG_MAX);
size = vp->v_size - pos32;
}
if (vp->v_mapfs_e == 0)
panic("unmapped pipe");
r = req_readwrite(vp->v_mapfs_e, vp->v_mapinode_nr, position, rw_flag, usr_e,
buf, size, &new_pos, &cum_io_incr);
if (r >= 0) {
if (ex64hi(new_pos))
panic("rw_pipe: bad new pos");
position = new_pos;
cum_io += cum_io_incr;
buf += cum_io_incr;
req_size -= cum_io_incr;
}
/* On write, update file size and access time. */
if (rw_flag == WRITING) {
if (cmp64ul(position, vp->v_size) > 0) {
if (ex64hi(position) != 0) {
panic("read_write: file size too big for v_size");
}
vp->v_size = ex64lo(position);
}
} else {
if (cmp64ul(position, vp->v_size) >= 0) {
/* Reset pipe pointers */
vp->v_size = 0;
vp->v_pipe_rd_pos= 0;
vp->v_pipe_wr_pos= 0;
position = cvu64(0);
}
}
if (rw_flag == READING)
vp->v_pipe_rd_pos= cv64ul(position);
else
vp->v_pipe_wr_pos= cv64ul(position);
if (r == OK) {
if (partial_pipe) {
/* partial write on pipe with */
/* O_NONBLOCK, return write count */
if (!(oflags & O_NONBLOCK)) {
/* partial write on pipe with req_size > PIPE_SIZE,
* non-atomic
*/
fp->fp_cum_io_partial = cum_io;
pipe_suspend(rw_flag, fd_nr, buf, req_size);
return(SUSPEND);
}
}
fp->fp_cum_io_partial = 0;
return(cum_io);
}
return(r);
}

1093
servers/avfs/request.c Normal file

File diff suppressed because it is too large Load diff

41
servers/avfs/request.h Normal file
View file

@ -0,0 +1,41 @@
#ifndef __VFS_REQUEST_H__
#define __VFS_REQUEST_H__
/* Low level request messages are built and sent by wrapper functions.
* This file contains the request and response structures for accessing
* those wrappers functions.
*/
#include <sys/types.h>
/* Structure for response that contains inode details */
typedef struct node_details {
endpoint_t fs_e;
ino_t inode_nr;
mode_t fmode;
off_t fsize;
uid_t uid;
gid_t gid;
/* For char/block special files */
dev_t dev;
} node_details_t;
/* Structure for a lookup response */
typedef struct lookup_res {
endpoint_t fs_e;
ino_t inode_nr;
mode_t fmode;
off_t fsize;
uid_t uid;
gid_t gid;
/* For char/block special files */
dev_t dev;
/* Fields used for handling mount point and symbolic links */
int char_processed;
unsigned char symloop;
} lookup_res_t;
#endif

1058
servers/avfs/select.c Normal file

File diff suppressed because it is too large Load diff

9
servers/avfs/select.h Normal file
View file

@ -0,0 +1,9 @@
#ifndef __VFS_SELECT_H__
#define __VFS_SELECT_H__
/* return codes for select_request_* and select_cancel_* */
#define SEL_OK 0 /* ready */
#define SEL_ERROR 1 /* failed */
#define SEL_DEFERRED 2 /* request is sent to driver */
#endif

287
servers/avfs/stadir.c Normal file
View file

@ -0,0 +1,287 @@
/* This file contains the code for performing four system calls relating to
* status and directories.
*
* The entry points into this file are
* do_chdir: perform the CHDIR system call
* do_chroot: perform the CHROOT system call
* do_lstat: perform the LSTAT system call
* do_stat: perform the STAT system call
* do_fstat: perform the FSTAT system call
* do_fstatfs: perform the FSTATFS system call
* do_statvfs: perform the STATVFS system call
* do_fstatvfs: perform the FSTATVFS system call
*/
#include "fs.h"
#include <sys/stat.h>
#include <sys/statfs.h>
#include <minix/com.h>
#include <minix/u64.h>
#include <string.h>
#include "file.h"
#include "fproc.h"
#include "path.h"
#include "param.h"
#include <minix/vfsif.h>
#include <minix/callnr.h>
#include "vnode.h"
#include "vmnt.h"
FORWARD _PROTOTYPE( int change, (struct vnode **iip, char *name_ptr, int len));
FORWARD _PROTOTYPE( int change_into, (struct vnode **iip, struct vnode *vp));
/*===========================================================================*
* do_fchdir *
*===========================================================================*/
PUBLIC int do_fchdir()
{
/* Change directory on already-opened fd. */
struct filp *rfilp;
int r;
/* Is the file descriptor valid? */
if ((rfilp = get_filp(m_in.fd, VNODE_READ)) == NULL) return(err_code);
r = change_into(&fp->fp_wd, rfilp->filp_vno);
unlock_filp(rfilp);
return(r);
}
/*===========================================================================*
* do_chdir *
*===========================================================================*/
PUBLIC int do_chdir()
{
/* Perform the chdir(name) system call. */
return change(&fp->fp_wd, m_in.name, m_in.name_length);
}
/*===========================================================================*
* do_chroot *
*===========================================================================*/
PUBLIC int do_chroot()
{
/* Perform the chroot(name) system call. */
if (!super_user) return(EPERM); /* only su may chroot() */
return change(&fp->fp_rd, m_in.name, m_in.name_length);
}
/*===========================================================================*
* change *
*===========================================================================*/
PRIVATE int change(iip, name_ptr, len)
struct vnode **iip; /* pointer to the inode pointer for the dir */
char *name_ptr; /* pointer to the directory name to change to */
int len; /* length of the directory name string */
{
/* Do the actual work for chdir() and chroot(). */
struct vnode *vp;
struct vmnt *vmp;
char fullpath[PATH_MAX+1];
struct lookup resolve;
int r;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
/* Try to open the directory */
if (fetch_name(name_ptr, len, M3, fullpath) != OK) return(err_code);
if ((vp = eat_path(&resolve, fp)) == NULL) return(err_code);
r = change_into(iip, vp);
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return(r);
}
/*===========================================================================*
* change_into *
*===========================================================================*/
PRIVATE int change_into(iip, vp)
struct vnode **iip; /* pointer to the inode pointer for the dir */
struct vnode *vp; /* this is what the inode has to become */
{
int r;
if (*iip == vp) return(OK); /* Nothing to do */
/* It must be a directory and also be searchable */
if ((vp->v_mode & I_TYPE) != I_DIRECTORY)
r = ENOTDIR;
else
r = forbidden(vp, X_BIT); /* Check if dir is searchable*/
if (r != OK) return(r);
/* Everything is OK. Make the change. */
put_vnode(*iip); /* release the old directory */
dup_vnode(vp);
*iip = vp; /* acquire the new one */
return(OK);
}
/*===========================================================================*
* do_stat *
*===========================================================================*/
PUBLIC int do_stat()
{
/* Perform the stat(name, buf) system call. */
int r;
struct vnode *vp;
struct vmnt *vmp;
char fullpath[PATH_MAX+1];
struct lookup resolve;
int old_stat = 0;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
if (call_nr == PREV_STAT)
old_stat = 1;
if (fetch_name(m_in.name1, m_in.name1_length, M1, fullpath) != OK)
return(err_code);
if ((vp = eat_path(&resolve, fp)) == NULL) return(err_code);
r = req_stat(vp->v_fs_e, vp->v_inode_nr, who_e, m_in.name2, 0, old_stat);
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return r;
}
/*===========================================================================*
* do_fstat *
*===========================================================================*/
PUBLIC int do_fstat()
{
/* Perform the fstat(fd, buf) system call. */
register struct filp *rfilp;
int r;
int pipe_pos = 0;
int old_stat = 0;
if (call_nr == PREV_FSTAT)
old_stat = 1;
/* Is the file descriptor valid? */
if ((rfilp = get_filp(m_in.fd, VNODE_READ)) == NULL) return(err_code);
/* If we read from a pipe, send position too */
if (rfilp->filp_vno->v_pipe == I_PIPE) {
if (rfilp->filp_mode & R_BIT)
if (ex64hi(rfilp->filp_pos) != 0) {
panic("do_fstat: bad position in pipe");
}
pipe_pos = ex64lo(rfilp->filp_pos);
}
r = req_stat(rfilp->filp_vno->v_fs_e, rfilp->filp_vno->v_inode_nr,
who_e, m_in.buffer, pipe_pos, old_stat);
unlock_filp(rfilp);
return(r);
}
/*===========================================================================*
* do_fstatfs *
*===========================================================================*/
PUBLIC int do_fstatfs()
{
/* Perform the fstatfs(fd, buf) system call. */
struct filp *rfilp;
int r;
/* Is the file descriptor valid? */
if( (rfilp = get_filp(m_in.fd, VNODE_READ)) == NULL) return(err_code);
r = req_fstatfs(rfilp->filp_vno->v_fs_e, who_e, m_in.buffer);
unlock_filp(rfilp);
return(r);
}
/*===========================================================================*
* do_statvfs *
*===========================================================================*/
PUBLIC int do_statvfs()
{
/* Perform the stat(name, buf) system call. */
int r;
struct vnode *vp;
struct vmnt *vmp;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
if (fetch_name(m_in.STATVFS_NAME, m_in.STATVFS_LEN, M1, fullpath) != OK)
return(err_code);
if ((vp = eat_path(&resolve, fp)) == NULL) return(err_code);
r = req_statvfs(vp->v_fs_e, who_e, m_in.STATVFS_BUF);
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return r;
}
/*===========================================================================*
* do_fstatvfs *
*===========================================================================*/
PUBLIC int do_fstatvfs()
{
/* Perform the fstat(fd, buf) system call. */
register struct filp *rfilp;
int r;
/* Is the file descriptor valid? */
if ((rfilp = get_filp(m_in.FSTATVFS_FD, VNODE_READ)) == NULL)
return(err_code);
r = req_statvfs(rfilp->filp_vno->v_fs_e, who_e, m_in.FSTATVFS_BUF);
unlock_filp(rfilp);
return(r);
}
/*===========================================================================*
* do_lstat *
*===========================================================================*/
PUBLIC int do_lstat()
{
/* Perform the lstat(name, buf) system call. */
struct vnode *vp;
struct vmnt *vmp;
int r;
char fullpath[PATH_MAX+1];
struct lookup resolve;
int old_stat = 0;
lookup_init(&resolve, fullpath, PATH_RET_SYMLINK, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_READ;
resolve.l_vnode_lock = VNODE_READ;
if (call_nr == PREV_LSTAT)
old_stat = 1;
if (fetch_name(m_in.name1, m_in.name1_length, M1, fullpath) != OK)
return(err_code);
if ((vp = eat_path(&resolve, fp)) == NULL) return(err_code);
r = req_stat(vp->v_fs_e, vp->v_inode_nr, who_e, m_in.name2, 0, old_stat);
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return(r);
}

