minix/drivers/memory/memory.c

602 lines
17 KiB
C
Raw Normal View History

2005-04-21 16:53:53 +02:00
/* This file contains the device dependent part of the drivers for the
* following special files:
* /dev/ram - RAM disk
* /dev/mem - absolute memory
* /dev/kmem - kernel virtual memory
* /dev/null - null device (data sink)
2005-04-29 17:36:43 +02:00
* /dev/boot - boot device loaded from boot image
* /dev/zero - null byte stream generator
* /dev/imgrd - boot image RAM disk
2005-04-21 16:53:53 +02:00
*
* Changes:
2005-04-29 17:36:43 +02:00
* Apr 29, 2005 added null byte generator (Jorrit N. Herder)
* Apr 09, 2005 added support for boot device (Jorrit N. Herder)
2005-04-21 16:53:53 +02:00
* Jul 26, 2004 moved RAM driver to user-space (Jorrit N. Herder)
* Apr 20, 1992 device dependent/independent split (Kees J. Bot)
*/
#include <assert.h>
#include <minix/drivers.h>
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
#include <minix/chardriver.h>
#include <minix/blockdriver.h>
#include <sys/ioc_memory.h>
#include <minix/ds.h>
#include <minix/vm.h>
#include <machine/param.h>
#include <machine/vmparam.h>
#include <sys/mman.h>
2010-04-02 00:22:33 +02:00
#include "kernel/const.h"
#include "kernel/config.h"
#include "kernel/type.h"
2005-04-21 16:53:53 +02:00
#include <machine/vm.h>
2005-09-30 14:57:30 +02:00
#include "local.h"
/* ramdisks (/dev/ram*) */
#define RAMDISKS 6
#define RAM_DEV_LAST (RAM_DEV_FIRST+RAMDISKS-1)
#define NR_DEVS (7+RAMDISKS) /* number of minor devices */
2005-04-21 16:53:53 +02:00
2012-03-25 20:25:53 +02:00
static struct device m_geom[NR_DEVS]; /* base and size of each device */
static vir_bytes m_vaddrs[NR_DEVS];
2005-04-21 16:53:53 +02:00
2012-03-25 20:25:53 +02:00
static int openct[NR_DEVS];
2009-09-22 15:57:21 +02:00
static ssize_t m_char_read(devminor_t minor, u64_t position, endpoint_t endpt,
cp_grant_id_t grant, size_t size, int flags, cdev_id_t id);
static ssize_t m_char_write(devminor_t minor, u64_t position, endpoint_t endpt,
cp_grant_id_t grant, size_t size, int flags, cdev_id_t id);
static int m_char_open(devminor_t minor, int access, endpoint_t user_endpt);
static int m_char_close(devminor_t minor);
static struct device *m_block_part(devminor_t minor);
static ssize_t m_block_transfer(devminor_t minor, int do_write, u64_t position,
endpoint_t endpt, iovec_t *iov, unsigned int nr_req, int flags);
static int m_block_open(devminor_t minor, int access);
static int m_block_close(devminor_t minor);
static int m_block_ioctl(devminor_t minor, unsigned long request, endpoint_t
endpt, cp_grant_id_t grant, endpoint_t user_endpt);
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
/* Entry points to the CHARACTER part of this driver. */
2012-03-25 20:25:53 +02:00
static struct chardriver m_cdtab = {
.cdr_open = m_char_open, /* open device */
.cdr_close = m_char_close, /* close device */
.cdr_read = m_char_read, /* read from device */
.cdr_write = m_char_write /* write to device */
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
};
/* Entry points to the BLOCK part of this driver. */
2012-03-25 20:25:53 +02:00
static struct blockdriver m_bdtab = {
.bdr_type = BLOCKDRIVER_TYPE_DISK,/* handle partition requests */
.bdr_open = m_block_open, /* open device */
.bdr_close = m_block_close, /* nothing on a close */
.bdr_transfer = m_block_transfer, /* do the I/O */
.bdr_ioctl = m_block_ioctl, /* ram disk I/O control */
.bdr_part = m_block_part /* return partition information */
2005-04-21 16:53:53 +02:00
};
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* SEF functions and variables. */
2012-03-25 20:25:53 +02:00
static void sef_local_startup(void);
static int sef_cb_init_fresh(int type, sef_init_info_t *info);
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
2005-04-21 16:53:53 +02:00
/*===========================================================================*
* main *
*===========================================================================*/
2012-03-25 20:25:53 +02:00
int main(void)
2005-04-21 16:53:53 +02:00
{
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
message msg;
int r, ipc_status;
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* SEF local startup. */
sef_local_startup();
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
/* The receive loop. */
for (;;) {
if ((r = driver_receive(ANY, &msg, &ipc_status)) != OK)
panic("memory: driver_receive failed (%d)", r);
if (IS_BDEV_RQ(msg.m_type))
blockdriver_process(&m_bdtab, &msg, ipc_status);
else
chardriver_process(&m_cdtab, &msg, ipc_status);
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
}
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
return(OK);
2005-04-21 16:53:53 +02:00
}
