arm:indenting

Change-Id: I2f8f664fa4c66649db8981e58e6bb7a6f533df5a
This commit is contained in:
Kees Jongenburger 2013-12-17 16:20:37 +01:00
parent 96f71be5a6
commit 502bc37a61
13 changed files with 312 additions and 295 deletions

View file

@ -1,4 +1,3 @@
/* ARM-specific clock functions. */
#include "kernel/kernel.h"
@ -30,9 +29,9 @@ int init_local_timer(unsigned freq)
omap3_timer_init(freq);
omap3_frclock_init();
if (BOARD_IS_BBXM(machine.board_id)){
if (BOARD_IS_BBXM(machine.board_id)) {
tsc_per_ms[0] = 16250;
} else if (BOARD_IS_BB(machine.board_id)){
} else if (BOARD_IS_BB(machine.board_id)) {
tsc_per_ms[0] = 15000;
} else {
panic("Can not do the clock setup. machine (0x%08x) is unknown\n",machine.board_id);

View file

@ -51,8 +51,6 @@ struct proc *p;
}
}
printf("arch_do_vmctl: strange param %d\n", m_ptr->SVMCTL_PARAM);
return EINVAL;
}

View file

@ -1,4 +1,3 @@
#include "kernel/kernel.h"
#include <unistd.h>
@ -52,8 +51,7 @@ poweroff(void)
* The only way to pull the pin low is via ALARM2 (see TRM 20.3.3.8).
* At this point PM should have already signaled readclock to set the alarm.
*/
if (BOARD_IS_BB(machine.board_id)){
if (BOARD_IS_BB(machine.board_id)) {
/* Powers down the SoC within 3 seconds */
direct_print("PMIC Power-Off in 3 Seconds\n");

View file

@ -45,11 +45,12 @@ void arch_proc_reset(struct proc *pr)
assert(pr->p_nr < NR_PROCS);
/* Clear process state. */
memset(&pr->p_reg, 0, sizeof(pr->p_reg));
if(iskerneln(pr->p_nr))
pr->p_reg.psr = INIT_TASK_PSR;
else
pr->p_reg.psr = INIT_PSR;
memset(&pr->p_reg, 0, sizeof(pr->p_reg));
if(iskerneln(pr->p_nr)) {
pr->p_reg.psr = INIT_TASK_PSR;
} else {
pr->p_reg.psr = INIT_PSR;
}
}
void arch_proc_setcontext(struct proc *p, struct stackframe_s *state,

View file

@ -22,18 +22,18 @@ static kern_phys_map intr_phys_map;
int intr_init(const int auto_eoi)
{
if (BOARD_IS_BBXM(machine.board_id)){
omap_intr.base = OMAP3_DM37XX_INTR_BASE;
} else if (BOARD_IS_BB(machine.board_id)){
omap_intr.base = OMAP3_AM335X_INTR_BASE;
} else {
panic("Can not do the interrupt setup. machine (0x%08x) is unknown\n",machine.board_id);
};
omap_intr.size = 0x1000 ; /* 4K */
if (BOARD_IS_BBXM(machine.board_id)) {
omap_intr.base = OMAP3_DM37XX_INTR_BASE;
} else if (BOARD_IS_BB(machine.board_id)) {
omap_intr.base = OMAP3_AM335X_INTR_BASE;
} else {
panic("Can not do the interrupt setup. machine (0x%08x) is unknown\n",machine.board_id);
};
omap_intr.size = 0x1000 ; /* 4K */
kern_phys_map_ptr(omap_intr.base,omap_intr.size,
&intr_phys_map, (vir_bytes) &omap_intr.base);
return 0;
kern_phys_map_ptr(omap_intr.base,omap_intr.size,
&intr_phys_map, (vir_bytes) &omap_intr.base);
return 0;
}
void omap3_irq_handle(void) {
@ -44,16 +44,15 @@ void omap3_irq_handle(void) {
/* handle irq */
irq_handle(irq);
/* re-enable. this should not trigger interrupts due to current cpsr state */
mmio_write(omap_intr.base + OMAP3_INTCPS_CONTROL,OMAP3_INTR_NEWIRQAGR);
mmio_write(omap_intr.base + OMAP3_INTCPS_CONTROL,OMAP3_INTR_NEWIRQAGR);
}
void omap3_irq_unmask(int irq)
{
mmio_write(OMAP3_INTR_MIR_CLEAR(omap_intr.base, irq >> 5), 1 << (irq & 0x1f));
mmio_write(OMAP3_INTR_MIR_CLEAR(omap_intr.base, irq >> 5), 1 << (irq & 0x1f));
}
void omap3_irq_mask(const int irq)
{
mmio_write(OMAP3_INTR_MIR_SET(omap_intr.base, irq >> 5), 1 << (irq & 0x1f));
mmio_write(OMAP3_INTR_MIR_SET(omap_intr.base, irq >> 5), 1 << (irq & 0x1f));
}

View file

@ -24,7 +24,7 @@ struct omap_padconf
};
struct omap_padconf omap_padconfs[] = {
static struct omap_padconf omap_padconfs[] = {
{
.base = PADCONF_DM37XX_REGISTERS_BASE,
.offset = PADCONF_DM37XX_REGISTERS_OFFSET,
@ -66,8 +66,8 @@ arch_padconf_init(void)
int x;
omap_padconf = NULL;
/* find the correct padconf */
for (x =0 ; x < sizeof(omap_padconfs)/sizeof(omap_padconfs[0]) ; x++){
if ( (omap_padconfs[x].board_filter_mask & machine.board_id) == omap_padconfs[x].board_filter_value){
for (x =0 ; x < sizeof(omap_padconfs)/sizeof(omap_padconfs[0]) ; x++) {
if ( (omap_padconfs[x].board_filter_mask & machine.board_id) == omap_padconfs[x].board_filter_value) {
omap_padconf = &omap_padconfs[x];
break;
}

