2005-04-21 16:53:53 +02:00
|
|
|
#include "fs.h"
|
|
|
|
#include <minix/com.h>
|
|
|
|
#include <minix/callnr.h>
|
2005-05-31 16:43:04 +02:00
|
|
|
#include <minix/utils.h>
|
2005-04-21 16:53:53 +02:00
|
|
|
#include <time.h>
|
|
|
|
#include <ibm/cmos.h>
|
|
|
|
#include <ibm/bios.h>
|
|
|
|
|
|
|
|
|
|
|
|
/* Manufacturers usually use the ID value of the IBM model they emulate.
|
|
|
|
* However some manufacturers, notably HP and COMPAQ, have had different
|
|
|
|
* ideas in the past.
|
|
|
|
*
|
|
|
|
* Machine ID byte information source:
|
|
|
|
* _The Programmer's PC Sourcebook_ by Thom Hogan,
|
|
|
|
* published by Microsoft Press
|
|
|
|
*/
|
|
|
|
|
|
|
|
FORWARD _PROTOTYPE( int read_register, (int register_address));
|
|
|
|
FORWARD _PROTOTYPE( int get_cmostime, (struct tm *tmp, int y2kflag));
|
|
|
|
FORWARD _PROTOTYPE( int dec_to_bcd, (int dec));
|
|
|
|
FORWARD _PROTOTYPE( int bcd_to_dec, (int bcd));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PUBLIC int do_cmostime(void)
|
|
|
|
{
|
|
|
|
unsigned char mach_id, cmos_state;
|
|
|
|
struct tm time1;
|
|
|
|
int i, s;
|
|
|
|
int y2kflag = m_in.REQUEST;
|
|
|
|
vir_bytes dst_time = (vir_bytes) m_in.ADDRESS;
|
|
|
|
|
|
|
|
/* First obtain the machine ID to see if we can read the CMOS clock. Only
|
|
|
|
* for PS_386 and PC_AT this is possible. Otherwise, return an error.
|
|
|
|
*/
|
2005-04-29 17:36:43 +02:00
|
|
|
sys_vircopy(SELF, BIOS_SEG, (vir_bytes) MACHINE_ID_ADDR,
|
|
|
|
SELF, D, (vir_bytes) &mach_id, MACHINE_ID_SIZE);
|
2005-04-21 16:53:53 +02:00
|
|
|
if (mach_id != PS_386_MACHINE && mach_id != PC_AT_MACHINE) {
|
|
|
|
printf("IS: Machine ID unknown. ID byte = %02x.\n", mach_id);
|
|
|
|
return(EFAULT);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Now check the CMOS' state to see if we can read a proper time from it.
|
|
|
|
* If the state is crappy, return an error.
|
|
|
|
*/
|
|
|
|
cmos_state = read_register(CMOS_STATUS);
|
|
|
|
if (cmos_state & (CS_LOST_POWER | CS_BAD_CHKSUM | CS_BAD_TIME)) {
|
|
|
|
printf( "IS: CMOS RAM error(s) found. State = 0x%02x\n", cmos_state );
|
|
|
|
if (cmos_state & CS_LOST_POWER)
|
|
|
|
printf("IS: RTC lost power. Reset CMOS RAM with SETUP." );
|
|
|
|
if (cmos_state & CS_BAD_CHKSUM)
|
|
|
|
printf("IS: CMOS RAM checksum is bad. Run SETUP." );
|
|
|
|
if (cmos_state & CS_BAD_TIME)
|
|
|
|
printf("IS: Time invalid in CMOS RAM. Reset clock." );
|
|
|
|
return(EFAULT);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Everything seems to be OK. Read the CMOS real time clock and copy the
|
|
|
|
* result back to the caller.
|
|
|
|
*/
|
|
|
|
if (get_cmostime(&time1, y2kflag) != 0)
|
|
|
|
return(EFAULT);
|
|
|
|
sys_datacopy(SELF, (vir_bytes) &time1,
|
|
|
|
who, dst_time, sizeof(struct tm));
|
|
|
|
|
|
|
|
return(OK);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
PRIVATE int get_cmostime(struct tm *t, int y2kflag)
|
|
|
|
{
|
|
|
|
/* Update the structure pointed to by time with the current time as read
|
|
|
|
* from CMOS RAM of the RTC. If necessary, the time is converted into a
|
|
|
|
* binary format before being stored in the structure.
|
|
|
|
*/
|
|
|
|
int osec, n;
|
|
|
|
unsigned long i;
|
2005-05-31 16:43:04 +02:00
|
|
|
clock_t t0,t1;
|
2005-04-21 16:53:53 +02:00
|
|
|
|
|
|
|
/* Start a timer to keep us from getting stuck on a dead clock. */
|
2005-05-31 16:43:04 +02:00
|
|
|
getuptime(&t0);
|
2005-04-21 16:53:53 +02:00
|
|
|
do {
|
|
|
|
osec = -1;
|
|
|
|
n = 0;
|
|
|
|
do {
|
2005-05-31 16:43:04 +02:00
|
|
|
getuptime(&t1);
|
|
|
|
if (t1-t0 > 5*HZ) {
|
2005-04-21 16:53:53 +02:00
|
|
|
printf("readclock: CMOS clock appears dead\n");
|
|
|
|
return(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clock update in progress? */
|
|
|
|
if (read_register(RTC_REG_A) & RTC_A_UIP) continue;
|
|
|
|
|
|
|
|
t->tm_sec = read_register(RTC_SEC);
|
|
|
|
if (t->tm_sec != osec) {
|
|
|
|
/* Seconds changed. First from -1, then because the
|
|
|
|
* clock ticked, which is what we're waiting for to
|
|
|
|
* get a precise reading.
|
|
|
|
*/
|
|
|
|
osec = t->tm_sec;
|
|
|
|
n++;
|
|
|
|
}
|
|
|
|
} while (n < 2);
|
|
|
|
|
|
|
|
/* Read the other registers. */
|
|
|
|
t->tm_min = read_register(RTC_MIN);
|
|
|
|
t->tm_hour = read_register(RTC_HOUR);
|
|
|
|
t->tm_mday = read_register(RTC_MDAY);
|
|
|
|
t->tm_mon = read_register(RTC_MONTH);
|
|
|
|
t->tm_year = read_register(RTC_YEAR);
|
|
|
|
|
|
|
|
/* Time stable? */
|
|
|
|
} while (read_register(RTC_SEC) != t->tm_sec
|
|
|
|
|| read_register(RTC_MIN) != t->tm_min
|
|
|
|
|| read_register(RTC_HOUR) != t->tm_hour
|
|
|
|
|| read_register(RTC_MDAY) != t->tm_mday
|
|
|
|
|| read_register(RTC_MONTH) != t->tm_mon
|
|
|
|
|| read_register(RTC_YEAR) != t->tm_year);
|
|
|
|
|
|
|
|
if ((read_register(RTC_REG_B) & RTC_B_DM_BCD) == 0) {
|
|
|
|
/* Convert BCD to binary (default RTC mode). */
|
|
|
|
t->tm_year = bcd_to_dec(t->tm_year);
|
|
|
|
t->tm_mon = bcd_to_dec(t->tm_mon);
|
|
|
|
t->tm_mday = bcd_to_dec(t->tm_mday);
|
|
|
|
t->tm_hour = bcd_to_dec(t->tm_hour);
|
|
|
|
t->tm_min = bcd_to_dec(t->tm_min);
|
|
|
|
t->tm_sec = bcd_to_dec(t->tm_sec);
|
|
|
|
}
|
|
|
|
t->tm_mon--; /* Counts from 0. */
|
|
|
|
|
|
|
|
/* Correct the year, good until 2080. */
|
|
|
|
if (t->tm_year < 80) t->tm_year += 100;
|
|
|
|
|
|
|
|
if (y2kflag) {
|
|
|
|
/* Clock with Y2K bug, interpret 1980 as 2000, good until 2020. */
|
|
|
|
if (t->tm_year < 100) t->tm_year += 20;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
PRIVATE int read_register(int reg_addr)
|
|
|
|
{
|
|
|
|
/* Read a single CMOS register value. */
|
|
|
|
int r = 0;
|
|
|
|
sys_outb(RTC_INDEX, reg_addr);
|
|
|
|
sys_inb(RTC_IO, &r);
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
PRIVATE int bcd_to_dec(int n)
|
|
|
|
{
|
|
|
|
return ((n >> 4) & 0x0F) * 10 + (n & 0x0F);
|
|
|
|
}
|
|
|
|
|
|
|
|
PRIVATE int dec_to_bcd(int n)
|
|
|
|
{
|
|
|
|
return ((n / 10) << 4) | (n % 10);
|
|
|
|
}
|
|
|
|
|