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/*===========================================================================*
* sef_local_startup *
*===========================================================================*/
2012-03-25 20:25:53 +02:00
static void sef_local_startup()
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
{
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
/* Register init callbacks. */
sef_setcb_init_fresh(sef_cb_init_fresh);
sef_setcb_init_lu(sef_cb_init_fresh);
sef_setcb_init_restart(sef_cb_init_fresh);
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* Register live update callbacks. */
sef_setcb_lu_prepare(sef_cb_lu_prepare_always_ready);
sef_setcb_lu_state_isvalid(sef_cb_lu_state_isvalid_standard);
/* Let SEF perform startup. */
sef_startup();
}
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
/*===========================================================================*
* sef_cb_init_fresh *
*===========================================================================*/
2012-03-25 20:25:53 +02:00
static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
{
/* Initialize the memory driver. */
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
int i;
#if 0
struct kinfo kinfo; /* kernel information */
int s;
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
if (OK != (s=sys_getkinfo(&kinfo))) {
panic("Couldn't get kernel information: %d", s);
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
}
/* Map in kernel memory for /dev/kmem. */
m_geom[KMEM_DEV].dv_base = kinfo.kmem_base;
m_geom[KMEM_DEV].dv_size = kinfo.kmem_size;
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
if((m_vaddrs[KMEM_DEV] = vm_map_phys(SELF, (void *) kinfo.kmem_base,
kinfo.kmem_size)) == MAP_FAILED) {
printf("MEM: Couldn't map in /dev/kmem.");
}
#endif
/* Ramdisk image built into the memory driver */
m_geom[IMGRD_DEV].dv_base= 0;
m_geom[IMGRD_DEV].dv_size= imgrd_size;
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
m_vaddrs[IMGRD_DEV] = (vir_bytes) imgrd;
for(i = 0; i < NR_DEVS; i++)
openct[i] = 0;
/* Set up memory range for /dev/mem. */
m_geom[MEM_DEV].dv_base = 0;
m_geom[MEM_DEV].dv_size = 0xffffffffULL;
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
m_vaddrs[MEM_DEV] = (vir_bytes) MAP_FAILED; /* we are not mapping this in. */
return(OK);
}
2005-04-21 16:53:53 +02:00
/*===========================================================================*
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
* m_is_block *
2005-04-21 16:53:53 +02:00
*===========================================================================*/
static int m_is_block(devminor_t minor)
2005-04-21 16:53:53 +02:00
{
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
/* Return TRUE iff the given minor device number is for a block device. */
switch (minor) {
case MEM_DEV:
case KMEM_DEV:
case NULL_DEV:
case ZERO_DEV:
return FALSE;
default:
return TRUE;
}
2005-04-21 16:53:53 +02:00
}
/*===========================================================================*
* m_transfer_kmem *
2005-04-21 16:53:53 +02:00
*===========================================================================*/
static ssize_t m_transfer_kmem(devminor_t minor, int do_write, u64_t position,
endpoint_t endpt, cp_grant_id_t grant, size_t size)
2005-04-21 16:53:53 +02:00
{
/* Transfer from or to the KMEM device. */
u64_t dv_size, dev_vaddr;
int r;
dv_size = m_geom[minor].dv_size;
dev_vaddr = m_vaddrs[minor];
2005-04-21 16:53:53 +02:00
if (!dev_vaddr || dev_vaddr == (vir_bytes) MAP_FAILED) {
printf("MEM: dev %d not initialized\n", minor);
return EIO;
}
if (position >= dv_size) return 0; /* check for EOF */
if (position + size > dv_size) size = dv_size - position;
if (!do_write) /* copy actual data */
r = sys_safecopyto(endpt, grant, 0, dev_vaddr + position, size);
else
r = sys_safecopyfrom(endpt, grant, 0, dev_vaddr + position, size);
return (r != OK) ? r : size;
2005-04-21 16:53:53 +02:00
}
/*===========================================================================*
* m_transfer_mem *
2005-04-21 16:53:53 +02:00
*===========================================================================*/
static ssize_t m_transfer_mem(devminor_t minor, int do_write, u64_t position,
endpoint_t endpt, cp_grant_id_t grant, size_t size)
2005-04-21 16:53:53 +02:00
{
/* Transfer from or to the MEM device. */
static int any_mapped = 0;
static phys_bytes pagestart_mapped;
static char *vaddr;
phys_bytes mem_phys, pagestart;
size_t off, page_off, subcount;
u64_t dv_size;
int r;
dv_size = m_geom[minor].dv_size;
if (position >= dv_size) return 0; /* check for EOF */
if (position + size > dv_size) size = dv_size - position;
2005-04-21 16:53:53 +02:00
/* Physical copying. Only used to access entire memory.