145
servers/avfs/table.c Normal file
View file

@ -0,0 +1,145 @@
/* This file contains the table used to map system call numbers onto the
* routines that perform them.
*/
#define _TABLE
#include "fs.h"
#include <minix/callnr.h>
#include <minix/com.h>
#include "file.h"
#include "fproc.h"
#include "lock.h"
#include "vnode.h"
#include "vmnt.h"
PUBLIC _PROTOTYPE (int (*call_vec[]), (void) ) = {
no_sys, /* 0 = unused */
no_sys, /* 1 = (exit) */
no_sys, /* 2 = (fork) */
do_read, /* 3 = read */
do_write, /* 4 = write */
do_open, /* 5 = open */
do_close, /* 6 = close */
no_sys, /* 7 = wait */
do_creat, /* 8 = creat */
do_link, /* 9 = link */
do_unlink, /* 10 = unlink */
no_sys, /* 11 = waitpid */
do_chdir, /* 12 = chdir */
no_sys, /* 13 = time */
do_mknod, /* 14 = mknod */
do_chmod, /* 15 = chmod */
do_chown, /* 16 = chown */
no_sys, /* 17 = break */
do_stat, /* 18 = stat (prev)*/
do_lseek, /* 19 = lseek */
no_sys, /* 20 = getpid */
do_mount, /* 21 = mount */
do_umount, /* 22 = umount */
no_sys, /* 23 = (setuid) */
no_sys, /* 24 = getuid */
no_sys, /* 25 = (stime) */
no_sys, /* 26 = ptrace */
no_sys, /* 27 = alarm */
do_fstat, /* 28 = fstat (prev)*/
no_sys, /* 29 = pause */
do_utime, /* 30 = utime */
no_sys, /* 31 = (stty) */
no_sys, /* 32 = (gtty) */
do_access, /* 33 = access */
no_sys, /* 34 = (nice) */
no_sys, /* 35 = (ftime) */
do_sync, /* 36 = sync */
no_sys, /* 37 = kill */
do_rename, /* 38 = rename */
do_mkdir, /* 39 = mkdir */
do_unlink, /* 40 = rmdir */
do_dup, /* 41 = dup */
do_pipe, /* 42 = pipe */
no_sys, /* 43 = times */
no_sys, /* 44 = (prof) */
do_slink, /* 45 = symlink */
no_sys, /* 46 = (setgid)*/
no_sys, /* 47 = getgid */
no_sys, /* 48 = (signal)*/
do_rdlink, /* 49 = readlink*/
do_lstat, /* 50 = lstat (prev)*/
no_sys, /* 51 = (acct) */
no_sys, /* 52 = (phys) */
no_sys, /* 53 = (lock) */
do_ioctl, /* 54 = ioctl */
do_fcntl, /* 55 = fcntl */
no_sys, /* 56 = (mpx) */
do_fsready, /* 57 = FS proc ready */
no_sys, /* 58 = unused */
no_sys, /* 59 = (execve)*/
do_umask, /* 60 = umask */
do_chroot, /* 61 = chroot */
no_sys, /* 62 = (setsid)*/
no_sys, /* 63 = (getpgrp)*/
no_sys, /* 64 = (itimer)*/
do_stat, /* 65 = stat */
do_fstat, /* 66 = fstat */
do_lstat, /* 67 = lstat */
no_sys, /* 68 = unused */
no_sys, /* 69 = unused */
no_sys, /* 70 = unused */
no_sys, /* 71 = (sigaction) */
no_sys, /* 72 = (sigsuspend) */
no_sys, /* 73 = (sigpending) */
no_sys, /* 74 = (sigprocmask) */
no_sys, /* 75 = (sigreturn) */
no_sys, /* 76 = (reboot) */
do_svrctl, /* 77 = svrctl */
no_sys, /* 78 = (sysuname) */
do_getsysinfo, /* 79 = getsysinfo */
do_getdents, /* 80 = getdents */
do_llseek, /* 81 = llseek */
do_fstatfs, /* 82 = fstatfs */
do_statvfs, /* 83 = fstatvfs */
do_fstatvfs, /* 84 = statvfs */
do_select, /* 85 = select */
do_fchdir, /* 86 = fchdir */
do_fsync, /* 87 = fsync */
no_sys, /* 88 = (getpriority) */
no_sys, /* 89 = (setpriority) */
no_sys, /* 90 = (gettimeofday) */
no_sys, /* 91 = (seteuid) */
no_sys, /* 92 = (setegid) */
do_truncate, /* 93 = truncate */
do_ftruncate, /* 94 = truncate */
do_chmod, /* 95 = fchmod */
do_chown, /* 96 = fchown */
no_sys, /* 97 = (getsysinfo_up) */
no_sys, /* 98 = (sprofile) */
no_sys, /* 99 = (cprofile) */
/* THE MINIX3 ABI ENDS HERE */
no_sys, /* 100 = (exec_newmem) */
no_sys, /* 101 = (srv_fork) */
no_sys, /* 102 = (exec_restart) */
no_sys, /* 103 = (procstat) */
no_sys, /* 104 = (getprocnr) */
no_sys, /* 105 = unused */
no_sys, /* 106 = unused */
no_sys, /* 107 = (getepinfo) */
no_sys, /* 108 = (adddma) */
no_sys, /* 109 = (deldma) */
no_sys, /* 110 = (getdma) */
no_sys, /* 111 = (srv_kill) */
do_gcov_flush, /* 112 = gcov_flush */
no_sys, /* 113 = (getsid) */
};
/* This should not fail with "array size is negative": */
extern int dummy[sizeof(call_vec) == NCALLS * sizeof(call_vec[0]) ? 1 : -1];
PUBLIC _PROTOTYPE (int (*pfs_call_vec[]), (void) ) = {
no_sys, /* 0 */
do_check_perms, /* 1 */
do_verify_fd, /* 2 */
do_set_filp, /* 3 */
do_copy_filp, /* 4 */
do_put_filp, /* 5 */
do_cancel_fd /* 6 */
};

35
servers/avfs/threads.h Normal file
View file

@ -0,0 +1,35 @@
#ifndef __VFS_WORKERS_H__
#define __VFS_WORKERS_H__
#include <minix/mthread.h>
#include "job.h"
#define thread_t mthread_thread_t
#define mutex_t mthread_mutex_t
#define cond_t mthread_cond_t
#define attr_t mthread_attr_t
#define threads_init mthread_init
#define yield mthread_yield
#define yield_all mthread_yield_all
#define mutex_init mthread_mutex_init
#define mutex_destroy mthread_mutex_destroy
#define mutex_lock mthread_mutex_lock
#define mutex_trylock mthread_mutex_trylock
#define mutex_unlock mthread_mutex_unlock
#define cond_init mthread_cond_init
#define cond_destroy mthread_cond_destroy
#define cond_wait mthread_cond_wait
#define cond_signal mthread_cond_signal
struct worker_thread {
thread_t w_tid;
mutex_t w_event_mutex;
cond_t w_event;
struct job w_job;
struct fproc *w_fp;
struct worker_thread *w_next;
};
#endif

