279 lines
8 KiB
C
279 lines
8 KiB
C
|
/*
|
||
|
* ====================================================
|
||
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
|
*
|
||
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
|
* Permission to use, copy, modify, and distribute this
|
||
|
* software is freely granted, provided that this notice
|
||
|
* is preserved.
|
||
|
* ====================================================
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* from: @(#)fdlibm.h 5.1 93/09/24
|
||
|
* $NetBSD: math_private.h,v 1.16 2010/09/16 20:39:50 drochner Exp $
|
||
|
*/
|
||
|
|
||
|
#ifndef _MATH_PRIVATE_H_
|
||
|
#define _MATH_PRIVATE_H_
|
||
|
|
||
|
#include <sys/types.h>
|
||
|
|
||
|
/* The original fdlibm code used statements like:
|
||
|
n0 = ((*(int*)&one)>>29)^1; * index of high word *
|
||
|
ix0 = *(n0+(int*)&x); * high word of x *
|
||
|
ix1 = *((1-n0)+(int*)&x); * low word of x *
|
||
|
to dig two 32 bit words out of the 64 bit IEEE floating point
|
||
|
value. That is non-ANSI, and, moreover, the gcc instruction
|
||
|
scheduler gets it wrong. We instead use the following macros.
|
||
|
Unlike the original code, we determine the endianness at compile
|
||
|
time, not at run time; I don't see much benefit to selecting
|
||
|
endianness at run time. */
|
||
|
|
||
|
/* A union which permits us to convert between a double and two 32 bit
|
||
|
ints. */
|
||
|
|
||
|
/*
|
||
|
* The ARM ports are little endian except for the FPA word order which is
|
||
|
* big endian.
|
||
|
*/
|
||
|
|
||
|
#if (BYTE_ORDER == BIG_ENDIAN) || (defined(__arm__) && !defined(__VFP_FP__))
|
||
|
|
||
|
typedef union
|
||
|
{
|
||
|
double value;
|
||
|
struct
|
||
|
{
|
||
|
u_int32_t msw;
|
||
|
u_int32_t lsw;
|
||
|
} parts;
|
||
|
} ieee_double_shape_type;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if (BYTE_ORDER == LITTLE_ENDIAN) && \
|
||
|
!(defined(__arm__) && !defined(__VFP_FP__))
|
||
|
|
||
|
typedef union
|
||
|
{
|
||
|
double value;
|
||
|
struct
|
||
|
{
|
||
|
u_int32_t lsw;
|
||
|
u_int32_t msw;
|
||
|
} parts;
|
||
|
} ieee_double_shape_type;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/* Get two 32 bit ints from a double. */
|
||
|
|
||
|
#define EXTRACT_WORDS(ix0,ix1,d) \
|
||
|
do { \
|
||
|
ieee_double_shape_type ew_u; \
|
||
|
ew_u.value = (d); \
|
||
|
(ix0) = ew_u.parts.msw; \
|
||
|
(ix1) = ew_u.parts.lsw; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
/* Get the more significant 32 bit int from a double. */
|
||
|
|
||
|
#define GET_HIGH_WORD(i,d) \
|
||
|
do { \
|
||
|
ieee_double_shape_type gh_u; \
|
||
|
gh_u.value = (d); \
|
||
|
(i) = gh_u.parts.msw; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
/* Get the less significant 32 bit int from a double. */
|
||
|
|
||
|
#define GET_LOW_WORD(i,d) \
|
||
|
do { \
|
||
|
ieee_double_shape_type gl_u; \
|
||
|
gl_u.value = (d); \
|
||
|
(i) = gl_u.parts.lsw; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
/* Set a double from two 32 bit ints. */
|
||
|
|
||
|
#define INSERT_WORDS(d,ix0,ix1) \
|
||
|
do { \
|
||
|
ieee_double_shape_type iw_u; \
|
||
|
iw_u.parts.msw = (ix0); \
|
||
|
iw_u.parts.lsw = (ix1); \
|
||
|
(d) = iw_u.value; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