View file

@ -37,11 +37,10 @@ static kern_phys_map reset_phys_map;
void
omap3_reset_init(void)
{
if(BOARD_IS_BBXM(machine.board_id)){
if(BOARD_IS_BBXM(machine.board_id)) {
omap_reset.base = DM37XX_CM_BASE;
omap_reset.size = DM37XX_CM_SIZE;
} else if(BOARD_IS_BB(machine.board_id)){
} else if(BOARD_IS_BB(machine.board_id)) {
omap_reset.base = AM335X_CM_BASE;
omap_reset.size = AM335X_CM_SIZE;
}
@ -53,9 +52,9 @@ omap3_reset_init(void)
void
omap3_reset(void)
{
if(BOARD_IS_BBXM(machine.board_id)){
if(BOARD_IS_BBXM(machine.board_id)) {
mmio_set((omap_reset.base + DM37XX_PRM_RSTCTRL_REG), (1 << DM37XX_RST_DPLL3_BIT));
} else if(BOARD_IS_BB(machine.board_id)){
} else if(BOARD_IS_BB(machine.board_id)) {
mmio_set((omap_reset.base + AM335X_PRM_DEVICE_OFFSET + AM335X_PRM_RSTCTRL_REG), (1 << AM335X_RST_GLOBAL_WARM_SW_BIT));
}
}

View file

@ -40,17 +40,17 @@ static kern_phys_map rtc_phys_map;
void
omap3_rtc_init(void)
{
if (BOARD_IS_BB(machine.board_id)){
kern_phys_map_ptr(omap_rtc.base, omap_rtc.size, &rtc_phys_map,
(vir_bytes) &omap_rtc.base);
}
if (BOARD_IS_BB(machine.board_id)) {
kern_phys_map_ptr(omap_rtc.base, omap_rtc.size, &rtc_phys_map,
(vir_bytes) &omap_rtc.base);
}
}
void
omap3_rtc_run(void)
{
if (BOARD_IS_BB(machine.board_id)){
/* Setting the stop bit starts the RTC running */
mmio_set((omap_rtc.base + RTC_CTRL_REG), (1 << RTC_CTRL_RTC_STOP_BIT));
}
if (BOARD_IS_BB(machine.board_id)) {
/* Setting the stop bit starts the RTC running */
mmio_set((omap_rtc.base + RTC_CTRL_REG), (1 << RTC_CTRL_RTC_STOP_BIT));
}
}

View file

@ -15,8 +15,8 @@
struct omap_serial {
vir_bytes base;
vir_bytes size;
vir_bytes base;
vir_bytes size;
};
static struct omap_serial omap_serial = {
@ -44,35 +44,37 @@ static kern_phys_map serial_phys_map;
*/
void omap3_ser_init()
{
if(BOARD_IS_BBXM(machine.board_id)){
omap_serial.base = OMAP3_DM37XX_DEBUG_UART_BASE;
} else if (BOARD_IS_BB(machine.board_id)){
omap_serial.base = OMAP3_AM335X_DEBUG_UART_BASE;
}
omap_serial.size = 0x1000 ; /* 4k */
if(BOARD_IS_BBXM(machine.board_id)) {
omap_serial.base = OMAP3_DM37XX_DEBUG_UART_BASE;
} else if (BOARD_IS_BB(machine.board_id)) {
omap_serial.base = OMAP3_AM335X_DEBUG_UART_BASE;
}
omap_serial.size = 0x1000 ; /* 4k */
kern_phys_map_ptr(omap_serial.base,omap_serial.size,
&serial_phys_map, (vir_bytes) &omap_serial.base);
assert(omap_serial.base);
kern_phys_map_ptr(omap_serial.base,omap_serial.size,
&serial_phys_map, (vir_bytes) &omap_serial.base);
assert(omap_serial.base);
}
void omap3_ser_putc(char c)
{
assert(omap_serial.base);
int i;
assert(omap_serial.base);
int i;
/* Wait until FIFO's empty */
for (i = 0; i < 100000; i++) {
if (mmio_read(omap_serial.base + OMAP3_LSR) & OMAP3_LSR_THRE) {
break;
}
}
/* Wait until FIFO's empty */
for (i = 0; i < 100000; i++)
if (mmio_read(omap_serial.base + OMAP3_LSR) & OMAP3_LSR_THRE)
break;
/* Write character */
mmio_write(omap_serial.base + OMAP3_THR, c);
/* Write character */
mmio_write(omap_serial.base + OMAP3_THR, c);
/* And wait again until FIFO's empty to prevent TTY from overwriting */
for (i = 0; i < 100000; i++)
if (mmio_read(omap_serial.base + OMAP3_LSR) & (OMAP3_LSR_THRE | OMAP3_LSR_TEMT))
break;
/* And wait again until FIFO's empty to prevent TTY from overwriting */
for (i = 0; i < 100000; i++) {
if (mmio_read(omap_serial.base + OMAP3_LSR) & (OMAP3_LSR_THRE | OMAP3_LSR_TEMT)) {
break;
}
}
}