66
servers/avfs/time.c Normal file
View file

@ -0,0 +1,66 @@
/* This file takes care of those system calls that deal with time.
*
* The entry points into this file are
* do_utime: perform the UTIME system call
*/
#include "fs.h"
#include <minix/callnr.h>
#include <minix/com.h>
#include "file.h"
#include "fproc.h"
#include "path.h"
#include "param.h"
#include "vnode.h"
#include <minix/vfsif.h>
#include "vmnt.h"
/*===========================================================================*
* do_utime *
*===========================================================================*/
PUBLIC int do_utime()
{
/* Perform the utime(name, timep) system call. */
register int len;
int r;
time_t actime, modtime;
struct vnode *vp;
struct vmnt *vmp;
char fullpath[PATH_MAX+1];
struct lookup resolve;
lookup_init(&resolve, fullpath, PATH_NOFLAGS, &vmp, &vp);
resolve.l_vmnt_lock = VMNT_WRITE;
resolve.l_vnode_lock = VNODE_READ;
/* Adjust for case of 'timep' being NULL;
* utime_strlen then holds the actual size: strlen(name)+1 */
len = m_in.utime_length;
if (len == 0) len = m_in.utime_strlen;
/* Temporarily open the file */
if (fetch_name(m_in.utime_file, len, M1, fullpath) != OK) return(err_code);
if ((vp = eat_path(&resolve, fp)) == NULL) return(err_code);
/* Only the owner of a file or the super user can change its name. */
r = OK;
if (vp->v_uid != fp->fp_effuid && fp->fp_effuid != SU_UID) r = EPERM;
if (m_in.utime_length == 0 && r != OK) r = forbidden(vp, W_BIT);
if (read_only(vp) != OK) r = EROFS; /* Not even su can touch if R/O */
if (r == OK) {
/* Issue request */
if(m_in.utime_length == 0) {
actime = modtime = clock_time();
} else {
actime = m_in.utime_actime;
modtime = m_in.utime_modtime;
}
r = req_utime(vp->v_fs_e, vp->v_inode_nr, actime, modtime);
}
unlock_vnode(vp);
unlock_vmnt(vmp);
put_vnode(vp);
return(r);
}

310
servers/avfs/tll.c Normal file
View file

@ -0,0 +1,310 @@
/* This file contains the implementation of the three-level-lock. */
#include "fs.h"
#include "glo.h"
#include "tll.h"
#include "threads.h"
#include <assert.h>
FORWARD _PROTOTYPE( int tll_append, (tll_t *tllp, tll_access_t locktype));
PRIVATE int tll_append(tll_t *tllp, tll_access_t locktype)
{
struct worker_thread *queue;
assert(self != NULL);
assert(tllp != NULL);
assert(locktype != TLL_NONE);
/* Read-only and write-only requests go to the write queue. Read-serialized
* requests go to the serial queue. Then we wait for an event to signal it's
* our turn to go. */
queue = NULL;
if (locktype == TLL_READ || locktype == TLL_WRITE) {
if (tllp->t_write == NULL)
tllp->t_write = self;
else
queue = tllp->t_write;
} else {
if (tllp->t_serial == NULL)
tllp->t_serial = self;
else
queue = tllp->t_serial;
}
if (queue != NULL) { /* Traverse to end of queue */
while (queue->w_next != NULL) queue = queue->w_next;
queue->w_next = self;
}
self->w_next = NULL; /* End of queue */
/* Now wait for the event it's our turn */
worker_wait();
tllp->t_current = locktype;
tllp->t_status &= ~TLL_PEND;
tllp->t_owner = self;
if (tllp->t_current == TLL_READ) {
tllp->t_readonly++;
tllp->t_owner = NULL;
}
if (verbose) {
printf("got lock on tllp=%p with type %d (self=%p)\n", tllp,
locktype, self);
}
/* Due to the way upgrading and downgrading works, read-only requests are
* scheduled to run after a downgraded lock is released (because they are
* queued on the write-only queue which has priority). This results from the
* fact that the downgrade operation cannot know whether the next locktype on
* the write-only queue is really write-only or actually read-only. However,
* that means that read-serialized requests stay queued, while they could run
* simultaneously with read-only requests. See if there are any and grant
* the head request access */
if (tllp->t_current == TLL_READ && tllp->t_serial != NULL) {
tllp->t_owner = tllp->t_serial;
tllp->t_serial = tllp->t_serial->w_next;
tllp->t_owner->w_next = NULL;
assert(!(tllp->t_status & TLL_PEND));
tllp->t_status |= TLL_PEND;
worker_signal(tllp->t_owner);
}
return(OK);
}
PUBLIC void tll_downgrade(tll_t *tllp)
{
/* Downgrade three-level-lock tll from write-only to read-serialized, or from
* read-serialized to read-only. Caveat: as we can't know whether the next
* lock type on the write queue is actually read-only or write-only, we can't
* grant access to that type. It will be granted access once we unlock. Also,
* because we apply write-bias, we can't grant access to read-serialized
* either, unless nothing is queued on the write-only stack. */
assert(self != NULL);
assert(tllp != NULL);
assert(tllp->t_owner == self);
switch(tllp->t_current) {
case TLL_WRITE: tllp->t_current = TLL_READSER; break;
case TLL_READSER:
/* If nothing is queued on write-only, but there is a pending lock
* requesting read-serialized, grant it and keep the lock type. */
if (tllp->t_write == NULL && tllp->t_serial != NULL) {
tllp->t_owner = tllp->t_serial;
tllp->t_serial = tllp->t_serial->w_next; /* Remove head */
tllp->t_owner->w_next = NULL;
assert(!(tllp->t_status & TLL_PEND));
tllp->t_status |= TLL_PEND;
worker_signal(tllp->t_owner);
} else {
tllp->t_current = TLL_READ;
tllp->t_owner = NULL;
}
tllp->t_readonly++; /* Either way, there's one more read-only lock */
break;
default: panic("VFS: Incorrect lock state");
}
}
PUBLIC void tll_init(tll_t *tllp)
{
/* Initialize three-level-lock tll */
assert(tllp != NULL);
tllp->t_current = TLL_NONE;
tllp->t_readonly = 0;
tllp->t_status = TLL_DFLT;
tllp->t_write = NULL;
tllp->t_serial = NULL;
tllp->t_owner = NULL;
}
PUBLIC int tll_islocked(tll_t *tllp)
{
return(tllp->t_current != TLL_NONE);
}
PUBLIC int tll_locked_by_me(tll_t *tllp)
{
assert(self != NULL);
return(tllp->t_owner == self && !(tllp->t_status & TLL_PEND));
}
PUBLIC int tll_lock(tll_t *tllp, tll_access_t locktype)
{
/* Try to lock three-level-lock tll with type locktype */
assert(self != NULL);
assert(tllp != NULL);
assert(locktype != TLL_NONE);
self->w_next = NULL;
if (locktype != TLL_READ && locktype != TLL_READSER && locktype != TLL_WRITE)
panic("Invalid lock type %d\n", locktype);
/* If this locking has pending locks, we wait */
if (tllp->t_status & TLL_PEND)
return tll_append(tllp, locktype);
/* If we already own this lock don't lock it again and return immediately */
if (tllp->t_owner == self) {
assert(tllp->t_status == TLL_DFLT);
return(EBUSY);
}
/* If this lock is not accessed by anyone, locktype is granted off the bat */
if (tllp->t_current == TLL_NONE) {
tllp->t_current = locktype;
if (tllp->t_current == TLL_READ)
tllp->t_readonly = 1;
else { /* Record owner if locktype is read-serialized or write-only */
tllp->t_owner = self;
}
return(OK);
}
/* If the current lock is write-only, we have to wait for that lock to be
* released (regardless of the value of locktype). */
if (tllp->t_current == TLL_WRITE)
return tll_append(tllp, locktype);
/* However, if it's not and we're requesting a write-only lock, we have to
* wait until the last read access is released (additional read requests
* after this write-only requests are to be queued) */
if (locktype == TLL_WRITE)
return tll_append(tllp, locktype);
/* We have to queue read and read-serialized requests if we have a write-only
* request queued ("write bias") or when a read-serialized lock is trying to
* upgrade to write-only. The current lock for this tll is either read or
* read-serialized. */
if (tllp->t_write != NULL || (tllp->t_status & TLL_UPGR))
return tll_append(tllp, locktype);
/* If this lock is in read-serialized mode, we can allow read requests and
* queue read-serialized requests */
if (tllp->t_current == TLL_READSER) {
if (locktype == TLL_READ) {
tllp->t_readonly++;
return(OK);
} else
return tll_append(tllp, locktype);
}
/* Finally, if the current lock is read-only, we can change it to
* read-serialized if necessary without a problem. */
tllp->t_current = locktype; /* Either read-only or read-serialized */
if (tllp->t_current == TLL_READ) { /* We now have an additional reader */
tllp->t_readonly++;
tllp->t_owner = NULL;
} else {
assert(tllp->t_current != TLL_WRITE);
tllp->t_owner = self; /* We now have a new owner */
self->w_next = NULL;
}
return(OK);
}
PUBLIC int tll_haspendinglock(tll_t *tllp)
{
/* Is someone trying to obtain a lock? */
assert(tllp != NULL);
/* Someone is trying to obtain a lock if either the write/read-only queue or
* the read-serialized queue is not empty. */
return(tllp->t_write != NULL || tllp->t_serial != NULL);
}
PUBLIC int tll_unlock(tll_t *tllp)
{
/* Unlock a previously locked three-level-lock tll */
int signal_owner = 0;
assert(self != NULL);
assert(tllp != NULL);
if (tllp->t_owner == NULL || tllp->t_owner != self) {
/* This unlock must have been done by a read-only lock */
tllp->t_readonly--;
assert(tllp->t_readonly >= 0);
/* If a read-serialized lock is trying to upgrade and there are no more
* read-only locks, the lock can now be upgraded to write-only */
if ((tllp->t_status & TLL_UPGR) && tllp->t_readonly == 0)
signal_owner = 1;
}
if(tllp->t_owner == self || (tllp->t_owner == NULL && tllp->t_readonly == 0)){
/* Let another read-serialized or write-only request obtain access.
* Write-only has priority, but only after the last read-only access
* has left. Read-serialized access will only be granted if there is
* no pending write-only access request. */
struct worker_thread *new_owner;
new_owner = NULL;
tllp->t_owner = NULL; /* Remove owner of lock */
if (tllp->t_write != NULL) {
if (tllp->t_readonly == 0) {
new_owner = tllp->t_write;
tllp->t_write = tllp->t_write->w_next;
}
} else if (tllp->t_serial != NULL) {
new_owner = tllp->t_serial;
tllp->t_serial = tllp->t_serial->w_next;
}
/* New owner is head of queue or NULL if no proc is available */
if (new_owner != NULL) {
tllp->t_owner = new_owner;
tllp->t_owner->w_next = NULL;
assert(tllp->t_owner != self);
signal_owner = 1;
}
}
/* If no one is using this lock, mark it as not in use */
if (tllp->t_owner == NULL && tllp->t_readonly == 0)
tllp->t_current = TLL_NONE;
if (tllp->t_current == TLL_NONE || tllp->t_current == TLL_READ) {
if (!signal_owner) {
tllp->t_owner = NULL;
}
}
/* If we have a new owner or the current owner managed to upgrade its lock,
* tell it to start/continue running */
if (signal_owner) {
assert(!(tllp->t_status & TLL_PEND));
tllp->t_status |= TLL_PEND;
worker_signal(tllp->t_owner);
}
return(OK);
}
PUBLIC void tll_upgrade(tll_t *tllp)
{
/* Upgrade three-level-lock tll from read-serialized to write-only */
assert(self != NULL);
assert(tllp != NULL);
assert(tllp->t_owner == self);
assert(tllp->t_current != TLL_READ); /* i.e., read-serialized or write-only*/
if (tllp->t_current == TLL_WRITE) return; /* Nothing to do */
if (tllp->t_readonly != 0) { /* Wait for readers to leave */
assert(!(tllp->t_status & TLL_UPGR));
tllp->t_status |= TLL_UPGR;
worker_wait();
tllp->t_status &= ~TLL_UPGR;
tllp->t_status &= ~TLL_PEND;
assert(tllp->t_readonly == 0);
}
tllp->t_current = TLL_WRITE;
}