/* Set the more significant 32 bits of a double from an int. */
|
||
|
|
||
|
#define SET_HIGH_WORD(d,v) \
|
||
|
do { \
|
||
|
ieee_double_shape_type sh_u; \
|
||
|
sh_u.value = (d); \
|
||
|
sh_u.parts.msw = (v); \
|
||
|
(d) = sh_u.value; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
/* Set the less significant 32 bits of a double from an int. */
|
||
|
|
||
|
#define SET_LOW_WORD(d,v) \
|
||
|
do { \
|
||
|
ieee_double_shape_type sl_u; \
|
||
|
sl_u.value = (d); \
|
||
|
sl_u.parts.lsw = (v); \
|
||
|
(d) = sl_u.value; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
/* A union which permits us to convert between a float and a 32 bit
|
||
|
int. */
|
||
|
|
||
|
typedef union
|
||
|
{
|
||
|
float value;
|
||
|
u_int32_t word;
|
||
|
} ieee_float_shape_type;
|
||
|
|
||
|
/* Get a 32 bit int from a float. */
|
||
|
|
||
|
#define GET_FLOAT_WORD(i,d) \
|
||
|
do { \
|
||
|
ieee_float_shape_type gf_u; \
|
||
|
gf_u.value = (d); \
|
||
|
(i) = gf_u.word; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
/* Set a float from a 32 bit int. */
|
||
|
|
||
|
#define SET_FLOAT_WORD(d,i) \
|
||
|
do { \
|
||
|
ieee_float_shape_type sf_u; \
|
||
|
sf_u.word = (i); \
|
||
|
(d) = sf_u.value; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
|
||
|
/*
|
||
|
* Attempt to get strict C99 semantics for assignment with non-C99 compilers.
|
||
|
*/
|
||
|
#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
|
||
|
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
|
||
|
#else
|
||
|
#define STRICT_ASSIGN(type, lval, rval) do { \
|
||
|
volatile type __lval; \
|
||
|
\
|
||
|
if (sizeof(type) >= sizeof(double)) \
|
||
|
(lval) = (rval); \
|
||
|
else { \
|
||
|
__lval = (rval); \
|
||
|
(lval) = __lval; \
|
||
|
} \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
#endif
|
||
|
|
||
|
#ifdef _COMPLEX_H
|
||
|
|
||
|
/*
|
||
|
* Quoting from ISO/IEC 9899:TC2:
|
||
|
*
|
||
|
* 6.2.5.13 Types
|
||
|
* Each complex type has the same representation and alignment requirements as
|
||
|
* an array type containing exactly two elements of the corresponding real type;
|
||
|
* the first element is equal to the real part, and the second element to the
|
||
|
* imaginary part, of the complex number.
|
||
|
*/
|
||
|
typedef union {
|
||
|
float complex z;
|
||
|
float parts[2];
|
||
|
} float_complex;
|
||
|
|
||
|
typedef union {
|
||
|
double complex z;
|
||
|
double parts[2];
|
||
|
} double_complex;
|
||
|
|
||
|
typedef union {
|
||
|
long double complex z;
|
||
|
long double parts[2];
|
||
|
} long_double_complex;
|
||
|
|
||
|
#define REAL_PART(z) ((z).parts[0])
|
||
|
#define IMAG_PART(z) ((z).parts[1])
|
||
|
|
||
|
#endif /* _COMPLEX_H */
|
||
|
|
||
|
/* ieee style elementary functions */
|
||
|
extern double __ieee754_sqrt __P((double));
|
||
|
extern double __ieee754_acos __P((double));
|
||
|
extern double __ieee754_acosh __P((double));
|
||
|
extern double __ieee754_log __P((double));
|
||
|
extern double __ieee754_atanh __P((double));
|
||
|
extern double __ieee754_asin __P((double));
|
||
|
extern double __ieee754_atan2 __P((double,double));
|
||
|
extern double __ieee754_exp __P((double));
|
||
|
extern double __ieee754_cosh __P((double));
|
||
|
extern double __ieee754_fmod __P((double,double));
