minix/lib/nbsd_libc/db/hash/hash_bigkey.c

675 lines
17 KiB
C
Raw Normal View History

/* $NetBSD: hash_bigkey.c,v 1.23 2009/02/12 06:33:13 lukem Exp $ */
/*-
* Copyright (c) 1990, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Margo Seltzer.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif
#include <sys/cdefs.h>
__RCSID("$NetBSD: hash_bigkey.c,v 1.23 2009/02/12 06:33:13 lukem Exp $");
/*
* PACKAGE: hash
* DESCRIPTION:
* Big key/data handling for the hashing package.
*
* ROUTINES:
* External
* __big_keydata
* __big_split
* __big_insert
* __big_return
* __big_delete
* __find_last_page
* Internal
* collect_key
* collect_data
*/
#include <sys/param.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <db.h>
#include "hash.h"
#include "page.h"
#include "extern.h"
static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
static int collect_data(HTAB *, BUFHEAD *, int, int);
/*
* Big_insert
*
* You need to do an insert and the key/data pair is too big
*
* Returns:
* 0 ==> OK
*-1 ==> ERROR
*/
int
__big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
{
uint16_t *p, n;
size_t key_size, val_size;
uint16_t space, move_bytes, off;
char *cp, *key_data, *val_data;
size_t temp;
cp = bufp->page; /* Character pointer of p. */
p = (uint16_t *)(void *)cp;
key_data = (char *)key->data;
_DBFIT(key->size, int);
key_size = key->size;
val_data = (char *)val->data;
_DBFIT(val->size, int);
val_size = val->size;
/* First move the Key */
temp = FREESPACE(p) - BIGOVERHEAD;
_DBFIT(temp, uint16_t);
space = (uint16_t)temp;
while (key_size) {
move_bytes = MIN(space, key_size);
off = OFFSET(p) - move_bytes;
memmove(cp + off, key_data, (size_t)move_bytes);
key_size -= move_bytes;
key_data += move_bytes;
n = p[0];
p[++n] = off;
p[0] = ++n;
temp = off - PAGE_META(n);
_DBFIT(temp, uint16_t);
FREESPACE(p) = (uint16_t)temp;
OFFSET(p) = off;
p[n] = PARTIAL_KEY;
bufp = __add_ovflpage(hashp, bufp);
if (!bufp)
return (-1);
n = p[0];
if (!key_size) {
space = FREESPACE(p);
if (space) {
move_bytes = MIN(space, val_size);
/*
* If the data would fit exactly in the
* remaining space, we must overflow it to the
* next page; otherwise the invariant that the
* data must end on a page with FREESPACE
* non-zero would fail.
*/
if (space == val_size && val_size == val->size)
goto toolarge;
off = OFFSET(p) - move_bytes;
memmove(cp + off, val_data, (size_t)move_bytes);
val_data += move_bytes;
val_size -= move_bytes;
p[n] = off;
p[n - 2] = FULL_KEY_DATA;
FREESPACE(p) = FREESPACE(p) - move_bytes;
OFFSET(p) = off;
} else {
toolarge:
p[n - 2] = FULL_KEY;
}
}
p = (uint16_t *)(void *)bufp->page;
cp = bufp->page;
bufp->flags |= BUF_MOD;
temp = FREESPACE(p) - BIGOVERHEAD;
_DBFIT(temp, uint16_t);
space = (uint16_t)temp;
}
/* Now move the data */
temp = FREESPACE(p) - BIGOVERHEAD;
_DBFIT(temp, uint16_t);
space = (uint16_t)temp;
while (val_size) {
move_bytes = MIN(space, val_size);
/*
* Here's the hack to make sure that if the data ends on the
* same page as the key ends, FREESPACE is at least one.
*/
if (space == val_size && val_size == val->size)
move_bytes--;
off = OFFSET(p) - move_bytes;
memmove(cp + off, val_data, (size_t)move_bytes);
val_size -= move_bytes;
val_data += move_bytes;
n = p[0];
p[++n] = off;
p[0] = ++n;
temp = off - PAGE_META(n);
_DBFIT(temp, uint16_t);
FREESPACE(p) = (uint16_t)temp;
OFFSET(p) = off;
if (val_size) {
p[n] = FULL_KEY;
bufp = __add_ovflpage(hashp, bufp);
if (!bufp)
return (-1);
cp = bufp->page;
p = (uint16_t *)(void *)cp;
} else
p[n] = FULL_KEY_DATA;
bufp->flags |= BUF_MOD;
temp = FREESPACE(p) - BIGOVERHEAD;
_DBFIT(temp, uint16_t);
space = (uint16_t)temp;
}
return (0);
}
/*
* Called when bufp's page contains a partial key (index should be 1)
*
* All pages in the big key/data pair except bufp are freed. We cannot
* free bufp because the page pointing to it is lost and we can't get rid
* of its pointer.
*
* Returns:
* 0 => OK
*-1 => ERROR
*/
int
__big_delete(HTAB *hashp, BUFHEAD *bufp)
{
BUFHEAD *last_bfp, *rbufp;
uint16_t *bp, pageno;
int key_done, n;
size_t temp;
rbufp = bufp;
last_bfp = NULL;
bp = (uint16_t *)(void *)bufp->page;
pageno = 0;
key_done = 0;
while (!key_done || (bp[2] != FULL_KEY_DATA)) {
if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
key_done = 1;
/*
* If there is freespace left on a FULL_KEY_DATA page, then
* the data is short and fits entirely on this page, and this
* is the last page.
*/
if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
break;
pageno = bp[bp[0] - 1];
rbufp->flags |= BUF_MOD;
rbufp = __get_buf(hashp, (uint32_t)pageno, rbufp, 0);
if (last_bfp)
__free_ovflpage(hashp, last_bfp);
last_bfp = rbufp;
if (!rbufp)
return (-1); /* Error. */
bp = (uint16_t *)(void *)rbufp->page;
}
/*
* If we get here then rbufp points to the last page of the big
* key/data pair. Bufp points to the first one -- it should now be
* empty pointing to the next page after this pair. Can't free it
* because we don't have the page pointing to it.
*/
/* This is information from the last page of the pair. */
n = bp[0];
pageno = bp[n - 1];
/* Now, bp is the first page of the pair. */
bp = (uint16_t *)(void *)bufp->page;
if (n > 2) {
/* There is an overflow page. */
bp[1] = pageno;
bp[2] = OVFLPAGE;
bufp->ovfl = rbufp->ovfl;
} else
/* This is the last page. */
bufp->ovfl = NULL;
n -= 2;
bp[0] = n;
temp = hashp->BSIZE - PAGE_META(n);
_DBFIT(temp, uint16_t);
FREESPACE(bp) = (uint16_t)temp;
OFFSET(bp) = hashp->BSIZE;
bufp->flags |= BUF_MOD;
if (rbufp)
__free_ovflpage(hashp, rbufp);
if (last_bfp && last_bfp != rbufp)
__free_ovflpage(hashp, last_bfp);
hashp->NKEYS--;
return (0);
}
/*
* Returns:
* 0 = key not found
* -1 = get next overflow page
* -2 means key not found and this is big key/data
* -3 error
*/
int
__find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
{
uint16_t *bp;
char *p;
int ksize;
uint16_t bytes;
char *kkey;
bp = (uint16_t *)(void *)bufp->page;
p = bufp->page;
ksize = size;
kkey = key;
for (bytes = hashp->BSIZE - bp[ndx];
bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
bytes = hashp->BSIZE - bp[ndx]) {
if (memcmp(p + bp[ndx], kkey, (size_t)bytes))
return (-2);
kkey += bytes;
ksize -= bytes;
bufp = __get_buf(hashp, (uint32_t)bp[ndx + 2], bufp, 0);
if (!bufp)
return (-3);
p = bufp->page;
bp = (uint16_t *)(void *)p;
ndx = 1;
}
if (bytes != ksize || memcmp(p + bp[ndx], kkey, (size_t)bytes)) {
#ifdef HASH_STATISTICS
++hash_collisions;
#endif
return (-2);
} else
return (ndx);
}
/*
* Given the buffer pointer of the first overflow page of a big pair,
* find the end of the big pair
*
* This will set bpp to the buffer header of the last page of the big pair.
* It will return the pageno of the overflow page following the last page
* of the pair; 0 if there isn't any (i.e. big pair is the last key in the
* bucket)
*/
uint16_t
__find_last_page(HTAB *hashp, BUFHEAD **bpp)
{
BUFHEAD *bufp;
uint16_t *bp, pageno;
int n;
bufp = *bpp;
bp = (uint16_t *)(void *)bufp->page;
for (;;) {
n = bp[0];
/*
* This is the last page if: the tag is FULL_KEY_DATA and
* either only 2 entries OVFLPAGE marker is explicit there
* is freespace on the page.
*/
if (bp[2] == FULL_KEY_DATA &&
((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
break;
pageno = bp[n - 1];
bufp = __get_buf(hashp, (uint32_t)pageno, bufp, 0);
if (!bufp)
return (0); /* Need to indicate an error! */
bp = (uint16_t *)(void *)bufp->page;
}
*bpp = bufp;
if (bp[0] > 2)
return (bp[3]);
else
return (0);
}
/*
* Return the data for the key/data pair that begins on this page at this
* index (index should always be 1).
*/
int
__big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
{
BUFHEAD *save_p;
uint16_t *bp, len, off, save_addr;
char *tp;
bp = (uint16_t *)(void *)bufp->page;
while (bp[ndx + 1] == PARTIAL_KEY) {
bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
if (!bufp)
return (-1);
bp = (uint16_t *)(void *)bufp->page;
ndx = 1;
}
if (bp[ndx + 1] == FULL_KEY) {
bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
if (!bufp)
return (-1);
bp = (uint16_t *)(void *)bufp->page;
save_p = bufp;
save_addr = save_p->addr;
off = bp[1];
len = 0;
} else
if (!FREESPACE(bp)) {
/*
* This is a hack. We can't distinguish between
* FULL_KEY_DATA that contains complete data or
* incomplete data, so we require that if the data
* is complete, there is at least 1 byte of free
* space left.
*/
off = bp[bp[0]];
len = bp[1] - off;
save_p = bufp;
save_addr = bufp->addr;
bufp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp,
0);
if (!bufp)
return (-1);
bp = (uint16_t *)(void *)bufp->page;
} else {
/* The data is all on one page. */
tp = (char *)(void *)bp;
off = bp[bp[0]];
val->data = (uint8_t *)tp + off;
val->size = bp[1] - off;
if (set_current) {
if (bp[0] == 2) { /* No more buckets in
* chain */
hashp->cpage = NULL;
hashp->cbucket++;
hashp->cndx = 1;
} else {
hashp->cpage = __get_buf(hashp,
(uint32_t)bp[bp[0] - 1], bufp, 0);
if (!hashp->cpage)
return (-1);
hashp->cndx = 1;
if (!((uint16_t *)(void *)
hashp->cpage->page)[0]) {
hashp->cbucket++;
hashp->cpage = NULL;
}
}
}
return (0);
}
val->size = collect_data(hashp, bufp, (int)len, set_current);
if (val->size == (size_t)-1)
return (-1);
if (save_p->addr != save_addr) {
/* We are pretty short on buffers. */
errno = EINVAL; /* OUT OF BUFFERS */
return (-1);
}
memmove(hashp->tmp_buf, (save_p->page) + off, (size_t)len);
val->data = (uint8_t *)hashp->tmp_buf;
return (0);
}
/*
* Count how big the total datasize is by recursing through the pages. Then
* allocate a buffer and copy the data as you recurse up.
*/
static int
collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
{
uint16_t *bp;
char *p;
BUFHEAD *xbp;
uint16_t save_addr;
int mylen, totlen;
p = bufp->page;
bp = (uint16_t *)(void *)p;
mylen = hashp->BSIZE - bp[1];
save_addr = bufp->addr;
if (bp[2] == FULL_KEY_DATA) { /* End of Data */
totlen = len + mylen;
if (hashp->tmp_buf)
free(hashp->tmp_buf);
if ((hashp->tmp_buf = calloc(1, (size_t)totlen)) == NULL)
return (-1);
if (set) {
hashp->cndx = 1;
if (bp[0] == 2) { /* No more buckets in chain */
hashp->cpage = NULL;
hashp->cbucket++;
} else {
hashp->cpage =
__get_buf(hashp, (uint32_t)bp[bp[0] - 1],
bufp, 0);
if (!hashp->cpage)
return (-1);
else if (!((uint16_t *)(void *)hashp->cpage->page)[0]) {
hashp->cbucket++;
hashp->cpage = NULL;
}
}
}
} else {
xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
if (!xbp || ((totlen =
collect_data(hashp, xbp, len + mylen, set)) < 1))
return (-1);
}
if (bufp->addr != save_addr) {
errno = EINVAL; /* Out of buffers. */
return (-1);
}
memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], (size_t)mylen);
return (totlen);
}
/*
* Fill in the key and data for this big pair.
*/
int
__big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
{
key->size = collect_key(hashp, bufp, 0, val, set);
if (key->size == (size_t)-1)
return (-1);
key->data = (uint8_t *)hashp->tmp_key;
return (0);
}
/*
* Count how big the total key size is by recursing through the pages. Then
* collect the data, allocate a buffer and copy the key as you recurse up.
*/
static int
collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
{
BUFHEAD *xbp;
char *p;
int mylen, totlen;
uint16_t *bp, save_addr;
p = bufp->page;
bp = (uint16_t *)(void *)p;
mylen = hashp->BSIZE - bp[1];
save_addr = bufp->addr;
totlen = len + mylen;
if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) { /* End of Key. */
if (hashp->tmp_key != NULL)
free(hashp->tmp_key);
if ((hashp->tmp_key = calloc(1, (size_t)totlen)) == NULL)
return (-1);
if (__big_return(hashp, bufp, 1, val, set))
return (-1);
} else {
xbp = __get_buf(hashp, (uint32_t)bp[bp[0] - 1], bufp, 0);
if (!xbp || ((totlen =
collect_key(hashp, xbp, totlen, val, set)) < 1))
return (-1);
}
if (bufp->addr != save_addr) {
errno = EINVAL; /* MIS -- OUT OF BUFFERS */
return (-1);
}
memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], (size_t)mylen);
return (totlen);
}
/*
* Returns:
* 0 => OK
* -1 => error
*/
int
__big_split(
HTAB *hashp,
BUFHEAD *op, /* Pointer to where to put keys that go in old bucket */
BUFHEAD *np, /* Pointer to new bucket page */
/* Pointer to first page containing the big key/data */
BUFHEAD *big_keyp,
int addr, /* Address of big_keyp */
uint32_t obucket,/* Old Bucket */
SPLIT_RETURN *ret
)
{
BUFHEAD *tmpp;
uint16_t *tp;
BUFHEAD *bp;
DBT key, val;
uint32_t change;
uint16_t free_space, n, off;
size_t temp;
bp = big_keyp;
/* Now figure out where the big key/data goes */
if (__big_keydata(hashp, big_keyp, &key, &val, 0))
return (-1);
change = (__call_hash(hashp, key.data, (int)key.size) != obucket);
if ((ret->next_addr = __find_last_page(hashp, &big_keyp)) != 0) {
if (!(ret->nextp =
__get_buf(hashp, (uint32_t)ret->next_addr, big_keyp, 0)))
return (-1);
} else
ret->nextp = NULL;
/* Now make one of np/op point to the big key/data pair */
_DIAGASSERT(np->ovfl == NULL);
if (change)
tmpp = np;
else
tmpp = op;
tmpp->flags |= BUF_MOD;
#ifdef DEBUG1
(void)fprintf(stderr,
"BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
(tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
#endif
tmpp->ovfl = bp; /* one of op/np point to big_keyp */
tp = (uint16_t *)(void *)tmpp->page;
_DIAGASSERT(FREESPACE(tp) >= OVFLSIZE);
n = tp[0];
off = OFFSET(tp);
free_space = FREESPACE(tp);
tp[++n] = (uint16_t)addr;
tp[++n] = OVFLPAGE;
tp[0] = n;
OFFSET(tp) = off;
temp = free_space - OVFLSIZE;
_DBFIT(temp, uint16_t);
FREESPACE(tp) = (uint16_t)temp;
/*
* Finally, set the new and old return values. BIG_KEYP contains a
* pointer to the last page of the big key_data pair. Make sure that
* big_keyp has no following page (2 elements) or create an empty
* following page.
*/
ret->newp = np;
ret->oldp = op;
tp = (uint16_t *)(void *)big_keyp->page;
big_keyp->flags |= BUF_MOD;
if (tp[0] > 2) {
/*
* There may be either one or two offsets on this page. If
* there is one, then the overflow page is linked on normally
* and tp[4] is OVFLPAGE. If there are two, tp[4] contains
* the second offset and needs to get stuffed in after the
* next overflow page is added.
*/
n = tp[4];
free_space = FREESPACE(tp);
off = OFFSET(tp);
tp[0] -= 2;
temp = free_space + OVFLSIZE;
_DBFIT(temp, uint16_t);
FREESPACE(tp) = (uint16_t)temp;
OFFSET(tp) = off;
tmpp = __add_ovflpage(hashp, big_keyp);
if (!tmpp)
return (-1);
tp[4] = n;
} else
tmpp = big_keyp;
if (change)
ret->newp = tmpp;
else
ret->oldp = tmpp;
return (0);
}