20
servers/avfs/tll.h Normal file
View file

@ -0,0 +1,20 @@
#ifndef __VFS_TLL_H__
#define __VFS_TLL_H__
/* Three-level-lock. Allows read-only, read-serialized, and write-only locks */
typedef enum { TLL_NONE, TLL_READ, TLL_READSER, TLL_WRITE } tll_access_t;
typedef enum { TLL_DFLT = 0x0, TLL_UPGR = 0x1, TLL_PEND = 0x2 } tll_status_t;
typedef struct {
tll_access_t t_current; /* Current type of access to lock */
struct worker_thread *t_owner;/* Owner of non-read-only lock */
signed int t_readonly; /* No. of current read-only access */
tll_status_t t_status; /* Lock status; nothing, pending upgrade, or
* pending upgrade of read-serialized to
* write-only */
struct worker_thread *t_write;/* Write/read-only access requestors queue */
struct worker_thread *t_serial;/* Read-serialized access requestors queue */
} tll_t;
#endif

153
servers/avfs/utility.c Normal file
View file

@ -0,0 +1,153 @@
/* This file contains a few general purpose utility routines.
*
* The entry points into this file are
* clock_time: ask the clock task for the real time
* copy: copy a block of data
* fetch_name: go get a path name from user space
* no_sys: reject a system call that FS does not handle
* panic: something awful has occurred; MINIX cannot continue
* conv2: do byte swapping on a 16-bit int
* conv4: do byte swapping on a 32-bit long
* in_group: determines if group 'grp' is in rfp->fp_sgroups[]
*/
#include "fs.h"
#include <minix/com.h>
#include <minix/endpoint.h>
#include <unistd.h>
#include <stdlib.h>
#include <assert.h>
#include "file.h"
#include "fproc.h"
#include "param.h"
#include "vmnt.h"
/*===========================================================================*
* fetch_name *
*===========================================================================*/
PUBLIC int fetch_name(path, len, flag, dest)
char *path; /* pointer to the path in user space */
int len; /* path length, including 0 byte */
int flag; /* M3 means path may be in message */
char *dest; /* pointer to where path is to be stored */
{
/* Go get path and put it in 'user_fullpath'.
* If 'flag' = M3 and 'len' <= M3_STRING, the path is present in 'message'.
* If it is not, go copy it from user space.
*/
register char *rpu, *rpm;
int r, count;
if (len > PATH_MAX) {
err_code = ENAMETOOLONG;
return(EGENERIC);
}
/* Check name length for validity. */
if (len <= 0) {
err_code = EINVAL;
return(EGENERIC);
}
if (flag == M3 && len <= M3_STRING) {
/* Just copy the path from the message to 'user_fullpath'. */
rpu = &dest[0];
rpm = m_in.pathname; /* contained in input message */
count = len;
do { *rpu++ = *rpm++; } while (--count);
r = OK;
} else {
/* String is not contained in the message. Get it from user space. */
r = sys_datacopy(who_e, (vir_bytes) path,
VFS_PROC_NR, (vir_bytes) dest, (phys_bytes) len);
}
if (dest[len - 1] != '\0') {
err_code = ENAMETOOLONG;
return(EGENERIC);
}
return(r);
}
/*===========================================================================*
* no_sys *
*===========================================================================*/
PUBLIC int no_sys()
{
/* Somebody has used an illegal system call number */
return(ENOSYS);
}
/*===========================================================================*
* isokendpt_f *
*===========================================================================*/
PUBLIC int isokendpt_f(char *file, int line, endpoint_t endpoint, int *proc, int fatal)
{
int failed = 0;
endpoint_t ke;
*proc = _ENDPOINT_P(endpoint);
if (endpoint == NONE) {
printf("VFS %s:%d: endpoint is NONE\n", file, line);
failed = 1;
} else if (*proc < 0 || *proc >= NR_PROCS) {
printf("VFS %s:%d: proc (%d) from endpoint (%d) out of range\n",
file, line, *proc, endpoint);
failed = 1;
} else if ((ke = fproc[*proc].fp_endpoint) != endpoint) {
if(ke == NONE) {
printf("VFS %s:%d: endpoint (%d) points to NONE slot (%d)\n",
file, line, endpoint, *proc);
assert(fproc[*proc].fp_pid == PID_FREE);
} else {
printf("VFS %s:%d: proc (%d) from endpoint (%d) doesn't match "
"known endpoint (%d)\n", file, line, *proc, endpoint,
fproc[*proc].fp_endpoint);
assert(fproc[*proc].fp_pid != PID_FREE);
}
failed = 1;
}
if(failed && fatal)
panic("isokendpt_f failed");
return(failed ? EDEADEPT : OK);
}
/*===========================================================================*
* clock_time *
*===========================================================================*/
PUBLIC time_t clock_time()
{
/* This routine returns the time in seconds since 1.1.1970. MINIX is an
* astrophysically naive system that assumes the earth rotates at a constant
* rate and that such things as leap seconds do not exist.
*/
register int r;
clock_t uptime;
time_t boottime;
r = getuptime2(&uptime, &boottime);
if (r != OK)
panic("clock_time err: %d", r);
return( (time_t) (boottime + (uptime/system_hz)));
}
/*===========================================================================*
* in_group *
*===========================================================================*/
PUBLIC int in_group(struct fproc *rfp, gid_t grp)
{
int i;
for (i = 0; i < rfp->fp_ngroups; i++)
if (rfp->fp_sgroups[i] == grp)
return(OK);
return(EINVAL);
}

