minix/sys/ufs/lfs/lfs_syscalls.c

1241 lines
33 KiB
C
Raw Normal View History

/* $NetBSD: lfs_syscalls.c,v 1.150 2013/10/29 09:53:51 hannken Exp $ */
/*-
* Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007, 2008
* The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1991, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_syscalls.c 8.10 (Berkeley) 5/14/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: lfs_syscalls.c,v 1.150 2013/10/29 09:53:51 hannken Exp $");
#ifndef LFS
# define LFS /* for prototypes in syscallargs.h */
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/mount.h>
#include <sys/vnode.h>
#include <sys/kernel.h>
#include <sys/kauth.h>
#include <sys/syscallargs.h>
#include <ufs/lfs/ulfs_inode.h>
#include <ufs/lfs/ulfsmount.h>
#include <ufs/lfs/ulfs_extern.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_kernel.h>
#include <ufs/lfs/lfs_extern.h>
struct buf *lfs_fakebuf(struct lfs *, struct vnode *, int, size_t, void *);
int lfs_fasthashget(dev_t, ino_t, struct vnode **);
pid_t lfs_cleaner_pid = 0;
/*
* sys_lfs_markv:
*
* This will mark inodes and blocks dirty, so they are written into the log.
* It will block until all the blocks have been written. The segment create
* time passed in the block_info and inode_info structures is used to decide
* if the data is valid for each block (in case some process dirtied a block
* or inode that is being cleaned between the determination that a block is
* live and the lfs_markv call).
*
* 0 on success
* -1/errno is return on error.
*/
#ifdef USE_64BIT_SYSCALLS
int
sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
{
/* {
syscallarg(fsid_t *) fsidp;
syscallarg(struct block_info *) blkiov;
syscallarg(int) blkcnt;
} */
BLOCK_INFO *blkiov;
int blkcnt, error;
fsid_t fsid;
struct lfs *fs;
struct mount *mntp;
error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
KAUTH_REQ_SYSTEM_LFS_MARKV, NULL, NULL, NULL);
if (error)
return (error);
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
return (error);
if ((mntp = vfs_getvfs(fsidp)) == NULL)
return (ENOENT);
fs = VFSTOULFS(mntp)->um_lfs;
blkcnt = SCARG(uap, blkcnt);
if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
return (EINVAL);
KERNEL_LOCK(1, NULL);
blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
if ((error = copyin(SCARG(uap, blkiov), blkiov,
blkcnt * sizeof(BLOCK_INFO))) != 0)
goto out;
if ((error = lfs_markv(p, &fsid, blkiov, blkcnt)) == 0)
copyout(blkiov, SCARG(uap, blkiov),
blkcnt * sizeof(BLOCK_INFO));
out:
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
KERNEL_UNLOCK_ONE(NULL);
return error;
}
#else
int
sys_lfs_markv(struct lwp *l, const struct sys_lfs_markv_args *uap, register_t *retval)
{
/* {
syscallarg(fsid_t *) fsidp;
syscallarg(struct block_info *) blkiov;
syscallarg(int) blkcnt;
} */
BLOCK_INFO *blkiov;
BLOCK_INFO_15 *blkiov15;
int i, blkcnt, error;
fsid_t fsid;
struct lfs *fs;
struct mount *mntp;
error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
KAUTH_REQ_SYSTEM_LFS_MARKV, NULL, NULL, NULL);
if (error)
return (error);
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
return (error);
if ((mntp = vfs_getvfs(&fsid)) == NULL)
return (ENOENT);
fs = VFSTOULFS(mntp)->um_lfs;
blkcnt = SCARG(uap, blkcnt);
if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
return (EINVAL);
KERNEL_LOCK(1, NULL);
blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
if ((error = copyin(SCARG(uap, blkiov), blkiov15,
blkcnt * sizeof(BLOCK_INFO_15))) != 0)
goto out;
for (i = 0; i < blkcnt; i++) {
blkiov[i].bi_inode = blkiov15[i].bi_inode;
blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
blkiov[i].bi_version = blkiov15[i].bi_version;
blkiov[i].bi_bp = blkiov15[i].bi_bp;
blkiov[i].bi_size = blkiov15[i].bi_size;
}
if ((error = lfs_markv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
for (i = 0; i < blkcnt; i++) {
blkiov15[i].bi_inode = blkiov[i].bi_inode;
blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
blkiov15[i].bi_version = blkiov[i].bi_version;
blkiov15[i].bi_bp = blkiov[i].bi_bp;
blkiov15[i].bi_size = blkiov[i].bi_size;
}
copyout(blkiov15, SCARG(uap, blkiov),
blkcnt * sizeof(BLOCK_INFO_15));
}
out:
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
KERNEL_UNLOCK_ONE(NULL);
return error;
}
#endif
#define LFS_MARKV_MAX_BLOCKS (LFS_MAX_BUFS)
int
lfs_markv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov,
int blkcnt)
{
BLOCK_INFO *blkp;
IFILE *ifp;
struct buf *bp;
struct inode *ip = NULL;
struct lfs *fs;
struct mount *mntp;
struct vnode *vp = NULL;
ino_t lastino;
daddr_t b_daddr, v_daddr;
int cnt, error;
int do_again = 0;
int numrefed = 0;
ino_t maxino;
size_t obsize;
/* number of blocks/inodes that we have already bwrite'ed */
int nblkwritten, ninowritten;
if ((mntp = vfs_getvfs(fsidp)) == NULL)
return (ENOENT);
fs = VFSTOULFS(mntp)->um_lfs;
if (fs->lfs_ronly)
return EROFS;
maxino = (lfs_fragstoblks(fs, VTOI(fs->lfs_ivnode)->i_ffs1_blocks) -
fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb;
cnt = blkcnt;
if ((error = vfs_busy(mntp, NULL)) != 0)
return (error);
/*
* This seglock is just to prevent the fact that we might have to sleep
* from allowing the possibility that our blocks might become
* invalid.
*
* It is also important to note here that unless we specify SEGM_CKP,
* any Ifile blocks that we might be asked to clean will never get
* to the disk.
*/
lfs_seglock(fs, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
/* Mark blocks/inodes dirty. */
error = 0;
/* these were inside the initialization for the for loop */
v_daddr = LFS_UNUSED_DADDR;
lastino = LFS_UNUSED_INUM;
nblkwritten = ninowritten = 0;
for (blkp = blkiov; cnt--; ++blkp)
{
/* Bounds-check incoming data, avoid panic for failed VGET */
if (blkp->bi_inode <= 0 || blkp->bi_inode >= maxino) {
error = EINVAL;
goto err3;
}
/*
* Get the IFILE entry (only once) and see if the file still
* exists.
*/
if (lastino != blkp->bi_inode) {
/*
* Finish the old file, if there was one. The presence
* of a usable vnode in vp is signaled by a valid v_daddr.
*/
if (v_daddr != LFS_UNUSED_DADDR) {
lfs_vunref(vp);
numrefed--;
}
/*
* Start a new file
*/
lastino = blkp->bi_inode;
if (blkp->bi_inode == LFS_IFILE_INUM)
v_daddr = fs->lfs_idaddr;
else {
LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
/* XXX fix for force write */
v_daddr = ifp->if_daddr;
brelse(bp, 0);
}
if (v_daddr == LFS_UNUSED_DADDR)
continue;
/* Get the vnode/inode. */
error = lfs_fastvget(mntp, blkp->bi_inode, v_daddr,
&vp,
(blkp->bi_lbn == LFS_UNUSED_LBN
? blkp->bi_bp
: NULL));
if (!error) {
numrefed++;
}
if (error) {
DLOG((DLOG_CLEAN, "lfs_markv: lfs_fastvget"
" failed with %d (ino %d, segment %d)\n",
error, blkp->bi_inode,
lfs_dtosn(fs, blkp->bi_daddr)));
/*
* If we got EAGAIN, that means that the
* Inode was locked. This is
* recoverable: just clean the rest of
* this segment, and let the cleaner try
* again with another. (When the
* cleaner runs again, this segment will
* sort high on the list, since it is
* now almost entirely empty.) But, we
* still set v_daddr = LFS_UNUSED_ADDR
* so as not to test this over and over
* again.
