minix/kernel/main.c

358 lines
13 KiB
C
Raw Normal View History

2005-04-21 16:53:53 +02:00
/* This file contains the main program of MINIX as well as its shutdown code.
* The routine main() initializes the system and starts the ball rolling by
* setting up the process table, interrupt vectors, and scheduling each task
* to run to initialize itself.
* The routine prepare_shutdown() tries to cleanly shuts down MINIX by running
* the stop_sequence() to notify all system services and allowing them some
* time to finalize. In case of an exception(), the stop sequence is skipped.
*
* The entries into this file are:
* main: MINIX main program
* prepare_shutdown: prepare to take MINIX down
* stop_sequence: take down all system services
*
* Changes:
* Nov 24, 2004 simplified main() with system image (Jorrit N. Herder)
* Oct 21, 2004 moved copyright to announce() (Jorrit N. Herder)
* Sep 04, 2004 created stop_sequence() to cleanup (Jorrit N. Herder)
* Aug 20, 2004 split wreboot() and shutdown() (Jorrit N. Herder)
* Jun 15, 2004 moved wreboot() to this file (Jorrit N. Herder)
*/
#include "kernel.h"
#include <signal.h>
#include <unistd.h>
#include <a.out.h>
#include <minix/callnr.h>
#include <minix/com.h>
#include "proc.h"
#include "sendmask.h"
2005-05-02 16:30:04 +02:00
/* Prototype declarations for PRIVATE functions. */
FORWARD _PROTOTYPE( void announce, (void));
FORWARD _PROTOTYPE( void shutdown, (int how));
2005-05-02 16:30:04 +02:00
2005-04-21 16:53:53 +02:00
#define STOP_TICKS (5*HZ) /* time allowed to stop */
/*===========================================================================*
* main *
*===========================================================================*/
PUBLIC void main()
{
/* Start the ball rolling. */
register struct proc *rp;
register int i;
int hdrindex; /* index to array of a.out headers */
2005-04-29 17:36:43 +02:00
phys_clicks text_base, bootdev_base;
vir_clicks text_clicks, bootdev_clicks;
2005-04-21 16:53:53 +02:00
vir_clicks data_clicks;
reg_t ktsb; /* kernel task stack base */
struct memory *memp;
struct system_image *ttp;
struct exec e_hdr; /* for a copy of an a.out header */
/* Initialize the interrupt controller. */
intr_init(1);
/* Clear the process table. Anounce each slot as empty and
* set up mappings for proc_addr() and proc_number() macros.
*/
for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
rp->p_type = P_NONE; /* isemptyp() tests on this */
rp->p_nr = i; /* proc number from ptr */
(pproc_addr + NR_TASKS)[i] = rp; /* proc ptr from number */
}
/* Set up proc table entries for tasks and servers. The stacks of the
* kernel tasks are initialized to an array in data space. The stacks
* of the servers have been added to the data segment by the monitor, so
* the stack pointer is set to the end of the data segment. All the
* processes are in low memory on the 8086. On the 386 only the kernel
* is in low memory, the rest is loaded in extended memory.
*/
/* Task stacks. */
ktsb = (reg_t) t_stack;
for (i=0; i < IMAGE_SIZE; ++i) {
ttp = &image[i]; /* t's task attributes */
rp = proc_addr(ttp->proc_nr); /* t's process slot */
kstrncpy(rp->p_name, ttp->proc_name, PROC_NAME_LEN); /* set name */
2005-04-21 16:53:53 +02:00
rp->p_type = ttp->type; /* type of process */
rp->p_priority = ttp->priority; /* scheduling priority */
rp->p_sendmask = ttp->sendmask; /* sendmask protection */
if (i-NR_TASKS < 0) { /* part of the kernel? */
if (ttp->stksize > 0) { /* HARDWARE stack size is 0 */
rp->p_stguard = (reg_t *) ktsb;
*rp->p_stguard = STACK_GUARD;
}
ktsb += ttp->stksize; /* point to high end of stack */
rp->p_reg.sp = ktsb; /* this task's initial stack ptr */
2005-04-29 17:36:43 +02:00
text_base = kinfo.code_base >> CLICK_SHIFT;
2005-04-21 16:53:53 +02:00
/* processes that are in the kernel */
hdrindex = 0; /* all use the first a.out header */
} else {
hdrindex = 1 + i-NR_TASKS; /* drivers, servers, INIT follow */
}
/* The bootstrap loader created an array of the a.out headers at
* absolute address 'aout'. Get one element to e_hdr.
*/
phys_copy(aout + hdrindex * A_MINHDR, vir2phys(&e_hdr),
(phys_bytes) A_MINHDR);
/* Convert addresses to clicks and build process memory map */
text_base = e_hdr.a_syms >> CLICK_SHIFT;
text_clicks = (e_hdr.a_text + CLICK_SIZE-1) >> CLICK_SHIFT;
if (!(e_hdr.a_flags & A_SEP)) text_clicks = 0; /* Common I&D */
data_clicks = (e_hdr.a_total + CLICK_SIZE-1) >> CLICK_SHIFT;
rp->p_memmap[T].mem_phys = text_base;
rp->p_memmap[T].mem_len = text_clicks;
rp->p_memmap[D].mem_phys = text_base + text_clicks;
rp->p_memmap[D].mem_len = data_clicks;
rp->p_memmap[S].mem_phys = text_base + text_clicks + data_clicks;
rp->p_memmap[S].mem_vir = data_clicks; /* empty - stack is in data */
/* Remove server memory from the free memory list. The boot monitor
* promises to put processes at the start of memory chunks. The
* tasks all use same base address, so only the first task changes
* the memory lists. The servers and init have their own memory
* spaces and their memory will be removed from the list.
*/
for (memp = mem; memp < &mem[NR_MEMS]; memp++) {
if (memp->base == text_base) {
memp->base += text_clicks + data_clicks;
memp->size -= text_clicks + data_clicks;
}
}
/* Set initial register values. The processor status word for tasks
* is different from that of other processes because tasks can
* access I/O; this is not allowed to less-privileged processes
*/
rp->p_reg.pc = (reg_t) ttp->initial_pc;
rp->p_reg.psw = (isidlep(rp)||istaskp(rp)) ? INIT_TASK_PSW : INIT_PSW;
/* Initialize the server stack pointer. Take it down one word
* to give crtso.s something to use as "argc".
*/
if (i-NR_TASKS >= 0) {
rp->p_reg.sp = (rp->p_memmap[S].mem_vir +
rp->p_memmap[S].mem_len) << CLICK_SHIFT;
rp->p_reg.sp -= sizeof(reg_t);
}
/* Set ready. The HARDWARE task is never ready. */
#if ENABLE_K_DEBUGGING
rp->p_ready = 0;
#endif
2005-04-21 16:53:53 +02:00
if (rp->p_nr != HARDWARE) lock_ready(rp);
rp->p_flags = 0;
/* Code and data segments must be allocated in protected mode. */
alloc_segments(rp);
}
2005-04-29 17:36:43 +02:00
#if ENABLE_BOOTDEV
/* Expect an image of the boot device to be loaded into memory as well.
* The boot device is the last module that is loaded into memory, and,
* for example, can contain the root FS (useful for embedded systems).
2005-04-21 16:53:53 +02:00
*/
hdrindex ++;
2005-04-29 17:36:43 +02:00
phys_copy(aout + hdrindex * A_MINHDR,vir2phys(&e_hdr),(phys_bytes) A_MINHDR);
2005-04-21 16:53:53 +02:00
if (e_hdr.a_flags & A_IMG) {
2005-04-29 17:36:43 +02:00
kinfo.bootdev_base = e_hdr.a_syms;
kinfo.bootdev_size = e_hdr.a_data;
2005-04-21 16:53:53 +02:00
/* Remove from free list, to prevent being overwritten. */
2005-04-29 17:36:43 +02:00
bootdev_base = e_hdr.a_syms >> CLICK_SHIFT;
bootdev_clicks = (e_hdr.a_total + CLICK_SIZE-1) >> CLICK_SHIFT;
2005-04-21 16:53:53 +02:00
for (memp = mem; memp < &mem[NR_MEMS]; memp++) {
2005-04-29 17:36:43 +02:00
if (memp->base == bootdev_base) {
memp->base += bootdev_clicks;
memp->size -= bootdev_clicks;
2005-04-21 16:53:53 +02:00
}
}
}
2005-04-29 17:36:43 +02:00
#endif
2005-04-21 16:53:53 +02:00
2005-04-29 17:36:43 +02:00
/* This actually is not needed, because ready() already set 'proc_ptr.' */
lock_pick_proc();
bill_ptr = proc_addr(IDLE); /* it has to point somewhere */
/* MINIX is now ready. Display the startup banner to the user and return
* to the assembly code to start running the current process.
2005-04-21 16:53:53 +02:00
*/
announce();
restart();
}
/*==========================================================================*
* announce *
*==========================================================================*/
PRIVATE void announce(void)
{
/* Display the MINIX startup banner. */
2005-04-29 17:36:43 +02:00
kprintf("MINIX %s. Copyright 2001 Prentice-Hall, Inc.\n",
karg(kinfo.version));
2005-04-21 16:53:53 +02:00
#if (CHIP == INTEL)
/* Real mode, or 16/32-bit protected mode? */
kprintf("Executing in %s mode\n\n",
2005-04-29 17:36:43 +02:00
machine.protected ? karg("32-bit protected") : karg("real"));
2005-04-21 16:53:53 +02:00
#endif
2005-04-29 17:36:43 +02:00
/* Check if boot device was loaded with the kernel. */
if (kinfo.bootdev_base > 0)
kprintf("Image of /dev/boot loaded. Size: %u KB.\n", kinfo.bootdev_size);
2005-04-21 16:53:53 +02:00
}
/*==========================================================================*
* prepare_shutdown *
*==========================================================================*/
PUBLIC void prepare_shutdown(how)
int how; /* 0 = halt, 1 = reboot, 2 = panic!, ... */
{
/* This function prepares to shutdown MINIX. It uses a global flag to make
* sure it is only executed once. Unless a CPU exception occurred, the
* stop_sequence() is started.
*/
message m;
2005-04-21 16:53:53 +02:00
if (shutting_down)
return;
/* Show debugging dumps on panics. Make sure that the TTY task is still
* available to handle them. This is done with help of a non-blocking send.
* We rely on TTY to call sys_abort() when it is done with the dumps.
*/
if (how == RBT_PANIC) {
m.m_type = PANIC_DUMPS;
if (nb_send(TTY, &m) == OK) /* don't block if TTY isn't ready */
return; /* await sys_abort() from TTY */
}
/* The TTY expects two HARD_STOP notifications. One to switch to the
* primary console for stop sequence output, and one to actually exit.
*/
m.NOTIFY_TYPE = HARD_STOP;
lock_notify(TTY, &m);
2005-04-21 16:53:53 +02:00
/* Run the stop sequence. The timer argument passes the shutdown status.
* The stop sequence is skipped for fatal CPU exceptions.
*/
shutting_down = TRUE; /* flag for sys_exit() */
tmr_arg(&shutdown_timer)->ta_int = how; /* pass how in timer */
if (skip_stop_sequence) { /* set in exception() */
kprintf("\nAn exception occured; skipping stop sequence.\n", NO_ARG);
shutdown(how); /* TTY isn't scheduled */
2005-04-21 16:53:53 +02:00
} else {
kprintf("\nNotifying system services about MINIX shutdown.\n", NO_ARG);
stop_sequence(&shutdown_timer);
}
}
/*==========================================================================*
* stop_sequence *
*==========================================================================*/
PUBLIC void stop_sequence(tp)
timer_t *tp;
{
/* Try to cleanly stop all system services before shutting down. For each
* process type, all processes are notified and given STOP_TICKS to cleanly
* shutdown. The notification order is servers, drivers, tasks. The variable
* 'shutdown_process' is set globally to indicate the process next to stop
* so that the stop sequence can directly continue if it has exited. Only if
* stop sequence has finished, MINIX is brought down.
*/
static int level = P_SERVER; /* start at the highest level */
static struct proc *p = NIL_PROC; /* next process to stop */
static char *types[] = {"task","system","driver","server","user"};
static message m;
2005-04-21 16:53:53 +02:00
/* See if the last process' shutdown was successful. Else, force exit. */
2005-04-21 16:53:53 +02:00
if (p != NIL_PROC) {
2005-04-29 17:36:43 +02:00
kprintf("[%s]\n", isalivep(p) ? karg("FAILED") : karg("OK"));
2005-04-21 16:53:53 +02:00
if (isalivep(p))
clear_proc(p->p_nr); /* now force process to exit */
}
/* Find the next process that must be stopped. Continue where last search
* ended or start at begin. Possibly go to next level while searching. If
* the last level is completely searched, shutdown MINIX. Processes are
* stopped in the order of dependencies, that is, from the highest level to
* the lowest level so that, for example, the file system can still rely on
* device drivers to cleanly shutdown.
*/
if (p == NIL_PROC) p = BEG_PROC_ADDR;
while (TRUE) {
if (isalivep(p) && p->p_type == level) { /* found a process */
int w;
2005-04-29 17:36:43 +02:00
kprintf("- Stopping %s ", karg(p->p_name));
kprintf("%s ... ", karg(types[p->p_type]));
2005-04-21 16:53:53 +02:00
shutdown_process = p; /* directly continue if exited */
m.NOTIFY_TYPE = HARD_STOP;
m.NOTIFY_ARG = tmr_arg(tp)->ta_int; /* how */
lock_notify(proc_number(p), &m);
2005-04-21 16:53:53 +02:00
set_timer(tp, get_uptime()+STOP_TICKS, stop_sequence);
return; /* allow the process to shut down */
}
p++; /* proceed to next process */
if (p >= END_PROC_ADDR) { /* proceed to next level */
p = BEG_PROC_ADDR;
level = level - 1;
if (level == P_TASK) { /* done; tasks must remain alive */
shutdown(tmr_arg(tp)->ta_int);
/* no return */
return;
2005-04-21 16:53:53 +02:00
}
}
}
}
/*==========================================================================*
* shutdown *
*==========================================================================*/
PRIVATE void shutdown(int how)
2005-04-21 16:53:53 +02:00
{
/* This function is called from prepare_shutdown or stop_sequence to bring
* down MINIX. How to shutdown is in the argument: RBT_REBOOT, RBT_HALT,
* RBT_RESET.
*/
static u16_t magic = STOP_MEM_CHECK;
/* Now mask all interrupts, including the clock, and stop the clock. */
outb(INT_CTLMASK, ~0);
clock_stop();
if (mon_return && how != RBT_RESET) {
/* Reinitialize the interrupt controllers to the BIOS defaults. */
intr_init(0);
outb(INT_CTLMASK, 0);
outb(INT2_CTLMASK, 0);
/* Return to the boot monitor. Set the program for the boot monitor.
* For RBT_MONITOR, the MM has provided the program.
*/
if (how == RBT_HALT) {
phys_copy(vir2phys("delay;menu"), kinfo.params_base, 11);
2005-04-21 16:53:53 +02:00
} else if (how == RBT_REBOOT) {
2005-04-29 17:36:43 +02:00
phys_copy(vir2phys("delay;boot"), kinfo.params_base, 11);
2005-04-21 16:53:53 +02:00
}
level0(monitor);
}
/* Stop BIOS memory test. */
2005-04-29 17:36:43 +02:00
phys_copy(vir2phys(&magic), SOFT_RESET_FLAG_ADDR, SOFT_RESET_FLAG_SIZE);
2005-04-21 16:53:53 +02:00
/* Reset the system by jumping to the reset address (real mode), or by
* forcing a processor shutdown (protected mode).
*/
level0(reset);
}