168
servers/avfs/vmnt.c Normal file
View file

@ -0,0 +1,168 @@
/* Virtual mount table related routines.
*
*/
#include "fs.h"
#include "threads.h"
#include "vmnt.h"
#include <assert.h>
#include "fproc.h"
FORWARD _PROTOTYPE( int is_vmnt_locked, (struct vmnt *vmp) );
/* Is vmp pointer reasonable? */
#define SANEVMP(v) ((((v) >= &vmnt[0] && (v) < &vmnt[NR_MNTS])))
#define BADVMP(v, f, l) printf("%s:%d: bad vmp %p\n", f, l, v)
/* vp check that panics */
#define ASSERTVMP(v) if(!SANEVMP(v)) { \
BADVMP(v, __FILE__, __LINE__); panic("bad vmp"); }
#if LOCK_DEBUG
/*===========================================================================*
* check_vmnt_locks_by_me *
*===========================================================================*/
PUBLIC void check_vmnt_locks_by_me(struct fproc *rfp)
{
/* Check whether this thread still has locks held on vmnts */
struct vmnt *vmp;
for (vmp = &vmnt[0]; vmp < &vmnt[NR_MNTS]; vmp++) {
if (tll_locked_by_me(&vmp->m_lock))
panic("Thread %d still holds vmnt lock on vmp %p call_nr=%d\n",
mthread_self(), vmp, call_nr);
}
if (rfp->fp_vmnt_rdlocks != 0)
panic("Thread %d still holds read locks on a vmnt (%d) call_nr=%d\n",
mthread_self(), rfp->fp_vmnt_rdlocks, call_nr);
}
#endif
/*===========================================================================*
* check_vmnt_locks *
*===========================================================================*/
PUBLIC void check_vmnt_locks()
{
struct vmnt *vmp;
int count = 0;
for (vmp = &vmnt[0]; vmp < &vmnt[NR_MNTS]; vmp++)
if (is_vmnt_locked(vmp)) {
count++;
printf("vmnt %p is %s, fs_e=%d dev=%d\n", vmp, (tll_islocked(&vmp->m_lock) ? "locked":"pending locked"), vmp->m_fs_e, vmp->m_dev);
}
if (count) panic("%d locked vmnts\n", count);
#if 0
printf("check_vmnt_locks OK\n");
#endif
}
/*===========================================================================*
* get_free_vmnt *
*===========================================================================*/
PUBLIC struct vmnt *get_free_vmnt(void)
{
struct vmnt *vp;
for (vp = &vmnt[0]; vp < &vmnt[NR_MNTS]; ++vp)
if (vp->m_dev == NO_DEV) return(vp);
return(NULL);
}
/*===========================================================================*
* find_vmnt *
*===========================================================================*/
PUBLIC struct vmnt *find_vmnt(endpoint_t fs_e)
{
/* Find the vmnt belonging to an FS with endpoint 'fs_e' iff it's in use */
struct vmnt *vp;
for (vp = &vmnt[0]; vp < &vmnt[NR_MNTS]; ++vp)
if (vp->m_fs_e == fs_e && vp->m_dev != NO_DEV)
return(vp);
return(NULL);
}
/*===========================================================================*
* init_vmnts *
*===========================================================================*/
PUBLIC void init_vmnts(void)
{
/* Initialize vmnt table */
struct vmnt *vp;
for (vp = &vmnt[0]; vp < &vmnt[NR_MNTS]; vp++) {
vp->m_fs_e = NONE;
vp->m_dev = NO_DEV;
vp->m_flags = 0;
vp->m_mounted_on = NULL;
vp->m_root_node = NULL;
vp->m_label[0] = '\0';
vp->m_comm.c_max_reqs = 1;
vp->m_comm.c_cur_reqs = 0;
vp->m_comm.c_req_queue = NULL;
tll_init(&vp->m_lock);
}
}
/*===========================================================================*
* is_vmnt_locked *
*===========================================================================*/
PRIVATE int is_vmnt_locked(struct vmnt *vmp)
{
ASSERTVMP(vmp);
return(tll_islocked(&vmp->m_lock) || tll_haspendinglock(&vmp->m_lock));
}
/*===========================================================================*
* lock_vmnt *
*===========================================================================*/
PUBLIC int lock_vmnt(struct vmnt *vmp, tll_access_t locktype)
{
int r;
tll_access_t initial_locktype;
ASSERTVMP(vmp);
initial_locktype = (locktype == VMNT_EXCL) ? VMNT_WRITE : locktype;
r = tll_lock(&vmp->m_lock, initial_locktype);
if (r == EBUSY) return(r);
if (initial_locktype != locktype) {
tll_upgrade(&vmp->m_lock);
}
#if LOCK_DEBUG
if (locktype == VMNT_READ)
fp->fp_vmnt_rdlocks++;
#endif
return(OK);
}
/*===========================================================================*
* unlock_vmnt *
*===========================================================================*/
PUBLIC void unlock_vmnt(struct vmnt *vmp)
{
ASSERTVMP(vmp);
#if LOCK_DEBUG
/* Decrease read-only lock counter when not locked as VMNT_WRITE or
* VMNT_EXCL */
if (!tll_locked_by_me(&vmp->m_lock))
fp->fp_vmnt_rdlocks--;
#endif
tll_unlock(&vmp->m_lock);
#if LOCK_DEBUG
assert(!tll_locked_by_me(&vmp->m_lock));
#endif
}

24
servers/avfs/vmnt.h Normal file
View file

@ -0,0 +1,24 @@
#ifndef __VFS_VMNT_H__
#define __VFS_VMNT_H__
EXTERN struct vmnt {
int m_fs_e; /* FS process' kernel endpoint */
tll_t m_lock;
comm_t m_comm;
dev_t m_dev; /* device number */
unsigned int m_flags; /* mount flags */
struct vnode *m_mounted_on; /* vnode on which the partition is mounted */
struct vnode *m_root_node; /* root vnode */
char m_label[LABEL_MAX]; /* label of the file system process */
} vmnt[NR_MNTS];
/* vmnt flags */
#define VMNT_READONLY 01 /* Device mounted readonly */
#define VMNT_BACKCALL 02 /* FS did back call */
/* vmnt lock types mapping */
#define VMNT_READ TLL_READ
#define VMNT_WRITE TLL_READSER
#define VMNT_EXCL TLL_WRITE
#endif