* Transfer one 'page window' at a time.
*/
off = 0;
while (off < size) {
mem_phys = (phys_bytes) position;
2005-04-29 17:36:43 +02:00
page_off = (size_t) (mem_phys % PAGE_SIZE);
pagestart = mem_phys - page_off;
2005-04-21 16:53:53 +02:00
/* All memory to the map call has to be page-aligned.
* Don't have to map same page over and over.
*/
if (!any_mapped || pagestart_mapped != pagestart) {
if (any_mapped) {
if (vm_unmap_phys(SELF, vaddr, PAGE_SIZE) != OK)
panic("vm_unmap_phys failed");
any_mapped = 0;
}
vaddr = vm_map_phys(SELF, (void *) pagestart, PAGE_SIZE);
if (vaddr == MAP_FAILED) {
printf("memory: vm_map_phys failed\n");
return ENOMEM;
}
any_mapped = 1;
pagestart_mapped = pagestart;
}
2005-04-29 17:36:43 +02:00
/* how much to be done within this page. */
subcount = PAGE_SIZE - page_off;
if (subcount > size)
subcount = size;
2005-04-21 16:53:53 +02:00
if (!do_write) /* copy data */
r = sys_safecopyto(endpt, grant, off,
(vir_bytes) vaddr + page_off, subcount);
else
r = sys_safecopyfrom(endpt, grant, off,
(vir_bytes) vaddr + page_off, subcount);
if (r != OK)
return r;
2005-04-29 17:36:43 +02:00
position += subcount;
off += subcount;
}
return off;
}
2005-04-29 17:36:43 +02:00
/*===========================================================================*
* m_char_read *
*===========================================================================*/
static ssize_t m_char_read(devminor_t minor, u64_t position, endpoint_t endpt,
cp_grant_id_t grant, size_t size, int UNUSED(flags),
cdev_id_t UNUSED(id))
{
/* Read from one of the driver's character devices. */
ssize_t r;
2005-04-21 16:53:53 +02:00
/* Check if the minor device number is ok. */
if (minor < 0 || minor >= NR_DEVS || m_is_block(minor)) return ENXIO;
switch (minor) {
case NULL_DEV:
r = 0; /* always at EOF */
break;
case ZERO_DEV:
/* Fill the target area with zeroes. In fact, let the kernel do it! */
if ((r = sys_safememset(endpt, grant, 0, '\0', size)) == OK)
r = size;
break;
2005-04-29 17:36:43 +02:00
case KMEM_DEV:
r = m_transfer_kmem(minor, FALSE, position, endpt, grant, size);
break;
case MEM_DEV:
r = m_transfer_mem(minor, FALSE, position, endpt, grant, size);
break;
default:
panic("unknown character device %d", minor);
2005-04-21 16:53:53 +02:00
}
return r;
2005-04-21 16:53:53 +02:00
}
2005-09-11 19:09:11 +02:00
/*===========================================================================*
* m_char_write *
2005-09-11 19:09:11 +02:00
*===========================================================================*/
static ssize_t m_char_write(devminor_t minor, u64_t position, endpoint_t endpt,
cp_grant_id_t grant, size_t size, int UNUSED(flags),
cdev_id_t UNUSED(id))
{
/* Write to one of the driver's character devices. */
ssize_t r;
/* Check if the minor device number is ok. */
if (minor < 0 || minor >= NR_DEVS || m_is_block(minor)) return ENXIO;
switch (minor) {
case NULL_DEV:
case ZERO_DEV:
r = size; /* just eat everything */
break;
case KMEM_DEV:
r = m_transfer_kmem(minor, TRUE, position, endpt, grant, size);
break;
case MEM_DEV:
r = m_transfer_mem(minor, TRUE, position, endpt, grant, size);
break;
default:
panic("unknown character device %d", minor);
}
return r;
}
/*===========================================================================*
* m_char_open *
*===========================================================================*/
static int m_char_open(devminor_t minor, int access, endpoint_t user_endpt)
2005-04-21 16:53:53 +02:00
{
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
/* Open a memory character device. */
/* Check if the minor device number is ok. */
if (minor < 0 || minor >= NR_DEVS || m_is_block(minor)) return ENXIO;
#if defined(__i386__)
if (minor == MEM_DEV)
{
int r = sys_enable_iop(user_endpt);
if (r != OK)
{
printf("m_char_open: sys_enable_iop failed for %d: %d\n",
user_endpt, r);
return r;
}
}
#endif
2009-09-22 15:57:21 +02:00
openct[minor]++;
2009-09-22 15:57:21 +02:00
return(OK);
}
/*===========================================================================*
* m_char_close *
2009-09-22 15:57:21 +02:00
*===========================================================================*/
static int m_char_close(devminor_t minor)
2009-09-22 15:57:21 +02:00
{
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
/* Close a memory character device. */
2009-09-22 15:57:21 +02:00
if (minor < 0 || minor >= NR_DEVS || m_is_block(minor)) return ENXIO;
if(openct[minor] < 1) {
printf("MEMORY: closing unopened device %d\n", minor);