View file

@ -12,7 +12,8 @@
#include "omap_timer.h"
#include "omap_intr.h"
static irq_hook_t omap3_timer_hook; /* interrupt handler hook */
/* interrupt handler hook */
static irq_hook_t omap3_timer_hook;
static u64_t high_frc;
struct omap_timer_registers;
@ -49,24 +50,24 @@ struct omap_timer_registers {
static struct omap_timer_registers regs_v1 = {
.TIDR = OMAP3_TIMER_TIDR,
.TIOCP_CFG = OMAP3_TIMER_TIOCP_CFG,
.TISTAT = OMAP3_TIMER_TISTAT,
.TIOCP_CFG = OMAP3_TIMER_TIOCP_CFG,
.TISTAT = OMAP3_TIMER_TISTAT,
.TISR = OMAP3_TIMER_TISR,
.TIER = OMAP3_TIMER_TIER,
.TWER = OMAP3_TIMER_TWER,
.TCLR = OMAP3_TIMER_TCLR,
.TCRR = OMAP3_TIMER_TCRR,
.TCLR = OMAP3_TIMER_TCLR,
.TCRR = OMAP3_TIMER_TCRR,
.TLDR = OMAP3_TIMER_TLDR,
.TTGR = OMAP3_TIMER_TTGR,
.TWPS = OMAP3_TIMER_TWPS,
.TWPS = OMAP3_TIMER_TWPS,
.TMAR = OMAP3_TIMER_TMAR,
.TCAR1 = OMAP3_TIMER_TCAR1,
.TSICR = OMAP3_TIMER_TSICR,
.TCAR2 = OMAP3_TIMER_TCAR2,
.TPIR = OMAP3_TIMER_TPIR,
.TNIR = OMAP3_TIMER_TNIR,
.TCVR = OMAP3_TIMER_TCVR,
.TOCR = OMAP3_TIMER_TOCR,
.TNIR = OMAP3_TIMER_TNIR,
.TCVR = OMAP3_TIMER_TCVR,
.TOCR = OMAP3_TIMER_TOCR,
.TOWR = OMAP3_TIMER_TOWR,
};
@ -74,16 +75,16 @@ static struct omap_timer_registers regs_v1 = {
1ms timers */
static struct omap_timer_registers regs_v2 = {
.TIDR = AM335X_TIMER_TIDR,
.TIOCP_CFG = AM335X_TIMER_TIOCP_CFG,
.TISTAT = AM335X_TIMER_IRQSTATUS_RAW,
.TIOCP_CFG = AM335X_TIMER_TIOCP_CFG,
.TISTAT = AM335X_TIMER_IRQSTATUS_RAW,
.TISR = AM335X_TIMER_IRQSTATUS,
.TIER = AM335X_TIMER_IRQENABLE_SET,
.TWER = AM335X_TIMER_IRQWAKEEN,
.TCLR = AM335X_TIMER_TCLR,
.TCRR = AM335X_TIMER_TCRR,
.TCLR = AM335X_TIMER_TCLR,
.TCRR = AM335X_TIMER_TCRR,
.TLDR = AM335X_TIMER_TLDR,
.TTGR = AM335X_TIMER_TTGR,
.TWPS = AM335X_TIMER_TWPS,
.TWPS = AM335X_TIMER_TWPS,
.TMAR = AM335X_TIMER_TMAR,
.TCAR1 = AM335X_TIMER_TCAR1,
.TSICR = AM335X_TIMER_TSICR,
@ -96,30 +97,30 @@ static struct omap_timer_registers regs_v2 = {
};
static struct omap_timer dm37xx_timer = {
.base = OMAP3_GPTIMER1_BASE,
.irq_nr = OMAP3_GPT1_IRQ,
.regs = &regs_v1
.base = OMAP3_GPTIMER1_BASE,
.irq_nr = OMAP3_GPT1_IRQ,
.regs = &regs_v1
};
/* free running timer */
static struct omap_timer dm37xx_fr_timer = {
.base = OMAP3_GPTIMER10_BASE,
.irq_nr = OMAP3_GPT10_IRQ,
.regs = &regs_v1
.base = OMAP3_GPTIMER10_BASE,
.irq_nr = OMAP3_GPT10_IRQ,
.regs = &regs_v1
};
/* normal timer */
static struct omap_timer am335x_timer = {
.base = AM335X_DMTIMER1_1MS_BASE,
.irq_nr = AM335X_INT_TINT1_1MS,
.regs = &regs_v1
.base = AM335X_DMTIMER1_1MS_BASE,
.irq_nr = AM335X_INT_TINT1_1MS,
.regs = &regs_v1
};
/* free running timer */
static struct omap_timer am335x_fr_timer = {
.base = AM335X_DMTIMER7_BASE,
.irq_nr = AM335X_INT_TINT7,
.regs = &regs_v2
.base = AM335X_DMTIMER7_BASE,
.irq_nr = AM335X_INT_TINT7,
.regs = &regs_v2
};
static struct omap_timer *timer;
@ -136,7 +137,7 @@ int omap3_register_timer_handler(const irq_handler_t handler)
put_irq_handler(&omap3_timer_hook, timer->irq_nr, handler);
/* only unmask interrupts after registering */
omap3_irq_unmask(timer->irq_nr);
omap3_irq_unmask(timer->irq_nr);
return 0;
}
@ -151,125 +152,128 @@ void omap3_frclock_init(void)
u32_t tisr;
/* enable the clock */
if(BOARD_IS_BBXM(machine.board_id)){
fr_timer = &dm37xx_fr_timer;
kern_phys_map_ptr(fr_timer->base,ARM_PAGE_SIZE, &fr_timer_phys_map, (vir_bytes) &fr_timer->base);
if(BOARD_IS_BBXM(machine.board_id)) {
fr_timer = &dm37xx_fr_timer;
kern_phys_map_ptr(fr_timer->base,ARM_PAGE_SIZE, &fr_timer_phys_map, (vir_bytes) &fr_timer->base);
/* Stop timer */
mmio_clear(fr_timer->base + fr_timer->regs->TCLR, OMAP3_TCLR_ST);
/* Stop timer */
mmio_clear(fr_timer->base + fr_timer->regs->TCLR, OMAP3_TCLR_ST);
/* Use functional clock source for GPTIMER10 */
mmio_set(OMAP3_CM_CLKSEL_CORE, OMAP3_CLKSEL_GPT10);
/* Use functional clock source for GPTIMER10 */
mmio_set(OMAP3_CM_CLKSEL_CORE, OMAP3_CLKSEL_GPT10);
/* Scale timer down to 13/8 = 1.625 Mhz to roughly get microsecond ticks */
/* The scale is computed as 2^(PTV+1). So if PTV == 2, we get 2^3 = 8.
*/
mmio_set(fr_timer->base + fr_timer->regs->TCLR, (2 << OMAP3_TCLR_PTV));
} else if(BOARD_IS_BB(machine.board_id)){
fr_timer = &am335x_fr_timer;
kern_phys_map_ptr(fr_timer->base,ARM_PAGE_SIZE, &fr_timer_phys_map, (vir_bytes) &fr_timer->base);
/* Disable the module and wait for the module to be disabled */