387
servers/avfs/vnode.c Normal file
View file

@ -0,0 +1,387 @@
/* This file contains the routines related to vnodes.
* The entry points are:
*
* get_vnode - increase counter and get details of an inode
* get_free_vnode - get a pointer to a free vnode obj
* find_vnode - find a vnode according to the FS endpoint and the inode num.
* dup_vnode - duplicate vnode (i.e. increase counter)
* put_vnode - drop vnode (i.e. decrease counter)
*/
#include "fs.h"
#include "threads.h"
#include "vnode.h"
#include "vmnt.h"
#include "fproc.h"
#include "file.h"
#include <minix/vfsif.h>
#include <assert.h>
/* Is vnode pointer reasonable? */
#if NDEBUG
#define SANEVP(v)
#define CHECKVN(v)
#define ASSERTVP(v)
#else
#define SANEVP(v) ((((v) >= &vnode[0] && (v) < &vnode[NR_VNODES])))
#define BADVP(v, f, l) printf("%s:%d: bad vp %p\n", f, l, v)
/* vp check that returns 0 for use in check_vrefs() */
#define CHECKVN(v) if(!SANEVP(v)) { \
BADVP(v, __FILE__, __LINE__); \
return 0; \
}
/* vp check that panics */
#define ASSERTVP(v) if(!SANEVP(v)) { \
BADVP(v, __FILE__, __LINE__); panic("bad vp"); }
#endif
#if LOCK_DEBUG
/*===========================================================================*
* check_vnode_locks_by_me *
*===========================================================================*/
PUBLIC void check_vnode_locks_by_me(struct fproc *rfp)
{
/* Check whether this thread still has locks held on vnodes */
struct vnode *vp;
for (vp = &vnode[0]; vp < &vnode[NR_VNODES]; vp++) {
if (tll_locked_by_me(&vp->v_lock)) {
panic("Thread %d still holds vnode lock on vp %x call_nr=%d\n",
mthread_self(), vp, call_nr);
}
}
if (rfp->fp_vp_rdlocks != 0)
panic("Thread %d still holds read locks on a vnode (%d) call_nr=%d\n",
mthread_self(), rfp->fp_vp_rdlocks, call_nr);
}
#endif
/*===========================================================================*
* check_vnode_locks *
*===========================================================================*/
PUBLIC void check_vnode_locks()
{
struct vnode *vp;
int count = 0;
for (vp = &vnode[0]; vp < &vnode[NR_VNODES]; vp++)
if (is_vnode_locked(vp)) {
count++;
}
if (count) panic("%d locked vnodes\n", count);
#if 0
printf("check_vnode_locks OK\n");
#endif
}
/*===========================================================================*
* get_free_vnode *
*===========================================================================*/
PUBLIC struct vnode *get_free_vnode()
{
/* Find a free vnode slot in the vnode table (it's not actually allocated) */
struct vnode *vp;
for (vp = &vnode[0]; vp < &vnode[NR_VNODES]; ++vp) {
if (vp->v_ref_count == 0 && !is_vnode_locked(vp)) {
vp->v_pipe = NO_PIPE;
vp->v_uid = -1;
vp->v_gid = -1;
vp->v_sdev = NO_DEV;
vp->v_mapfs_e = NONE;
vp->v_mapfs_count = 0;
vp->v_mapinode_nr = 0;
return(vp);
}
}
err_code = ENFILE;
return(NULL);
}
/*===========================================================================*
* find_vnode *
*===========================================================================*/
PUBLIC struct vnode *find_vnode(int fs_e, int ino)
{
/* Find a specified (FS endpoint and inode number) vnode in the
* vnode table */
struct vnode *vp;
for (vp = &vnode[0]; vp < &vnode[NR_VNODES]; ++vp)
if (vp->v_ref_count > 0 && vp->v_inode_nr == ino && vp->v_fs_e == fs_e)
return(vp);
return(NULL);
}
/*===========================================================================*
* is_vnode_locked *
*===========================================================================*/
PUBLIC int is_vnode_locked(struct vnode *vp)
{
/* Find out whether a thread holds a lock on this vnode or is trying to obtain
* a lock. */
ASSERTVP(vp);
return(tll_islocked(&vp->v_lock) || tll_haspendinglock(&vp->v_lock));
}
/*===========================================================================*
* init_vnodes *
*===========================================================================*/
PUBLIC void init_vnodes(void)
{
struct vnode *vp;
for (vp = &vnode[0]; vp < &vnode[NR_VNODES]; ++vp) {
vp->v_fs_e = NONE;
vp->v_mapfs_e = NONE;
vp->v_inode_nr = 0;
vp->v_ref_count = 0;
vp->v_fs_count = 0;
vp->v_mapfs_count = 0;
tll_init(&vp->v_lock);
}
}
/*===========================================================================*
* lock_vnode *
*===========================================================================*/
PUBLIC int lock_vnode(struct vnode *vp, tll_access_t locktype)
{
int r;
ASSERTVP(vp);
r = tll_lock(&vp->v_lock, locktype);
#if LOCK_DEBUG
if (locktype == VNODE_READ) {
fp->fp_vp_rdlocks++;
}
#endif
if (r == EBUSY) return(r);
return(OK);
}
/*===========================================================================*
* unlock_vnode *
*===========================================================================*/
PUBLIC void unlock_vnode(struct vnode *vp)
{
int i;
register struct vnode *rvp;
struct worker_thread *w;
ASSERTVP(vp);
#if LOCK_DEBUG
/* Decrease read-only lock counter when not locked as VNODE_OPCL or
* VNODE_WRITE */
if (!tll_locked_by_me(&vp->v_lock)) {
fp->fp_vp_rdlocks--;
}
for (i = 0; i < NR_VNODES; i++) {
rvp = &vnode[i];
w = rvp->v_lock.t_write;
assert(w != self);
while (w && w->w_next != NULL) {
w = w->w_next;
assert(w != self);
}
w = rvp->v_lock.t_serial;
assert(w != self);
while (w && w->w_next != NULL) {
w = w->w_next;
assert(w != self);
}
}
#endif
tll_unlock(&vp->v_lock);
}
/*===========================================================================*
* dup_vnode *
*===========================================================================*/
PUBLIC void dup_vnode(struct vnode *vp)
{
/* dup_vnode() is called to increment the vnode and therefore the
* referred inode's counter.
*/
ASSERTVP(vp);
vp->v_ref_count++;
}
/*===========================================================================*
* put_vnode *
*===========================================================================*/
PUBLIC void put_vnode(struct vnode *vp)
{
/* Decrease vnode's usage counter and decrease inode's usage counter in the
* corresponding FS process. Decreasing the fs_count each time we decrease the
* ref count would lead to poor performance. Instead, only decrease fs_count
* when the ref count hits zero. However, this could lead to fs_count to wrap.
* To prevent this, we drop the counter to 1 when the counter hits 256.
* We maintain fs_count as a sanity check to make sure VFS and the FS are in
* sync.
*/
int r, lock_vp;
ASSERTVP(vp);
/* Lock vnode. It's quite possible this thread already has a lock on this
* vnode. That's no problem, because the reference counter will not decrease
* to zero in that case. However, if the counter does decrease to zero *and*
* is already locked, we have a consistency problem somewhere. */
lock_vp = lock_vnode(vp, VNODE_OPCL);
if (vp->v_ref_count > 1) {
/* Decrease counter */
vp->v_ref_count--;
if (vp->v_fs_count > 256)
vnode_clean_refs(vp);
if (lock_vp != EBUSY) unlock_vnode(vp);
return;
}
/* If we already had a lock, there is a consistency problem */
assert(lock_vp != EBUSY);
tll_upgrade(&vp->v_lock); /* Make sure nobody else accesses this vnode */
/* A vnode that's not in use can't be put back. */
if (vp->v_ref_count <= 0)
panic("put_vnode failed: bad v_ref_count %d\n", vp->v_ref_count);
/* fs_count should indicate that the file is in use. */
if (vp->v_fs_count <= 0)
panic("put_vnode failed: bad v_fs_count %d\n", vp->v_fs_count);
/* Tell FS we don't need this inode to be open anymore. */
r = req_putnode(vp->v_fs_e, vp->v_inode_nr, vp->v_fs_count);
if (r != OK) {
printf("VFS: putnode failed: %d\n", r);
util_stacktrace();
}
/* This inode could've been mapped. If so, tell mapped FS to close it as
* well. If mapped onto same FS, this putnode is not needed. */
if (vp->v_mapfs_e != NONE && vp->v_mapfs_e != vp->v_fs_e)
req_putnode(vp->v_mapfs_e, vp->v_mapinode_nr, vp->v_mapfs_count);
vp->v_fs_count = 0;
vp->v_ref_count = 0;
vp->v_mapfs_count = 0;
unlock_vnode(vp);
}
/*===========================================================================*
* vnode_clean_refs *
*===========================================================================*/
PUBLIC void vnode_clean_refs(struct vnode *vp)
{
/* Tell the underlying FS to drop all reference but one. */
if (vp == NULL) return;
if (vp->v_fs_count <= 1) return; /* Nothing to do */
/* Drop all references except one */
req_putnode(vp->v_fs_e, vp->v_inode_nr, vp->v_fs_count - 1);
vp->v_fs_count = 1;
}
#define REFVP(v) { vp = (v); CHECKVN(v); vp->v_ref_check++; }
#if DO_SANITYCHECKS
/*===========================================================================*
* check_vrefs *
*===========================================================================*/
PUBLIC int check_vrefs()
{
int i, bad;
int ispipe_flag, ispipe_mode;
struct vnode *vp;
struct vmnt *vmp;
struct fproc *rfp;
struct filp *f;
/* Clear v_ref_check */
for (vp = &vnode[0]; vp < &vnode[NR_VNODES]; ++vp)
vp->v_ref_check= 0;
/* Count reference for processes */
for (rfp=&fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {
if (rfp->fp_pid == PID_FREE)
continue;
if(rfp->fp_rd) REFVP(rfp->fp_rd);
if(rfp->fp_wd) REFVP(rfp->fp_wd);
}
/* Count references from filedescriptors */
for (f = &filp[0]; f < &filp[NR_FILPS]; f++)
{
if (f->filp_count == 0)
continue;
REFVP(f->filp_vno);
}
/* Count references to mount points */
for (vmp = &vmnt[0]; vmp < &vmnt[NR_MNTS]; ++vmp)
{
if (vmp->m_dev == NO_DEV)
continue;
REFVP(vmp->m_root_node);
if(vmp->m_mounted_on)
REFVP(vmp->m_mounted_on);
}
/* Check references */
bad= 0;
for (vp = &vnode[0]; vp < &vnode[NR_VNODES]; ++vp)
{
if (vp->v_ref_count != vp->v_ref_check)
{
printf(
"Bad reference count for inode %d on device 0x%x: found %d, listed %d\n",
vp->v_inode_nr, vp->v_dev, vp->v_ref_check,
vp->v_ref_count);
printf("last marked at %s, %d\n",
vp->v_file, vp->v_line);
bad= 1;
}
/* Also check v_pipe */
if (vp->v_ref_count != 0)
{
ispipe_flag= (vp->v_pipe == I_PIPE);
ispipe_mode= ((vp->v_mode & I_TYPE) == I_NAMED_PIPE);
if (ispipe_flag != ispipe_mode)
{
printf(
"Bad v_pipe for inode %d on device 0x%x: found %d, mode 0%o\n",
vp->v_inode_nr, vp->v_dev, vp->v_pipe,
vp->v_mode);
printf("last marked at %s, %d\n",
vp->v_file, vp->v_line);
bad= 1;
}
}
}
return !bad;
}
#endif