|
||
|
extern double __ieee754_pow __P((double,double));
|
||
|
extern double __ieee754_lgamma_r __P((double,int *));
|
||
|
extern double __ieee754_gamma_r __P((double,int *));
|
||
|
extern double __ieee754_lgamma __P((double));
|
||
|
extern double __ieee754_gamma __P((double));
|
||
|
extern double __ieee754_log10 __P((double));
|
||
|
extern double __ieee754_log2 __P((double));
|
||
|
extern double __ieee754_sinh __P((double));
|
||
|
extern double __ieee754_hypot __P((double,double));
|
||
|
extern double __ieee754_j0 __P((double));
|
||
|
extern double __ieee754_j1 __P((double));
|
||
|
extern double __ieee754_y0 __P((double));
|
||
|
extern double __ieee754_y1 __P((double));
|
||
|
extern double __ieee754_jn __P((int,double));
|
||
|
extern double __ieee754_yn __P((int,double));
|
||
|
extern double __ieee754_remainder __P((double,double));
|
||
|
extern int __ieee754_rem_pio2 __P((double,double*));
|
||
|
extern double __ieee754_scalb __P((double,double));
|
||
|
|
||
|
/* fdlibm kernel function */
|
||
|
extern double __kernel_standard __P((double,double,int));
|
||
|
extern double __kernel_sin __P((double,double,int));
|
||
|
extern double __kernel_cos __P((double,double));
|
||
|
extern double __kernel_tan __P((double,double,int));
|
||
|
extern int __kernel_rem_pio2 __P((double*,double*,int,int,int,const int*));
|
||
|
|
||
|
|
||
|
/* ieee style elementary float functions */
|
||
|
extern float __ieee754_sqrtf __P((float));
|
||
|
extern float __ieee754_acosf __P((float));
|
||
|
extern float __ieee754_acoshf __P((float));
|
||
|
extern float __ieee754_logf __P((float));
|
||
|
extern float __ieee754_atanhf __P((float));
|
||
|
extern float __ieee754_asinf __P((float));
|
||
|
extern float __ieee754_atan2f __P((float,float));
|
||
|
extern float __ieee754_expf __P((float));
|
||
|
extern float __ieee754_coshf __P((float));
|
||
|
extern float __ieee754_fmodf __P((float,float));
|
||
|
extern float __ieee754_powf __P((float,float));
|
||
|
extern float __ieee754_lgammaf_r __P((float,int *));
|
||
|
extern float __ieee754_gammaf_r __P((float,int *));
|
||
|
extern float __ieee754_lgammaf __P((float));
|
||
|
extern float __ieee754_gammaf __P((float));
|
||
|
extern float __ieee754_log10f __P((float));
|
||
|
extern float __ieee754_log2f __P((float));
|
||
|
extern float __ieee754_sinhf __P((float));
|
||
|
extern float __ieee754_hypotf __P((float,float));
|
||
|
extern float __ieee754_j0f __P((float));
|
||
|
extern float __ieee754_j1f __P((float));
|
||
|
extern float __ieee754_y0f __P((float));
|
||
|
extern float __ieee754_y1f __P((float));
|
||
|
extern float __ieee754_jnf __P((int,float));
|
||
|
extern float __ieee754_ynf __P((int,float));
|
||
|
extern float __ieee754_remainderf __P((float,float));
|
||
|
extern int __ieee754_rem_pio2f __P((float,float*));
|
||
|
extern float __ieee754_scalbf __P((float,float));
|
||
|
|
||
|
/* float versions of fdlibm kernel functions */
|
||
|
extern float __kernel_sinf __P((float,float,int));
|
||
|
extern float __kernel_cosf __P((float,float));
|
||
|
extern float __kernel_tanf __P((float,float,int));
|
||
|
extern int __kernel_rem_pio2f __P((float*,float*,int,int,int,const int*));
|
||
|
|
||
|
#endif /* _MATH_PRIVATE_H_ */
|