set32(CM_PER_TIMER7_CLKCTRL, CM_MODULEMODE_MASK,CM_MODULEMODE_DISABLED);
while( (mmio_read(CM_PER_TIMER7_CLKCTRL) & CM_CLKCTRL_IDLEST) != CM_CLKCTRL_IDLEST_DISABLE);
/* Scale timer down to 13/8 = 1.625 Mhz to roughly get microsecond ticks */
/* The scale is computed as 2^(PTV+1). So if PTV == 2, we get 2^3 = 8.
*/
mmio_set(fr_timer->base + fr_timer->regs->TCLR, (2 << OMAP3_TCLR_PTV));
} else if(BOARD_IS_BB(machine.board_id)) {
fr_timer = &am335x_fr_timer;
kern_phys_map_ptr(fr_timer->base,ARM_PAGE_SIZE, &fr_timer_phys_map, (vir_bytes) &fr_timer->base);
/* Disable the module and wait for the module to be disabled */
set32(CM_PER_TIMER7_CLKCTRL, CM_MODULEMODE_MASK,CM_MODULEMODE_DISABLED);
while( (mmio_read(CM_PER_TIMER7_CLKCTRL) & CM_CLKCTRL_IDLEST) != CM_CLKCTRL_IDLEST_DISABLE);
set32(CLKSEL_TIMER7_CLK,CLKSEL_TIMER7_CLK_SEL_MASK, CLKSEL_TIMER7_CLK_SEL_SEL2);
while( (read32(CLKSEL_TIMER7_CLK) & CLKSEL_TIMER7_CLK_SEL_MASK) != CLKSEL_TIMER7_CLK_SEL_SEL2);
set32(CLKSEL_TIMER7_CLK,CLKSEL_TIMER7_CLK_SEL_MASK, CLKSEL_TIMER7_CLK_SEL_SEL2);
while( (read32(CLKSEL_TIMER7_CLK) & CLKSEL_TIMER7_CLK_SEL_MASK) != CLKSEL_TIMER7_CLK_SEL_SEL2);
/* enable the module and wait for the module to be ready */
set32(CM_PER_TIMER7_CLKCTRL,CM_MODULEMODE_MASK,CM_MODULEMODE_ENABLE);
while( (mmio_read(CM_PER_TIMER7_CLKCTRL) & CM_CLKCTRL_IDLEST) != CM_CLKCTRL_IDLEST_FUNC);
/* enable the module and wait for the module to be ready */
set32(CM_PER_TIMER7_CLKCTRL,CM_MODULEMODE_MASK,CM_MODULEMODE_ENABLE);
while( (mmio_read(CM_PER_TIMER7_CLKCTRL) & CM_CLKCTRL_IDLEST) != CM_CLKCTRL_IDLEST_FUNC);
/* Stop timer */
mmio_clear(fr_timer->base + fr_timer->regs->TCLR, OMAP3_TCLR_ST);
/* Stop timer */
mmio_clear(fr_timer->base + fr_timer->regs->TCLR, OMAP3_TCLR_ST);
/* 24Mhz / 16 = 1.5 Mhz */
mmio_set(fr_timer->base + fr_timer->regs->TCLR, (3 << OMAP3_TCLR_PTV));
/* 24Mhz / 16 = 1.5 Mhz */
mmio_set(fr_timer->base + fr_timer->regs->TCLR, (3 << OMAP3_TCLR_PTV));
}
/* Start and auto-reload at 0 */
mmio_write(fr_timer->base + fr_timer->regs->TLDR, 0x0);
mmio_write(fr_timer->base + fr_timer->regs->TCRR, 0x0);
/* Start and auto-reload at 0 */
mmio_write(fr_timer->base + fr_timer->regs->TLDR, 0x0);
mmio_write(fr_timer->base + fr_timer->regs->TCRR, 0x0);
/* Set up overflow interrupt */
tisr = OMAP3_TISR_MAT_IT_FLAG | OMAP3_TISR_OVF_IT_FLAG |
OMAP3_TISR_TCAR_IT_FLAG;
mmio_write(fr_timer->base + fr_timer->regs->TISR, tisr); /* Clear interrupt status */
mmio_write(fr_timer->base + fr_timer->regs->TIER, OMAP3_TIER_OVF_IT_ENA);
/* Set up overflow interrupt */
tisr = OMAP3_TISR_MAT_IT_FLAG | OMAP3_TISR_OVF_IT_FLAG |
OMAP3_TISR_TCAR_IT_FLAG;
/* Clear interrupt status */
mmio_write(fr_timer->base + fr_timer->regs->TISR, tisr);
mmio_write(fr_timer->base + fr_timer->regs->TIER, OMAP3_TIER_OVF_IT_ENA);
/* Start timer */
mmio_set(fr_timer->base + fr_timer->regs->TCLR,
OMAP3_TCLR_OVF_TRG|OMAP3_TCLR_AR|OMAP3_TCLR_ST|OMAP3_TCLR_PRE);
done = 1;
/* Start timer */
mmio_set(fr_timer->base + fr_timer->regs->TCLR,
OMAP3_TCLR_OVF_TRG|OMAP3_TCLR_AR|OMAP3_TCLR_ST|OMAP3_TCLR_PRE);
done = 1;
}
void omap3_frclock_stop()
{
mmio_clear(fr_timer->base + fr_timer->regs->TCLR, OMAP3_TCLR_ST);
mmio_clear(fr_timer->base + fr_timer->regs->TCLR, OMAP3_TCLR_ST);
}
void omap3_timer_init(unsigned freq)
{
/* we only support 1ms resolution */
u32_t tisr;
if(BOARD_IS_BBXM(machine.board_id)){
timer = &dm37xx_timer;
kern_phys_map_ptr(timer->base,ARM_PAGE_SIZE, &timer_phys_map, (vir_bytes) &timer->base);
/* Stop timer */
mmio_clear(timer->base + timer->regs->TCLR, OMAP3_TCLR_ST);
/* we only support 1ms resolution */
u32_t tisr;
if(BOARD_IS_BBXM(machine.board_id)) {
timer = &dm37xx_timer;
kern_phys_map_ptr(timer->base,ARM_PAGE_SIZE, &timer_phys_map, (vir_bytes) &timer->base);
/* Stop timer */
mmio_clear(timer->base + timer->regs->TCLR, OMAP3_TCLR_ST);
/* Use 32 KHz clock source for GPTIMER1 */
mmio_clear(OMAP3_CM_CLKSEL_WKUP, OMAP3_CLKSEL_GPT1);
} else if(BOARD_IS_BB(machine.board_id)){
timer = &am335x_timer;
kern_phys_map_ptr(timer->base,ARM_PAGE_SIZE, &timer_phys_map, (vir_bytes) &timer->base);
/* disable the module and wait for the module to be disabled */
set32(CM_WKUP_TIMER1_CLKCTRL, CM_MODULEMODE_MASK,CM_MODULEMODE_DISABLED);
while( (mmio_read(CM_WKUP_TIMER1_CLKCTRL) & CM_CLKCTRL_IDLEST) != CM_CLKCTRL_IDLEST_DISABLE);
/* Use 32 KHz clock source for GPTIMER1 */
mmio_clear(OMAP3_CM_CLKSEL_WKUP, OMAP3_CLKSEL_GPT1);
} else if(BOARD_IS_BB(machine.board_id)) {
timer = &am335x_timer;
kern_phys_map_ptr(timer->base,ARM_PAGE_SIZE, &timer_phys_map, (vir_bytes) &timer->base);
/* disable the module and wait for the module to be disabled */
set32(CM_WKUP_TIMER1_CLKCTRL, CM_MODULEMODE_MASK,CM_MODULEMODE_DISABLED);
while( (mmio_read(CM_WKUP_TIMER1_CLKCTRL) & CM_CLKCTRL_IDLEST) != CM_CLKCTRL_IDLEST_DISABLE);
set32(CLKSEL_TIMER1MS_CLK,CLKSEL_TIMER1MS_CLK_SEL_MASK, CLKSEL_TIMER1MS_CLK_SEL_SEL2);
while( (read32(CLKSEL_TIMER1MS_CLK) & CLKSEL_TIMER1MS_CLK_SEL_MASK) != CLKSEL_TIMER1MS_CLK_SEL_SEL2);
set32(CLKSEL_TIMER1MS_CLK,CLKSEL_TIMER1MS_CLK_SEL_MASK, CLKSEL_TIMER1MS_CLK_SEL_SEL2);
while( (read32(CLKSEL_TIMER1MS_CLK) & CLKSEL_TIMER1MS_CLK_SEL_MASK) != CLKSEL_TIMER1MS_CLK_SEL_SEL2);
/* enable the module and wait for the module to be ready */
set32(CM_WKUP_TIMER1_CLKCTRL,CM_MODULEMODE_MASK,CM_MODULEMODE_ENABLE);
while( (mmio_read(CM_WKUP_TIMER1_CLKCTRL) & CM_CLKCTRL_IDLEST) != CM_CLKCTRL_IDLEST_FUNC);
/* enable the module and wait for the module to be ready */
set32(CM_WKUP_TIMER1_CLKCTRL,CM_MODULEMODE_MASK,CM_MODULEMODE_ENABLE);
while( (mmio_read(CM_WKUP_TIMER1_CLKCTRL) & CM_CLKCTRL_IDLEST) != CM_CLKCTRL_IDLEST_FUNC);
/* Stop timer */
mmio_clear(timer->base + timer->regs->TCLR, OMAP3_TCLR_ST);
}
/* Stop timer */
mmio_clear(timer->base + timer->regs->TCLR, OMAP3_TCLR_ST);
}
/* Use 1-ms tick mode for GPTIMER1 TRM 16.2.4.2.1 */
mmio_write(timer->base + timer->regs->TPIR, 232000);
mmio_write(timer->base + timer->regs->TNIR, -768000);
mmio_write(timer->base + timer->regs->TLDR, 0xffffffff - (32768 / freq) +1);
mmio_write(timer->base + timer->regs->TCRR, 0xffffffff - (32768 / freq) +1);
/* Use 1-ms tick mode for GPTIMER1 TRM 16.2.4.2.1 */
mmio_write(timer->base + timer->regs->TPIR, 232000);
mmio_write(timer->base + timer->regs->TNIR, -768000);
mmio_write(timer->base + timer->regs->TLDR, 0xffffffff - (32768 / freq) +1);
mmio_write(timer->base + timer->regs->TCRR, 0xffffffff - (32768 / freq) +1);
/* Set up overflow interrupt */
tisr = OMAP3_TISR_MAT_IT_FLAG | OMAP3_TISR_OVF_IT_FLAG |
OMAP3_TISR_TCAR_IT_FLAG;
mmio_write(timer->base + timer->regs->TISR, tisr); /* Clear interrupt status */
mmio_write(timer->base + timer->regs->TIER, OMAP3_TIER_OVF_IT_ENA);
/* Set up overflow interrupt */
tisr = OMAP3_TISR_MAT_IT_FLAG | OMAP3_TISR_OVF_IT_FLAG |
OMAP3_TISR_TCAR_IT_FLAG;
/* Clear interrupt status */
mmio_write(timer->base + timer->regs->TISR, tisr);
mmio_write(timer->base + timer->regs->TIER, OMAP3_TIER_OVF_IT_ENA);
/* Start timer */
mmio_set(timer->base + timer->regs->TCLR,
OMAP3_TCLR_OVF_TRG|OMAP3_TCLR_AR|OMAP3_TCLR_ST);
/* Start timer */
mmio_set(timer->base + timer->regs->TCLR,
OMAP3_TCLR_OVF_TRG|OMAP3_TCLR_AR|OMAP3_TCLR_ST);
}
void omap3_timer_stop()
{
mmio_clear(timer->base + timer->regs->TCLR, OMAP3_TCLR_ST);
mmio_clear(timer->base + timer->regs->TCLR, OMAP3_TCLR_ST);
}
static u32_t read_frc(void)
{
if (done == 0)
return 0;
if (done == 0) {
return 0;
}
return mmio_read(fr_timer->base + fr_timer->regs->TCRR);
}
@ -291,28 +295,28 @@ static void frc_overflow_check(u32_t cur_frc)
{
static int prev_frc_valid;
static u32_t prev_frc;
if(prev_frc_valid && prev_frc > cur_frc)
if(prev_frc_valid && prev_frc > cur_frc) {
high_frc++;
}
prev_frc = cur_frc;
prev_frc_valid = 1;
}
void omap3_timer_int_handler()
{
/* Clear all interrupts */
u32_t tisr,now;
/* Clear all interrupts */
u32_t tisr,now;
/* when the kernel itself is running interrupts are disabled.
* We should therefore also read the overflow counter to detect
* this as to not miss events.
*/
tisr = OMAP3_TISR_MAT_IT_FLAG | OMAP3_TISR_OVF_IT_FLAG |
OMAP3_TISR_TCAR_IT_FLAG;
mmio_write(timer->base + timer->regs->TISR, tisr);
/* when the kernel itself is running interrupts are disabled.
* We should therefore also read the overflow counter to detect
* this as to not miss events. */
tisr = OMAP3_TISR_MAT_IT_FLAG | OMAP3_TISR_OVF_IT_FLAG |
OMAP3_TISR_TCAR_IT_FLAG;
mmio_write(timer->base + timer->regs->TISR, tisr);
now = read_frc();
frc_overflow_check(now);
now = read_frc();
frc_overflow_check(now);
}
/* Use the free running clock as TSC */