40
servers/avfs/vnode.h Normal file
View file

@ -0,0 +1,40 @@
#ifndef __VFS_VNODE_H__
#define __VFS_VNODE_H__
EXTERN struct vnode {
endpoint_t v_fs_e; /* FS process' endpoint number */
endpoint_t v_mapfs_e; /* mapped FS process' endpoint number */
ino_t v_inode_nr; /* inode number on its (minor) device */
ino_t v_mapinode_nr; /* mapped inode number of mapped FS. */
mode_t v_mode; /* file type, protection, etc. */
uid_t v_uid; /* uid of inode. */
gid_t v_gid; /* gid of inode. */
off_t v_size; /* current file size in bytes */
int v_ref_count; /* # times vnode used; 0 means slot is free */
int v_fs_count; /* # reference at the underlying FS */
int v_mapfs_count; /* # reference at the underlying mapped FS */
#if 0
int v_ref_check; /* for consistency checks */
#endif
char v_pipe; /* set to I_PIPE if pipe */
off_t v_pipe_rd_pos;
off_t v_pipe_wr_pos;
endpoint_t v_bfs_e; /* endpoint number for the FS proces in case
of a block special file */
dev_t v_dev; /* device number on which the corresponding
inode resides */
dev_t v_sdev; /* device number for special files */
struct vmnt *v_vmnt; /* vmnt object of the partition */
tll_t v_lock; /* three-level-lock */
} vnode[NR_VNODES];
/* Field values. */
#define NO_PIPE 0 /* i_pipe is NO_PIPE if inode is not a pipe */
#define I_PIPE 1 /* i_pipe is I_PIPE if inode is a pipe */
/* vnode lock types mapping */
#define VNODE_READ TLL_READ
#define VNODE_OPCL TLL_READSER
#define VNODE_WRITE TLL_WRITE
#endif

336
servers/avfs/worker.c Normal file
View file

@ -0,0 +1,336 @@
#include "fs.h"
#include "glo.h"
#include "fproc.h"
#include "threads.h"
#include "job.h"
#include <assert.h>
FORWARD _PROTOTYPE( void append_job, (struct job *job,
void *(*func)(void *arg)) );
FORWARD _PROTOTYPE( void get_work, (struct worker_thread *worker) );
FORWARD _PROTOTYPE( void *worker_main, (void *arg) );
FORWARD _PROTOTYPE( void worker_sleep, (struct worker_thread *worker) );
FORWARD _PROTOTYPE( void worker_wake, (struct worker_thread *worker) );
PRIVATE int init = 0;
PRIVATE mthread_attr_t tattr;
#ifdef MKCOVERAGE
# define TH_STACKSIZE (10 * 1024)
#else
# define TH_STACKSIZE (6 * 1024)
#endif
#define ASSERTW(w) assert((w) == &sys_worker || (w) == &dl_worker || \
((w) >= &workers[0] && (w) < &workers[NR_WTHREADS]));
/*===========================================================================*
* worker_init *
*===========================================================================*/
PUBLIC void worker_init(struct worker_thread *worker)
{
/* Initialize worker thread */
if (!init) {
threads_init();
assert(mthread_attr_init(&tattr) == 0);
if (mthread_attr_setstacksize(&tattr, TH_STACKSIZE) != 0)
panic("couldn't set default thread stack size");
if (mthread_attr_setdetachstate(&tattr, MTHREAD_CREATE_DETACHED) != 0)
panic("couldn't set default thread detach state");
pending = 0;
init = 1;
}
ASSERTW(worker);
worker->w_job.j_func = NULL; /* Mark not in use */
worker->w_next = NULL;
assert(mutex_init(&worker->w_event_mutex, NULL) == 0);
assert(cond_init(&worker->w_event, NULL) == 0);
assert(mthread_create(&worker->w_tid, &tattr, worker_main, (void *) worker) == 0);
yield();
}
/*===========================================================================*
* get_work *
*===========================================================================*/
PRIVATE void get_work(struct worker_thread *worker)
{
/* Find new work to do. Work can be 'queued', 'pending', or absent. In the
* latter case wait for new work to come in. */
struct job *new_job;
struct fproc *rfp;
ASSERTW(worker);
self = worker;
/* Do we have queued work to do? */
if ((new_job = worker->w_job.j_next) != NULL) {
worker->w_job = *new_job;
free(new_job);
return;
} else if (worker != &sys_worker && worker != &dl_worker && pending > 0) {
/* Find pending work */
for (rfp = &fproc[0]; rfp < &fproc[NR_PROCS]; rfp++) {
if (rfp->fp_flags & FP_PENDING) {
worker->w_job = rfp->fp_job;
rfp->fp_job.j_func = NULL;
rfp->fp_flags &= ~FP_PENDING; /* No longer pending */
pending--;
assert(pending >= 0);
return;
}
}
panic("Pending work inconsistency");
}
/* Wait for work to come to us */
worker_sleep(worker);
}
/*===========================================================================*
* worker_available *
*===========================================================================*/
PUBLIC int worker_available(void)
{
int busy, i;
busy = 0;
for (i = 0; i < NR_WTHREADS; i++) {
if (workers[i].w_job.j_func != NULL)
busy++;
}
return(NR_WTHREADS - busy);
}
/*===========================================================================*
* worker_main *
*===========================================================================*/
PRIVATE void *worker_main(void *arg)
{
/* Worker thread main loop */
struct worker_thread *me;
me = (struct worker_thread *) arg;
ASSERTW(me);
while(TRUE) {
get_work(me);
/* Register ourselves in fproc table if possible */
if (me->w_job.j_fp != NULL) {
me->w_job.j_fp->fp_wtid = me->w_tid;
}
/* Carry out work */
me->w_job.j_func(&me->w_job);
/* Mark ourselves as done */
me->w_job.j_func = NULL;
}
return(NULL); /* Unreachable */
}
/*===========================================================================*
* dl_worker_start *
*===========================================================================*/
PUBLIC void dl_worker_start(void *(*func)(void *arg))
{
/* Start the deadlock resolving worker. This worker is reserved to run in case
* all other workers are busy and we have to have an additional worker to come
* to the rescue. */
assert(dl_worker.w_job.j_func == NULL);
if (dl_worker.w_job.j_func == NULL) {
dl_worker.w_job.j_fp = fp;
dl_worker.w_job.j_m_in = m_in;
dl_worker.w_job.j_func = func;
worker_wake(&dl_worker);
}
}
/*===========================================================================*
* sys_worker_start *
*===========================================================================*/
PUBLIC void sys_worker_start(void *(*func)(void *arg))
{
/* Carry out work for the system (i.e., kernel or PM). If this thread is idle
* do it right away, else create new job and append it to the queue. */
if (sys_worker.w_job.j_func == NULL) {
sys_worker.w_job.j_fp = fp;
sys_worker.w_job.j_m_in = m_in;
sys_worker.w_job.j_func = func;
worker_wake(&sys_worker);
} else {
append_job(&sys_worker.w_job, func);
}
}
/*===========================================================================*
* append_job *
*===========================================================================*/
PRIVATE void append_job(struct job *job, void *(*func)(void *arg))
{
/* Append a job */
struct job *new_job, *tail;
/* Create new job */
new_job = calloc(1, sizeof(struct job));
assert(new_job != NULL);
new_job->j_fp = fp;
new_job->j_m_in = m_in;
new_job->j_func = func;
new_job->j_next = NULL;
/* Append to queue */
tail = job;
while (tail->j_next != NULL) tail = tail->j_next;
tail->j_next = new_job;
}
/*===========================================================================*
* worker_start *
*===========================================================================*/
PUBLIC void worker_start(void *(*func)(void *arg))
{
/* Find an available worker or wait for one */
int i;
struct worker_thread *worker;
worker = NULL;
for (i = 0; i < NR_WTHREADS; i++) {
if (workers[i].w_job.j_func == NULL) {
worker = &workers[i];
break;
}
}
if (worker != NULL) {
worker->w_job.j_fp = fp;
worker->w_job.j_m_in = m_in;
worker->w_job.j_func = func;
worker->w_job.j_next = NULL;
worker_wake(worker);
return;
}
/* No worker threads available, let's wait for one to finish. */
/* If this process already has a job scheduled, forget about this new
* job;
* - the new job is do_dummy and we have already scheduled an actual job
* - the new job is an actual job and we have already scheduled do_dummy in
* order to exit this proc, so doing the new job is pointless. */
if (fp->fp_job.j_func == NULL) {
assert(!(fp->fp_flags & FP_PENDING));
fp->fp_job.j_fp = fp;
fp->fp_job.j_m_in = m_in;
fp->fp_job.j_func = func;
fp->fp_job.j_next = NULL;
fp->fp_flags |= FP_PENDING;
pending++;
}
}
/*===========================================================================*
* worker_sleep *
*===========================================================================*/
PRIVATE void worker_sleep(struct worker_thread *worker)
{
ASSERTW(worker);
assert(self == worker);
assert(mutex_lock(&worker->w_event_mutex) == 0);
assert(cond_wait(&worker->w_event, &worker->w_event_mutex) == 0);
assert(mutex_unlock(&worker->w_event_mutex) == 0);
self = worker;
}
/*===========================================================================*
* worker_wake *
*===========================================================================*/
PRIVATE void worker_wake(struct worker_thread *worker)
{
/* Signal a worker to wake up */
ASSERTW(worker);
assert(mutex_lock(&worker->w_event_mutex) == 0);
assert(cond_signal(&worker->w_event) == 0);
assert(mutex_unlock(&worker->w_event_mutex) == 0);
}
/*===========================================================================*
* worker_wait *
*===========================================================================*/
PUBLIC void worker_wait(void)
{
struct worker_thread *worker;
worker = worker_self();
worker->w_job.j_m_in = m_in; /* Store important global data */
assert(fp == worker->w_job.j_fp);
worker_sleep(worker);
/* We continue here after waking up */
fp = worker->w_job.j_fp; /* Restore global data */
m_in = worker->w_job.j_m_in;
assert(worker->w_next == NULL);
}
/*===========================================================================*
* worker_signal *
*===========================================================================*/
PUBLIC void worker_signal(struct worker_thread *worker)
{
ASSERTW(worker); /* Make sure we have a valid thread */
worker_wake(worker);
}
/*===========================================================================*
* worker_self *
*===========================================================================*/
PUBLIC struct worker_thread *worker_self(void)
{
struct worker_thread *worker;
worker = worker_get(mthread_self());
assert(worker != NULL);
return(worker);
}
/*===========================================================================*
* worker_get *
*===========================================================================*/
PUBLIC struct worker_thread *worker_get(thread_t worker_tid)
{
int i;
struct worker_thread *worker;
worker = NULL;
if (worker_tid == sys_worker.w_tid)
worker = &sys_worker;
else if (worker_tid == dl_worker.w_tid)
worker = &dl_worker;
else {
for (i = 0; i < NR_WTHREADS; i++) {
if (workers[i].w_tid == worker_tid) {
worker = &workers[i];
break;
}
}
}
return(worker);
}
/*===========================================================================*
* worker_getjob *
*===========================================================================*/
PUBLIC struct job *worker_getjob(thread_t worker_tid)
{
struct worker_thread *worker;
if ((worker = worker_get(worker_tid)) != NULL)
return(&worker->w_job);
return(NULL);
}