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
return(EINVAL);
2009-09-22 15:57:21 +02:00
}
openct[minor]--;
2009-09-22 15:57:21 +02:00
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
return(OK);
}
/*===========================================================================*
* m_block_part *
*===========================================================================*/
static struct device *m_block_part(devminor_t minor)
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
{
/* Prepare for I/O on a device: check if the minor device number is ok. */
if (minor < 0 || minor >= NR_DEVS || !m_is_block(minor)) return(NULL);
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
return(&m_geom[minor]);
}
/*===========================================================================*
* m_block_transfer *
*===========================================================================*/
2012-03-25 20:25:53 +02:00
static int m_block_transfer(
devminor_t minor, /* minor device number */
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
int do_write, /* read or write? */
u64_t position, /* offset on device to read or write */
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
endpoint_t endpt, /* process doing the request */
iovec_t *iov, /* pointer to read or write request vector */
unsigned int nr_req, /* length of request vector */
int UNUSED(flags) /* transfer flags */
)
{
/* Read or write one the driver's block devices. */
unsigned count;
vir_bytes vir_offset = 0;
struct device *dv;
u64_t dv_size;
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
int r;
vir_bytes dev_vaddr;
cp_grant_id_t grant;
ssize_t total = 0;
/* Get minor device information. */
if ((dv = m_block_part(minor)) == NULL) return(ENXIO);
dv_size = dv->dv_size;
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
dev_vaddr = m_vaddrs[minor];
if (ex64hi(position) != 0)
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
return OK; /* Beyond EOF */
while (nr_req > 0) {
/* How much to transfer and where to / from. */
count = iov->iov_size;
grant = (cp_grant_id_t) iov->iov_addr;
/* Virtual copying. For RAM disks and internal FS. */
if(!dev_vaddr || dev_vaddr == (vir_bytes) MAP_FAILED) {
printf("MEM: dev %d not initialized\n", minor);
return EIO;
}
if (position >= dv_size) return(total); /* check for EOF */
if (position + count > dv_size) count = dv_size - position;
if (!do_write) { /* copy actual data */
r=sys_safecopyto(endpt, grant, vir_offset,
dev_vaddr + position, count);
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
} else {
r=sys_safecopyfrom(endpt, grant, vir_offset,
dev_vaddr + position, count);
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
}
if(r != OK) {
panic("I/O copy failed: %d", r);
}
/* Book the number of bytes transferred. */
position += count;
vir_offset += count;
total += count;
if ((iov->iov_size -= count) == 0) { iov++; nr_req--; vir_offset = 0; }
}
return(total);
}
/*===========================================================================*
* m_block_open *
*===========================================================================*/
static int m_block_open(devminor_t minor, int UNUSED(access))
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
{
/* Open a memory block device. */
if (m_block_part(minor) == NULL) return(ENXIO);
openct[minor]++;
return(OK);
}
/*===========================================================================*
* m_block_close *
*===========================================================================*/
static int m_block_close(devminor_t minor)
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
{
/* Close a memory block device. */
if (m_block_part(minor) == NULL) return(ENXIO);
if(openct[minor] < 1) {
printf("MEMORY: closing unopened device %d\n", minor);
return(EINVAL);
}
openct[minor]--;
2005-04-21 16:53:53 +02:00
return(OK);
}
/*===========================================================================*
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
* m_block_ioctl *
2005-04-21 16:53:53 +02:00
*===========================================================================*/
static int m_block_ioctl(devminor_t minor, unsigned long request,
endpoint_t endpt, cp_grant_id_t grant, endpoint_t UNUSED(user_endpt))
2005-04-21 16:53:53 +02:00
{
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
/* I/O controls for the block devices of the memory driver. Currently there is
* one I/O control specific to the memory driver:
* - MIOCRAMSIZE: to set the size of the RAM disk.
*/
2005-04-21 16:53:53 +02:00
struct device *dv;
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
u32_t ramdev_size;
int s;
void *mem;
int is_imgrd = 0;
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
if (request != MIOCRAMSIZE)
return EINVAL;
if(minor == IMGRD_DEV)
is_imgrd = 1;
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
/* Someone wants to create a new RAM disk with the given size.
* A ramdisk can be created only once, and only on RAM disk device.
*/
if ((dv = m_block_part(minor)) == NULL) return ENXIO;
if((minor < RAM_DEV_FIRST || minor > RAM_DEV_LAST) &&
minor != RAM_DEV_OLD && !is_imgrd) {
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
printf("MEM: MIOCRAMSIZE: %d not a ramdisk\n", minor);
return EINVAL;
}
2005-04-21 16:53:53 +02:00
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
/* Get request structure */
s= sys_safecopyfrom(endpt, grant, 0, (vir_bytes)&ramdev_size,
sizeof(ramdev_size));
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
if (s != OK)
return s;
if(is_imgrd)
ramdev_size = 0;
if(m_vaddrs[minor] && dv->dv_size == (u64_t) ramdev_size) {
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
return(OK);
}
/* openct is 1 for the ioctl(). */
if(openct[minor] != 1) {
printf("MEM: MIOCRAMSIZE: %d in use (count %d)\n",
minor, openct[minor]);
return(EBUSY);
}
if(m_vaddrs[minor]) {
u32_t a, o;
u64_t size;
int r;
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
if(ex64hi(dv->dv_size)) {
panic("huge old ramdisk");
}
size = dv->dv_size;
a = m_vaddrs[minor];
if((o = a % PAGE_SIZE)) {
vir_bytes l = PAGE_SIZE - o;
a += l;
size -= l;
}
size = rounddown(size, PAGE_SIZE);
r = munmap((void *) a, size);
if(r != OK) {
printf("memory: WARNING: munmap failed: %d\n", r);
}
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
m_vaddrs[minor] = (vir_bytes) NULL;
dv->dv_size = 0;
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
}
2006-03-13 16:41:07 +01:00
#if DEBUG
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
printf("MEM:%d: allocating ramdisk of size 0x%x\n", minor, ramdev_size);
2006-03-13 16:41:07 +01:00
#endif
mem = NULL;
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
/* Try to allocate a piece of memory for the RAM disk. */
if(ramdev_size > 0 &&
(mem = mmap(NULL, ramdev_size, PROT_READ|PROT_WRITE,
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
MAP_PREALLOC|MAP_ANON, -1, 0)) == MAP_FAILED) {
printf("MEM: failed to get memory for ramdisk\n");
return(ENOMEM);
}
Split block/character protocols and libdriver This patch separates the character and block driver communication protocols. The old character protocol remains the same, but a new block protocol is introduced. The libdriver library is replaced by two new libraries: libchardriver and libblockdriver. Their exposed API, and drivers that use them, have been updated accordingly. Together, libbdev and libblockdriver now completely abstract away the message format used by the block protocol. As the memory driver is both a character and a block device driver, it now implements its own message loop. The most important semantic change made to the block protocol is that it is no longer possible to return both partial results and an error for a single transfer. This simplifies the interaction between the caller and the driver, as the I/O vector no longer needs to be copied back. Also, drivers are now no longer supposed to decide based on the layout of the I/O vector when a transfer should be cut short. Put simply, transfers are now supposed to either succeed completely, or result in an error. After this patch, the state of the various pieces is as follows: - block protocol: stable - libbdev API: stable for synchronous communication - libblockdriver API: needs slight revision (the drvlib/partition API in particular; the threading API will also change shortly) - character protocol: needs cleanup - libchardriver API: needs cleanup accordingly - driver restarts: largely unsupported until endpoint changes are reintroduced As a side effect, this patch eliminates several bugs, hacks, and gcc -Wall and -W warnings all over the place. It probably introduces a few new ones, too. Update warning: this patch changes the protocol between MFS and disk drivers, so in order to use old/new images, the MFS from the ramdisk must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
m_vaddrs[minor] = (vir_bytes) mem;
dv->dv_size = ramdev_size;
2005-04-21 16:53:53 +02:00
return(OK);
}