View file

@ -1,4 +1,3 @@
#include <minix/cpufeature.h>
#include <minix/type.h>
@ -23,61 +22,67 @@ static u32_t pagedir[4096] __aligned(16384);
void print_memmap(kinfo_t *cbi)
{
int m;
assert(cbi->mmap_size < MAXMEMMAP);
for(m = 0; m < cbi->mmap_size; m++) {
int m;
assert(cbi->mmap_size < MAXMEMMAP);
for(m = 0; m < cbi->mmap_size; m++) {
phys_bytes addr = cbi->memmap[m].addr, endit = cbi->memmap[m].addr + cbi->memmap[m].len;
printf("%08lx-%08lx ",addr, endit);
}
printf("\nsize %08lx\n", cbi->mmap_size);
printf("%08lx-%08lx ",addr, endit);
}
printf("\nsize %08lx\n", cbi->mmap_size);
}
void cut_memmap(kinfo_t *cbi, phys_bytes start, phys_bytes end)
{
int m;
phys_bytes o;
int m;
phys_bytes o;
if((o=start % ARM_PAGE_SIZE))
start -= o;
if((o=end % ARM_PAGE_SIZE))
end += ARM_PAGE_SIZE - o;
if((o=start % ARM_PAGE_SIZE))
start -= o;
if((o=end % ARM_PAGE_SIZE))
end += ARM_PAGE_SIZE - o;
assert(kernel_may_alloc);
for(m = 0; m < cbi->mmap_size; m++) {
phys_bytes substart = start, subend = end;
phys_bytes memaddr = cbi->memmap[m].addr,
memend = cbi->memmap[m].addr + cbi->memmap[m].len;
for(m = 0; m < cbi->mmap_size; m++) {
phys_bytes substart = start, subend = end;
phys_bytes memaddr = cbi->memmap[m].addr,
memend = cbi->memmap[m].addr + cbi->memmap[m].len;
/* adjust cut range to be a subset of the free memory */
if(substart < memaddr) substart = memaddr;
if(subend > memend) subend = memend;
if(substart >= subend) continue;
/* adjust cut range to be a subset of the free memory */
if(substart < memaddr) substart = memaddr;
if(subend > memend) subend = memend;
if(substart >= subend) continue;
/* if there is any overlap, forget this one and add
* 1-2 subranges back
*/
cbi->memmap[m].addr = cbi->memmap[m].len = 0;
if(substart > memaddr)
add_memmap(cbi, memaddr, substart-memaddr);
if(subend < memend)
add_memmap(cbi, subend, memend-subend);
}
/* if there is any overlap, forget this one and add
* 1-2 subranges back
*/
cbi->memmap[m].addr = cbi->memmap[m].len = 0;
if(substart > memaddr)
add_memmap(cbi, memaddr, substart-memaddr);
if(subend < memend)
add_memmap(cbi, subend, memend-subend);
}
}
void add_memmap(kinfo_t *cbi, u64_t addr, u64_t len)
{
int m;
int m;
#define LIMIT 0xFFFFF000
/* Truncate available memory at 4GB as the rest of minix
* currently can't deal with any bigger.
*/
if(addr > LIMIT) return;
if(addr + len > LIMIT) {
len -= (addr + len - LIMIT);
}
assert(cbi->mmap_size < MAXMEMMAP);
if(len == 0) return;
/* Truncate available memory at 4GB as the rest of minix
* currently can't deal with any bigger.
*/
if(addr > LIMIT) {
return;
}
if(addr + len > LIMIT) {
len -= (addr + len - LIMIT);
}
assert(cbi->mmap_size < MAXMEMMAP);
if(len == 0) {
return;
}
addr = roundup(addr, ARM_PAGE_SIZE);
len = rounddown(len, ARM_PAGE_SIZE);
@ -85,21 +90,23 @@ void add_memmap(kinfo_t *cbi, u64_t addr, u64_t len)
for(m = 0; m < MAXMEMMAP; m++) {
phys_bytes highmark;
if(cbi->memmap[m].len) continue;
cbi->memmap[m].addr = addr;
cbi->memmap[m].len = len;
cbi->memmap[m].type = MULTIBOOT_MEMORY_AVAILABLE;
if(m >= cbi->mmap_size)
cbi->mmap_size = m+1;
if(cbi->memmap[m].len) {
continue;
}
cbi->memmap[m].addr = addr;
cbi->memmap[m].len = len;
cbi->memmap[m].type = MULTIBOOT_MEMORY_AVAILABLE;
if(m >= cbi->mmap_size) {
cbi->mmap_size = m+1;
}
highmark = addr + len;
if(highmark > cbi->mem_high_phys) {
cbi->mem_high_phys = highmark;
}
return;
return;
}
panic("no available memmap slot");
panic("no available memmap slot");
}
u32_t *alloc_pagetable(phys_bytes *ph)
@ -108,7 +115,9 @@ u32_t *alloc_pagetable(phys_bytes *ph)
#define PG_PAGETABLES 24
static u32_t pagetables[PG_PAGETABLES][256] __aligned(1024);
static int pt_inuse = 0;
if(pt_inuse >= PG_PAGETABLES) panic("no more pagetables");
if(pt_inuse >= PG_PAGETABLES) {
panic("no more pagetables");
}
assert(sizeof(pagetables[pt_inuse]) == 1024);
ret = pagetables[pt_inuse++];
*ph = vir2phys(ret);
@ -126,7 +135,9 @@ phys_bytes pg_alloc_page(kinfo_t *cbi)
for(m = 0; m < cbi->mmap_size; m++) {
mmap = &cbi->memmap[m];
if(!mmap->len) continue;
if(!mmap->len) {
continue;
}
assert(mmap->len > 0);
assert(!(mmap->len % ARM_PAGE_SIZE));
assert(!(mmap->addr % ARM_PAGE_SIZE));
@ -161,7 +172,7 @@ void pg_identity(kinfo_t *cbi)
phys = i * ARM_SECTION_SIZE;
/* mark mormal memory as cacheable. TODO: fix hard coded values */
if (phys >= PHYS_MEM_BEGIN && phys <= PHYS_MEM_END){
if (phys >= PHYS_MEM_BEGIN && phys <= PHYS_MEM_END) {
pagedir[i] = phys | flags | ARM_VM_SECTION_CACHED;
} else {
pagedir[i] = phys | flags | ARM_VM_SECTION_DEVICE;
@ -192,8 +203,8 @@ int pg_mapkernel(void)
void vm_enable_paging(void)
{
u32_t sctlr;
u32_t actlr;
u32_t sctlr;
u32_t actlr;
write_ttbcr(0);
@ -231,7 +242,7 @@ void vm_enable_paging(void)
phys_bytes pg_load()
{
phys_bytes phpagedir = vir2phys(pagedir);
write_ttbr0(phpagedir);
write_ttbr0(phpagedir);
return phpagedir;
}
@ -243,8 +254,9 @@ void pg_clear(void)
phys_bytes pg_rounddown(phys_bytes b)
{
phys_bytes o;
if(!(o = b % ARM_PAGE_SIZE))
if(!(o = b % ARM_PAGE_SIZE)) {
return b;
}
return b - o;
}
@ -291,8 +303,9 @@ void pg_map(phys_bytes phys, vir_bytes vaddr, vir_bytes vaddr_end,
| ARM_VM_PTE_CACHED
| ARM_VM_PTE_USER;
vaddr += ARM_PAGE_SIZE;
if(phys != PG_ALLOCATEME)
if(phys != PG_ALLOCATEME) {
phys += ARM_PAGE_SIZE;
}
}
}

View file

@ -1,4 +1,3 @@
#define UNPAGED 1 /* for proper kmain() prototype */
#include "kernel/kernel.h"
@ -28,7 +27,7 @@ kinfo_t kinfo;
struct kmessages kmessages;
/* pg_utils.c uses this; in this phase, there is a 1:1 mapping. */
phys_bytes vir2phys(void *addr) { return (phys_bytes) addr; }
phys_bytes vir2phys(void *addr) { return (phys_bytes) addr; }
static void setup_mbi(multiboot_info_t *mbi, char *bootargs);
@ -62,7 +61,7 @@ int find_value(char * content,char * key,char *value,int value_max_len){
int key_len,content_len,match_len,value_len;
/* return if the input is invalid */
if (key == NULL || content == NULL || value == NULL){
if (key == NULL || content == NULL || value == NULL) {
return 1;
}
@ -78,8 +77,8 @@ int find_value(char * content,char * key,char *value,int value_max_len){
/* now find the key in the contents */
match_len =0;
for (iter = content ,keyp=key; match_len < key_len && *iter != '\0' ; iter++){
if (*iter == *keyp){
for (iter = content ,keyp=key; match_len < key_len && *iter != '\0' ; iter++) {
if (*iter == *keyp) {
match_len++;
keyp++;
continue;
@ -89,12 +88,12 @@ int find_value(char * content,char * key,char *value,int value_max_len){
keyp=key;
}
if (match_len == key_len){
printf("key found at %d %s\n", match_len, &content[match_len]);
if (match_len == key_len) {
printf("key found at %d %s\n", match_len, &content[match_len]);
value_len = 0;
/* copy the content to the value char iter already points to the first
char value */
while(*iter != '\0' && *iter != ' ' && value_len + 1< value_max_len){
while(*iter != '\0' && *iter != ' ' && value_len + 1< value_max_len) {
*value++ = *iter++;
value_len++;
}
@ -125,7 +124,7 @@ static int mb_set_param(char *bigbuf,char *name,char *value, kinfo_t *cbi)
/* let q point to the end of the entry */
while (*q) q++;
/* now copy the remained of the buffer */
for (q++; q < bufend; q++, p++)
for (q++; q < bufend; q++, p++)
*p = *q;
break;
}
@ -143,8 +142,9 @@ static int mb_set_param(char *bigbuf,char *name,char *value, kinfo_t *cbi)
if (p > bigbuf) p++;
/* Make sure there's enough space for the new parameter */
if (p + namelen + valuelen + 3 > bufend)
if (p + namelen + valuelen + 3 > bufend) {
return -1;
}
strcpy(p, name);
p[namelen] = '=';
@ -161,12 +161,13 @@ int overlaps(multiboot_module_t *mod, int n, int cmp_mod)
#define INRANGE(mod, v) ((v) >= mod->mod_start && (v) <= thismod->mod_end)
#define OVERLAP(mod1, mod2) (INRANGE(mod1, mod2->mod_start) || \
INRANGE(mod1, mod2->mod_end))
INRANGE(mod1, mod2->mod_end))
for(m = 0; m < n; m++) {
multiboot_module_t *thismod = &mod[m];
if(m == cmp_mod) continue;
if(OVERLAP(thismod, cmp))
if(OVERLAP(thismod, cmp)) {
return 1;
}
}
return 0;
}
@ -191,10 +192,10 @@ void setup_mbi(multiboot_info_t *mbi, char *bootargs)
int i;
for (i = 0; i < MB_MODS_NR; ++i) {
mb_modlist[i].mod_start = MB_MODS_BASE + i * MB_MODS_ALIGN;
mb_modlist[i].mod_end = mb_modlist[i].mod_start + MB_MODS_ALIGN
- ARM_PAGE_SIZE;
mb_modlist[i].cmdline = 0;
mb_modlist[i].mod_start = MB_MODS_BASE + i * MB_MODS_ALIGN;
mb_modlist[i].mod_end = mb_modlist[i].mod_start + MB_MODS_ALIGN
- ARM_PAGE_SIZE;
mb_modlist[i].cmdline = 0;
}
/* morph the bootargs into multiboot */
@ -209,16 +210,16 @@ void setup_mbi(multiboot_info_t *mbi, char *bootargs)
mb_memmap.type = MULTIBOOT_MEMORY_AVAILABLE;
}
void get_parameters(kinfo_t *cbi, char *bootargs)
void get_parameters(kinfo_t *cbi, char *bootargs)
{
multiboot_memory_map_t *mmap;
multiboot_info_t *mbi = &cbi->mbi;
int var_i,value_i, m, k;
char *p;
extern char _kern_phys_base, _kern_vir_base, _kern_size,
_kern_unpaged_start, _kern_unpaged_end;
_kern_unpaged_start, _kern_unpaged_end;
phys_bytes kernbase = (phys_bytes) &_kern_phys_base,
kernsize = (phys_bytes) &_kern_size;
kernsize = (phys_bytes) &_kern_size;
#define BUF 1024
static char cmdline[BUF];
@ -251,12 +252,13 @@ void get_parameters(kinfo_t *cbi, char *bootargs)
value_i = 0;
while (*p == ' ') p++; /* skip spaces */
if (!*p) break; /* is this the end? */
while (*p && *p != '=' && *p != ' ' && var_i < BUF - 1)
while (*p && *p != '=' && *p != ' ' && var_i < BUF - 1)
var[var_i++] = *p++ ;
var[var_i] = 0;
if (*p++ != '=') continue; /* skip if not name=value */
while (*p && *p != ' ' && value_i < BUF - 1)
while (*p && *p != ' ' && value_i < BUF - 1) {
value[value_i++] = *p++ ;
}
value[value_i] = 0;
mb_set_param(cbi->param_buf, var, value, cbi);
@ -328,7 +330,7 @@ void get_parameters(kinfo_t *cbi, char *bootargs)
* occupied by the kernel and boot modules.
*/
cut_memmap(cbi,
cbi->module_list[m].mod_start,
cbi->module_list[m].mod_start,
cbi->module_list[m].mod_end);
}
}
@ -350,9 +352,9 @@ void set_machine_id(char *cmdline)
char boardname[20];
memset(boardname,'\0',20);
if (find_value(cmdline,"board_name=",boardname,20)){
/* we expect the bootloader to pass a board_name as argument
/* we expect the bootloader to pass a board_name as argument
* this however did not happen and given we still are in early
* boot we can't use the serial. We therefore generate an interrupt
* boot we can't use the serial. We therefore generate an interrupt
* and hope the bootloader will do something nice with it */
POORMANS_FAILURE_NOTIFICATION;
}
@ -367,22 +369,23 @@ void set_machine_id(char *cmdline)
kinfo_t *pre_init(int argc, char **argv)
{
char *bootargs;
/* This is the main "c" entry point into the kernel. It gets called
/* This is the main "c" entry point into the kernel. It gets called
from head.S */
/* Clear BSS */
memset(&_edata, 0, (u32_t)&_end - (u32_t)&_edata);
/* we get called in a c like fashion where the first arg
* is the program name (load address) and the rest are
* arguments. by convention the second argument is the
/* we get called in a c like fashion where the first arg
* is the program name (load address) and the rest are
* arguments. by convention the second argument is the
* command line */
if (argc != 2){
if (argc != 2) {
POORMANS_FAILURE_NOTIFICATION;
}
bootargs = argv[1];
set_machine_id(bootargs);
omap3_ser_init();
omap3_ser_init();
/* Get our own copy boot params pointed to by ebx.
* Here we find out whether we should do serial output.
*/
@ -413,5 +416,5 @@ void minix_shutdown(timer_t *t) { arch_shutdown(RBT_PANIC); }
void busy_delay_ms(int x) { }
int raise(int n) { panic("raise(%d)\n", n); }
int kern_phys_map_ptr( phys_bytes base_address, vir_bytes io_size,
struct kern_phys_map * priv, vir_bytes ptr) {};
struct kern_phys_map * priv, vir_bytes ptr) {};
struct machine machine; /* pre init stage machine */

View file

@ -22,9 +22,10 @@ int prot_init_done = 0;
phys_bytes vir2phys(void *vir)
{
extern char _kern_vir_base, _kern_phys_base; /* in kernel.lds */
/* defined in kernel.lds */
extern char _kern_vir_base, _kern_phys_base;
u32_t offset = (vir_bytes) &_kern_vir_base -
(vir_bytes) &_kern_phys_base;
(vir_bytes) &_kern_phys_base;
return (phys_bytes)vir - offset;
}
@ -74,39 +75,39 @@ int booting_cpu = 0;
void prot_init()
{
write_vbar((reg_t)&exc_vector_table);
write_vbar((reg_t)&exc_vector_table);
/* Set up a new post-relocate bootstrap pagetable so that
* we can map in VM, and we no longer rely on pre-relocated
* data.
*/
/* Set up a new post-relocate bootstrap pagetable so that
* we can map in VM, and we no longer rely on pre-relocated
* data.
*/
pg_clear();
pg_identity(&kinfo); /* Still need 1:1 for device memory . */
pg_mapkernel();
pg_load();
pg_clear();
pg_identity(&kinfo); /* Still need 1:1 for device memory . */
pg_mapkernel();
pg_load();
prot_init_done = 1;
prot_init_done = 1;
}
static int alloc_for_vm = 0;
void arch_post_init(void)
{
/* Let memory mapping code know what's going on at bootstrap time */
struct proc *vm;
vm = proc_addr(VM_PROC_NR);
get_cpulocal_var(ptproc) = vm;
pg_info(&vm->p_seg.p_ttbr, &vm->p_seg.p_ttbr_v);
/* Let memory mapping code know what's going on at bootstrap time */
struct proc *vm;
vm = proc_addr(VM_PROC_NR);
get_cpulocal_var(ptproc) = vm;
pg_info(&vm->p_seg.p_ttbr, &vm->p_seg.p_ttbr_v);
}
int libexec_pg_alloc(struct exec_info *execi, off_t vaddr, size_t len)
{
pg_map(PG_ALLOCATEME, vaddr, vaddr+len, &kinfo);
pg_load();
memset((char *) vaddr, 0, len);
pg_map(PG_ALLOCATEME, vaddr, vaddr+len, &kinfo);
pg_load();
memset((char *) vaddr, 0, len);
alloc_for_vm += len;
return OK;
return OK;
}
void arch_boot_proc(struct boot_image *ip, struct proc *rp)