19
servers/avfs/write.c Normal file
View file

@ -0,0 +1,19 @@
/* This file is the counterpart of "read.c". It contains the code for writing
* insofar as this is not contained in read_write().
*
* The entry points into this file are
* do_write: call read_write to perform the WRITE system call
*/
#include "fs.h"
#include "file.h"
/*===========================================================================*
* do_write *
*===========================================================================*/
PUBLIC int do_write()
{
/* Perform the write(fd, buffer, nbytes) system call. */
return(read_write(WRITING));
}

View file

@ -1,4 +1,8 @@
# Makefile for Information Server (IS) # Makefile for Information Server (IS)
#
.include <bsd.own.mk>
PROG= is PROG= is
SRCS= main.c dmp.c dmp_kernel.c dmp_pm.c dmp_fs.c dmp_rs.c dmp_ds.c dmp_vm.c SRCS= main.c dmp.c dmp_kernel.c dmp_pm.c dmp_fs.c dmp_rs.c dmp_ds.c dmp_vm.c
@ -13,4 +17,8 @@ CPPFLAGS.dmp_kernel.c+= -I${MINIXSRCDIR}
CPPFLAGS.dmp_rs.c+= -I${MINIXSRCDIR} CPPFLAGS.dmp_rs.c+= -I${MINIXSRCDIR}
CPPFLAGS.dmp_vm.c+= -I${MINIXSRCDIR} CPPFLAGS.dmp_vm.c+= -I${MINIXSRCDIR}
.if ${BUILDAVFS} == "yes"
CFLAGS+= -D_USEAVFS
.endif
.include <minix.service.mk> .include <minix.service.mk>

View file

@ -10,9 +10,15 @@
#include "inc.h" #include "inc.h"
#include "../mfs/const.h" #include "../mfs/const.h"
#if defined(_USEAVFS)
# include "../avfs/const.h"
# include "../avfs/fproc.h"
# include "../avfs/dmap.h"
#else
# include "../vfs/const.h" # include "../vfs/const.h"
# include "../vfs/fproc.h" # include "../vfs/fproc.h"
# include "../vfs/dmap.h" # include "../vfs/dmap.h"
#endif
#include <minix/dmap.h> #include <minix/dmap.h>
PUBLIC struct fproc fproc[NR_PROCS]; PUBLIC struct fproc fproc[NR_PROCS];
@ -35,6 +41,7 @@ PUBLIC void fproc_dmp()
fp = &fproc[i]; fp = &fproc[i];
if (fp->fp_pid <= 0) continue; if (fp->fp_pid <= 0) continue;
if (++n > 22) break; if (++n > 22) break;
#if defined(_USEVFS)
printf("%3d %4d %2d/%d 0x%05x %2d (%2d) %2d (%2d) %3d %3d %3d ", printf("%3d %4d %2d/%d 0x%05x %2d (%2d) %2d (%2d) %3d %3d %3d ",
i, fp->fp_pid, i, fp->fp_pid,
((fp->fp_tty>>MAJOR)&BYTE), ((fp->fp_tty>>MINOR)&BYTE), ((fp->fp_tty>>MAJOR)&BYTE), ((fp->fp_tty>>MINOR)&BYTE),
@ -43,6 +50,16 @@ PUBLIC void fproc_dmp()
fp->fp_sesldr, fp->fp_sesldr,
fp->fp_blocked_on, !!fp->fp_revived fp->fp_blocked_on, !!fp->fp_revived
); );
#else
printf("%3d %4d %2d/%d 0x%05x %2d (%2d) %2d (%2d) %3d %3d %3d ",
i, fp->fp_pid,
major(fp->fp_tty), minor(fp->fp_tty),
fp->fp_umask,
fp->fp_realuid, fp->fp_effuid, fp->fp_realgid, fp->fp_effgid,
!!(fp->fp_flags & FP_SESLDR),
fp->fp_blocked_on, !!(fp->fp_flags & FP_REVIVED)
);
#endif
if (fp->fp_blocked_on == FP_BLOCKED_ON_OTHER) if (fp->fp_blocked_on == FP_BLOCKED_ON_OTHER)
printf("%4d\n", fp->fp_task); printf("%4d\n", fp->fp_task);
else else

View file

@ -1,9 +1,17 @@
# Makefile for ProcFS server # Makefile for ProcFS server
#
.include <bsd.own.mk>
PROG= procfs PROG= procfs
SRCS= buf.c main.c pid.c root.c tree.c util.c cpuinfo.c SRCS= buf.c main.c pid.c root.c tree.c util.c cpuinfo.c
CPPFLAGS+= -I${MINIXSRCDIR} -I${MINIXSRCDIR}/servers CPPFLAGS+= -I${MINIXSRCDIR} -I${MINIXSRCDIR}/servers
.if ${BUILDAVFS} == "yes"
CFLAGS+= -D_USEAVFS
.endif
DPADD+= ${LIBVTREEFS} ${LIBSYS} DPADD+= ${LIBVTREEFS} ${LIBSYS}
LDADD+= -lvtreefs -lsys LDADD+= -lvtreefs -lsys

View file

@ -50,8 +50,13 @@
#include "kernel/type.h" #include "kernel/type.h"
#include "kernel/proc.h" #include "kernel/proc.h"
#include "pm/mproc.h" #include "pm/mproc.h"
#if defined(_USEAVFS)
# include "avfs/const.h"
# include "avfs/fproc.h"
#else
# include "vfs/const.h" # include "vfs/const.h"
# include "vfs/fproc.h" # include "vfs/fproc.h"
#endif
#include <minix/vtreefs.h> #include <minix/vtreefs.h>
#include <minix/procfs.h> #include <minix/procfs.h>

View file

@ -12,6 +12,8 @@ SMP_FLAGS += -DCONFIG_MAX_CPUS=${CONFIG_MAX_CPUS}
CPPFLAGS+= ${SMP_FLAGS} CPPFLAGS+= ${SMP_FLAGS}
BUILDAVFS?= "no"
MAKECONF?= /etc/make.conf MAKECONF?= /etc/make.conf
.-include "${MAKECONF}" .-include "${MAKECONF}"

View file

@ -9,19 +9,26 @@ MDEC= /usr/mdec
GEN_FILES= *.bak image kernel *.iso *.iso.gz cdfdimage rootimage src GEN_FILES= *.bak image kernel *.iso *.iso.gz cdfdimage rootimage src
# Specify the programs that are part of the system image. # Specify the programs that are part of the system image.
.if ${BUILDAVFS} == "yes"
VFS= "../servers/avfs/vfs"
PFS= "../servers/apfs/pfs"
.else
VFS= "../servers/vfs/vfs"
PFS= "../servers/pfs/pfs"
.endif
KERNEL= kernel KERNEL= kernel
PROGRAMS= \ PROGRAMS= \
../servers/ds/ds \ ../servers/ds/ds \
../servers/rs/rs \ ../servers/rs/rs \
../servers/pm/pm \ ../servers/pm/pm \
../servers/sched/sched \ ../servers/sched/sched \
../servers/vfs/vfs \ ${VFS} \
../drivers/memory/memory \ ../drivers/memory/memory \
../drivers/log/log \ ../drivers/log/log \
../drivers/tty/tty \ ../drivers/tty/tty \
../servers/mfs/mfs \ ../servers/mfs/mfs \
../servers/vm/vm \ ../servers/vm/vm \
../servers/pfs/pfs \ ${PFS} \
../servers/init/init ../servers/init/init
usage: usage: