minix/kernel/arch/i386/system.c

381 lines
7.9 KiB
C
Raw Normal View History

Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
/* system dependent functions for use inside the whole kernel. */
#include "../../kernel.h"
#include <unistd.h>
#include <ctype.h>
#include <string.h>
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
#include <ibm/cmos.h>
#include <ibm/bios.h>
#include <minix/portio.h>
#include <minix/u64.h>
#include <minix/sysutil.h>
#include <a.out.h>
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
#include "proto.h"
#include "../../proc.h"
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
#include "../../debug.h"
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
#define CR0_EM 0x0004 /* set to enable trap on any FP instruction */
FORWARD _PROTOTYPE( void ser_debug, (int c));
PUBLIC void arch_monitor(void)
{
level0(monitor);
}
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
PUBLIC void arch_shutdown(int how)
{
/* Mask all interrupts, including the clock. */
outb( INT_CTLMASK, ~0);
if(how != RBT_RESET) {
/* return to boot monitor */
outb( INT_CTLMASK, 0);
outb( INT2_CTLMASK, 0);
/* Return to the boot monitor. Set
* the program if not already done.
*/
if (how != RBT_MONITOR)
arch_set_params("", 1);
if(minix_panicing) {
int source, dest;
static char mybuffer[sizeof(params_buffer)];
char *lead = "echo \\n*** kernel messages:\\n";
int leadlen = strlen(lead);
strcpy(mybuffer, lead);
#define DECSOURCE source = (source - 1 + _KMESS_BUF_SIZE) % _KMESS_BUF_SIZE
dest = sizeof(mybuffer)-1;
mybuffer[dest--] = '\0';
source = kmess.km_next;
DECSOURCE;
while(dest >= leadlen) {
char c = kmess.km_buf[source];
if(c == '\n') {
mybuffer[dest--] = 'n';
mybuffer[dest] = '\\';
} else if(isprint(c) &&
c != '\'' && c != '"' &&
c != '\\' && c != ';') {
mybuffer[dest] = c;
2008-11-19 15:10:33 +01:00
} else mybuffer[dest] = ' ';
DECSOURCE;
dest--;
}
arch_set_params(mybuffer, strlen(mybuffer)+1);
}
arch_monitor();
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
} else {
/* Reset the system by forcing a processor shutdown. First stop
* the BIOS memory test by setting a soft reset flag.
*/
u16_t magic = STOP_MEM_CHECK;
phys_copy(vir2phys(&magic), SOFT_RESET_FLAG_ADDR,
SOFT_RESET_FLAG_SIZE);
level0(reset);
}
}
/* address of a.out headers, set in mpx386.s */
phys_bytes aout;
PUBLIC void arch_get_aout_headers(int i, struct exec *h)
{
/* The bootstrap loader created an array of the a.out headers at
* absolute address 'aout'. Get one element to h.
*/
phys_copy(aout + i * A_MINHDR, vir2phys(h), (phys_bytes) A_MINHDR);
}
PUBLIC void arch_init(void)
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
{
idt_init();
#if 0
/* Set CR0_EM until we get FP context switching */
write_cr0(read_cr0() | CR0_EM);
#endif
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
}
#define COM1_BASE 0x3F8
#define COM1_THR (COM1_BASE + 0)
#define COM1_RBR (COM1_BASE + 0)
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
#define COM1_LSR (COM1_BASE + 5)
#define LSR_DR 0x01
#define LSR_THRE 0x20
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
PUBLIC void ser_putc(char c)
{
int i;
int lsr, thr;
lsr= COM1_LSR;
thr= COM1_THR;
for (i= 0; i<100000; i++)
{
if (inb( lsr) & LSR_THRE)
break;
}
outb( thr, c);
}
/*===========================================================================*
* do_ser_debug *
*===========================================================================*/
PUBLIC void do_ser_debug()
{
u8_t c, lsr;
lsr= inb(COM1_LSR);
if (!(lsr & LSR_DR))
return;
c = inb(COM1_RBR);
ser_debug(c);
}
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
PRIVATE void ser_dump_queues(void)
{
int q;
for(q = 0; q < NR_SCHED_QUEUES; q++) {
struct proc *p;
if(rdy_head[q])
printf("%2d: ", q);
for(p = rdy_head[q]; p; p = p->p_nextready) {
printf("%s / %d ", p->p_name, p->p_endpoint);
}
printf("\n");
}
}
PRIVATE void ser_dump_segs(void)
{
struct proc *pp;
for (pp= BEG_PROC_ADDR; pp < END_PROC_ADDR; pp++)
{
if (pp->p_rts_flags & SLOT_FREE)
continue;
kprintf("%d: %s ep %d\n", proc_nr(pp), pp->p_name, pp->p_endpoint);
printseg("cs: ", 1, pp, pp->p_reg.cs);
printseg("ds: ", 0, pp, pp->p_reg.ds);
if(pp->p_reg.ss != pp->p_reg.ds) {
printseg("ss: ", 0, pp, pp->p_reg.ss);
}
}
}
PRIVATE void ser_debug(int c)
{
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
int u = 0;
do_serial_debug++;
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
/* Disable interrupts so that we get a consistent state. */
if(!intr_disabled()) { lock; u = 1; };
switch(c)
{
case '1':
ser_dump_proc();
break;
case '2':
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
ser_dump_queues();
break;
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
case '3':
ser_dump_segs();
break;
#if DEBUG_TRACE
#define TOGGLECASE(ch, flag) \
case ch: { \
if(verboseflags & flag) { \
verboseflags &= ~flag; \
printf("%s disabled\n", #flag); \
} else { \
verboseflags |= flag; \
printf("%s enabled\n", #flag); \
} \
break; \
}
TOGGLECASE('8', VF_SCHEDULING)
TOGGLECASE('9', VF_PICKPROC)
#endif
}
do_serial_debug--;
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
if(u) { unlock; }
}
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
PRIVATE void printslot(struct proc *pp, int level)
{
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
struct proc *depproc = NULL;
int dep = NONE;
#define COL { int i; for(i = 0; i < level; i++) printf("> "); }
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
if(level >= NR_PROCS) {
kprintf("loop??\n");
return;
}
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
COL
kprintf("%d: %s %d prio %d/%d time %d/%d cr3 0x%lx rts %s misc %s",
proc_nr(pp), pp->p_name, pp->p_endpoint,
pp->p_priority, pp->p_max_priority, pp->p_user_time,
pp->p_sys_time, pp->p_seg.p_cr3,
rtsflagstr(pp->p_rts_flags), miscflagstr(pp->p_misc_flags));
if(pp->p_rts_flags & SENDING) {
dep = pp->p_sendto_e;
kprintf(" to: ");
} else if(pp->p_rts_flags & RECEIVING) {
dep = pp->p_getfrom_e;
kprintf(" from: ");
}
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
if(dep != NONE) {
if(dep == ANY) {
kprintf(" ANY\n");
} else {
int procno;
if(!isokendpt(dep, &procno)) {
kprintf(" ??? %d\n", dep);
} else {
depproc = proc_addr(procno);
if(depproc->p_rts_flags & SLOT_FREE) {
kprintf(" empty slot %d???\n", procno);
depproc = NULL;
} else {
kprintf(" %s\n", depproc->p_name);
}
}
}
} else {
kprintf("\n");
}
COL
proc_stacktrace(pp);
if(depproc)
printslot(depproc, level+1);
}
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
PUBLIC void ser_dump_proc()
{
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
struct proc *pp;
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
for (pp= BEG_PROC_ADDR; pp < END_PROC_ADDR; pp++)
{
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
if (pp->p_rts_flags & SLOT_FREE)
continue;
printslot(pp, 0);
}
}
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
#if SPROFILE
PUBLIC int arch_init_profile_clock(u32_t freq)
{
int r;
/* Set CMOS timer frequency. */
outb(RTC_INDEX, RTC_REG_A);
outb(RTC_IO, RTC_A_DV_OK | freq);
/* Enable CMOS timer interrupts. */
outb(RTC_INDEX, RTC_REG_B);
r = inb(RTC_IO);
outb(RTC_INDEX, RTC_REG_B);
outb(RTC_IO, r | RTC_B_PIE);
/* Mandatory read of CMOS register to enable timer interrupts. */
outb(RTC_INDEX, RTC_REG_C);
inb(RTC_IO);
return CMOS_CLOCK_IRQ;
}
PUBLIC void arch_stop_profile_clock(void)
{
int r;
/* Disable CMOS timer interrupts. */
outb(RTC_INDEX, RTC_REG_B);
r = inb(RTC_IO);
outb(RTC_INDEX, RTC_REG_B);
outb(RTC_IO, r & ~RTC_B_PIE);
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
}
PUBLIC void arch_ack_profile_clock(void)
{
/* Mandatory read of CMOS register to re-enable timer interrupts. */
outb(RTC_INDEX, RTC_REG_C);
inb(RTC_IO);
}
#endif
#define COLOR_BASE 0xB8000L
PUBLIC void cons_setc(int pos, int c)
{
char ch;
ch= c;
phys_copy(vir2phys((vir_bytes)&ch), COLOR_BASE+(20*80+pos)*2, 1);
}
PUBLIC void cons_seth(int pos, int n)
{
n &= 0xf;
if (n < 10)
cons_setc(pos, '0'+n);
else
cons_setc(pos, 'A'+(n-10));
}
/* Saved by mpx386.s into these variables. */
u32_t params_size, params_offset, mon_ds;
PUBLIC int arch_get_params(char *params, int maxsize)
{
phys_copy(seg2phys(mon_ds) + params_offset, vir2phys(params),
MIN(maxsize, params_size));
params[maxsize-1] = '\0';
return OK;
}
PUBLIC int arch_set_params(char *params, int size)
{
if(size > params_size)
return E2BIG;
phys_copy(vir2phys(params), seg2phys(mon_ds) + params_offset, size);
return OK;
}
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
PUBLIC void arch_do_syscall(struct proc *proc)
{
/* Perform a previously postponed system call.
*/
int call_nr, src_dst_e;
message *m_ptr;
long bit_map;
/* Get the system call parameters from their respective registers. */
call_nr = proc->p_reg.cx;
src_dst_e = proc->p_reg.retreg;
m_ptr = (message *) proc->p_reg.bx;
bit_map = proc->p_reg.dx;
/* sys_call() expects the given process's memory to be accessible. */
vm_set_cr3(proc);
/* Make the system call, for real this time. */
proc->p_reg.retreg = sys_call(call_nr, src_dst_e, m_ptr, bit_map);
}