*/
if (error == EAGAIN) {
error = 0;
do_again++;
}
#ifdef DIAGNOSTIC
else if (error != ENOENT)
panic("lfs_markv VFS_VGET FAILED");
#endif
/* lastino = LFS_UNUSED_INUM; */
v_daddr = LFS_UNUSED_DADDR;
vp = NULL;
ip = NULL;
continue;
}
ip = VTOI(vp);
ninowritten++;
} else if (v_daddr == LFS_UNUSED_DADDR) {
/*
* This can only happen if the vnode is dead (or
* in any case we can't get it...e.g., it is
* inlocked). Keep going.
*/
continue;
}
/* Past this point we are guaranteed that vp, ip are valid. */
/* Can't clean VU_DIROP directories in case of truncation */
/* XXX - maybe we should mark removed dirs specially? */
if (vp->v_type == VDIR && (vp->v_uflag & VU_DIROP)) {
do_again++;
continue;
}
/* If this BLOCK_INFO didn't contain a block, keep going. */
if (blkp->bi_lbn == LFS_UNUSED_LBN) {
/* XXX need to make sure that the inode gets written in this case */
/* XXX but only write the inode if it's the right one */
if (blkp->bi_inode != LFS_IFILE_INUM) {
LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
if (ifp->if_daddr == blkp->bi_daddr) {
mutex_enter(&lfs_lock);
LFS_SET_UINO(ip, IN_CLEANING);
mutex_exit(&lfs_lock);
}
brelse(bp, 0);
}
continue;
}
b_daddr = 0;
if (VOP_BMAP(vp, blkp->bi_lbn, NULL, &b_daddr, NULL) ||
LFS_DBTOFSB(fs, b_daddr) != blkp->bi_daddr)
{
if (lfs_dtosn(fs, LFS_DBTOFSB(fs, b_daddr)) ==
lfs_dtosn(fs, blkp->bi_daddr))
{
DLOG((DLOG_CLEAN, "lfs_markv: wrong da same seg: %llx vs %llx\n",
(long long)blkp->bi_daddr, (long long)LFS_DBTOFSB(fs, b_daddr)));
}
do_again++;
continue;
}
/*
* Check block sizes. The blocks being cleaned come from
* disk, so they should have the same size as their on-disk
* counterparts.
*/
if (blkp->bi_lbn >= 0)
obsize = lfs_blksize(fs, ip, blkp->bi_lbn);
else
obsize = fs->lfs_bsize;
/* Check for fragment size change */
if (blkp->bi_lbn >= 0 && blkp->bi_lbn < ULFS_NDADDR) {
obsize = ip->i_lfs_fragsize[blkp->bi_lbn];
}
if (obsize != blkp->bi_size) {
DLOG((DLOG_CLEAN, "lfs_markv: ino %d lbn %lld wrong"
" size (%ld != %d), try again\n",
blkp->bi_inode, (long long)blkp->bi_lbn,
(long) obsize, blkp->bi_size));
do_again++;
continue;
}
/*
* If we get to here, then we are keeping the block. If
* it is an indirect block, we want to actually put it
* in the buffer cache so that it can be updated in the
* finish_meta section. If it's not, we need to
* allocate a fake buffer so that writeseg can perform
* the copyin and write the buffer.
*/
if (ip->i_number != LFS_IFILE_INUM && blkp->bi_lbn >= 0) {
/* Data Block */
bp = lfs_fakebuf(fs, vp, blkp->bi_lbn,
blkp->bi_size, blkp->bi_bp);
/* Pretend we used bread() to get it */
bp->b_blkno = LFS_FSBTODB(fs, blkp->bi_daddr);
} else {
/* Indirect block or ifile */
if (blkp->bi_size != fs->lfs_bsize &&
ip->i_number != LFS_IFILE_INUM)
panic("lfs_markv: partial indirect block?"
" size=%d\n", blkp->bi_size);
bp = getblk(vp, blkp->bi_lbn, blkp->bi_size, 0, 0);
if (!(bp->b_oflags & (BO_DONE|BO_DELWRI))) {
/*
* The block in question was not found
* in the cache; i.e., the block that
* getblk() returned is empty. So, we
* can (and should) copy in the
* contents, because we've already
* determined that this was the right
* version of this block on disk.
*
* And, it can't have changed underneath
* us, because we have the segment lock.
*/
error = copyin(blkp->bi_bp, bp->b_data, blkp->bi_size);
if (error)
goto err2;
}
}
if ((error = lfs_bwrite_ext(bp, BW_CLEAN)) != 0)
goto err2;
nblkwritten++;
/*
* XXX should account indirect blocks and ifile pages as well
*/
if (nblkwritten + lfs_lblkno(fs, ninowritten * sizeof (struct ulfs1_dinode))
> LFS_MARKV_MAX_BLOCKS) {
DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos\n",
nblkwritten, ninowritten));
lfs_segwrite(mntp, SEGM_CLEAN);
nblkwritten = ninowritten = 0;
}
}
/*
* Finish the old file, if there was one
*/
if (v_daddr != LFS_UNUSED_DADDR) {
lfs_vunref(vp);
numrefed--;
}
#ifdef DIAGNOSTIC
if (numrefed != 0)
panic("lfs_markv: numrefed=%d", numrefed);
#endif
DLOG((DLOG_CLEAN, "lfs_markv: writing %d blks %d inos (check point)\n",
nblkwritten, ninowritten));
/*
* The last write has to be SEGM_SYNC, because of calling semantics.
* It also has to be SEGM_CKP, because otherwise we could write
* over the newly cleaned data contained in a checkpoint, and then
* we'd be unhappy at recovery time.
*/
lfs_segwrite(mntp, SEGM_CLEAN | SEGM_CKP | SEGM_SYNC);
lfs_segunlock(fs);
vfs_unbusy(mntp, false, NULL);
if (error)
return (error);
else if (do_again)
return EAGAIN;
return 0;
err2:
DLOG((DLOG_CLEAN, "lfs_markv err2\n"));
/*
* XXX we're here because copyin() failed.
* XXX it means that we can't trust the cleanerd. too bad.
* XXX how can we recover from this?
*/
err3:
/*
* XXX should do segwrite here anyway?
*/
if (v_daddr != LFS_UNUSED_DADDR) {
lfs_vunref(vp);
--numrefed;
}
lfs_segunlock(fs);
vfs_unbusy(mntp, false, NULL);
#ifdef DIAGNOSTIC
if (numrefed != 0)
panic("lfs_markv: numrefed=%d", numrefed);
#endif
return (error);
}
/*
* sys_lfs_bmapv:
*
* This will fill in the current disk address for arrays of blocks.
*
* 0 on success
* -1/errno is return on error.
*/
#ifdef USE_64BIT_SYSCALLS
int
sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
{
/* {
syscallarg(fsid_t *) fsidp;
syscallarg(struct block_info *) blkiov;
syscallarg(int) blkcnt;
} */
BLOCK_INFO *blkiov;
int blkcnt, error;
fsid_t fsid;
struct lfs *fs;
struct mount *mntp;
error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
KAUTH_REQ_SYSTEM_LFS_BMAPV, NULL, NULL, NULL);
if (error)
return (error);
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
return (error);
if ((mntp = vfs_getvfs(&fsid)) == NULL)
return (ENOENT);
fs = VFSTOULFS(mntp)->um_lfs;
blkcnt = SCARG(uap, blkcnt);
if ((u_int) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
return (EINVAL);
KERNEL_LOCK(1, NULL);
blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
if ((error = copyin(SCARG(uap, blkiov), blkiov,
blkcnt * sizeof(BLOCK_INFO))) != 0)
goto out;
if ((error = lfs_bmapv(p, &fsid, blkiov, blkcnt)) == 0)
copyout(blkiov, SCARG(uap, blkiov),
blkcnt * sizeof(BLOCK_INFO));
out:
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
KERNEL_UNLOCK_ONE(NULL);
return error;
}
#else
int
sys_lfs_bmapv(struct lwp *l, const struct sys_lfs_bmapv_args *uap, register_t *retval)
{
/* {
syscallarg(fsid_t *) fsidp;
syscallarg(struct block_info *) blkiov;
syscallarg(int) blkcnt;
} */
BLOCK_INFO *blkiov;
BLOCK_INFO_15 *blkiov15;
int i, blkcnt, error;
fsid_t fsid;
struct lfs *fs;
struct mount *mntp;
error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
KAUTH_REQ_SYSTEM_LFS_BMAPV, NULL, NULL, NULL);
if (error)
return (error);
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
return (error);
if ((mntp = vfs_getvfs(&fsid)) == NULL)
return (ENOENT);
fs = VFSTOULFS(mntp)->um_lfs;
blkcnt = SCARG(uap, blkcnt);
if ((size_t) blkcnt > SIZE_T_MAX / sizeof(BLOCK_INFO))
return (EINVAL);
KERNEL_LOCK(1, NULL);
blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
blkiov15 = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO_15), LFS_NB_BLKIOV);
if ((error = copyin(SCARG(uap, blkiov), blkiov15,
blkcnt * sizeof(BLOCK_INFO_15))) != 0)
goto out;
for (i = 0; i < blkcnt; i++) {
blkiov[i].bi_inode = blkiov15[i].bi_inode;
blkiov[i].bi_lbn = blkiov15[i].bi_lbn;
blkiov[i].bi_daddr = blkiov15[i].bi_daddr;
blkiov[i].bi_segcreate = blkiov15[i].bi_segcreate;
blkiov[i].bi_version = blkiov15[i].bi_version;
blkiov[i].bi_bp = blkiov15[i].bi_bp;
blkiov[i].bi_size = blkiov15[i].bi_size;
}
if ((error = lfs_bmapv(l->l_proc, &fsid, blkiov, blkcnt)) == 0) {
for (i = 0; i < blkcnt; i++) {
blkiov15[i].bi_inode = blkiov[i].bi_inode;
blkiov15[i].bi_lbn = blkiov[i].bi_lbn;
blkiov15[i].bi_daddr = blkiov[i].bi_daddr;
blkiov15[i].bi_segcreate = blkiov[i].bi_segcreate;
blkiov15[i].bi_version = blkiov[i].bi_version;
blkiov15[i].bi_bp = blkiov[i].bi_bp;
blkiov15[i].bi_size = blkiov[i].bi_size;
}
copyout(blkiov15, SCARG(uap, blkiov),
blkcnt * sizeof(BLOCK_INFO_15));
}
out:
lfs_free(fs, blkiov, LFS_NB_BLKIOV);
lfs_free(fs, blkiov15, LFS_NB_BLKIOV);
KERNEL_UNLOCK_ONE(NULL);
return error;
}
#endif
int
lfs_bmapv(struct proc *p, fsid_t *fsidp, BLOCK_INFO *blkiov, int blkcnt)
{
BLOCK_INFO *blkp;
IFILE *ifp;
struct buf *bp;
struct inode *ip = NULL;
struct lfs *fs;
struct mount *mntp;
struct ulfsmount *ump;
struct vnode *vp;
ino_t lastino;
daddr_t v_daddr;
int cnt, error;
int numrefed = 0;
lfs_cleaner_pid = p->p_pid;
if ((mntp = vfs_getvfs(fsidp)) == NULL)
return (ENOENT);
ump = VFSTOULFS(mntp);
if ((error = vfs_busy(mntp, NULL)) != 0)
return (error);
cnt = blkcnt;
fs = VFSTOULFS(mntp)->um_lfs;
error = 0;
/* these were inside the initialization for the for loop */
v_daddr = LFS_UNUSED_DADDR;
lastino = LFS_UNUSED_INUM;
for (blkp = blkiov; cnt--; ++blkp)
{
/*
* Get the IFILE entry (only once) and see if the file still
* exists.
*/
if (lastino != blkp->bi_inode) {
/*
* Finish the old file, if there was one. The presence
* of a usable vnode in vp is signaled by a valid
* v_daddr.
*/
if (v_daddr != LFS_UNUSED_DADDR) {
lfs_vunref(vp);
if (VTOI(vp)->i_lfs_iflags & LFSI_BMAP)
vrecycle(vp, NULL);
numrefed--;
}
/*
* Start a new file
*/
lastino = blkp->bi_inode;
if (blkp->bi_inode == LFS_IFILE_INUM)
v_daddr = fs->lfs_idaddr;
else {
LFS_IENTRY(ifp, fs, blkp->bi_inode, bp);
v_daddr = ifp->if_daddr;
brelse(bp, 0);
}
if (v_daddr == LFS_UNUSED_DADDR) {
blkp->bi_daddr = LFS_UNUSED_DADDR;
continue;
}
/*
* A regular call to VFS_VGET could deadlock
* here. Instead, we try an unlocked access.
*/
mutex_enter(&ulfs_ihash_lock);
vp = ulfs_ihashlookup(ump->um_dev, blkp->bi_inode);
if (vp != NULL && !(vp->v_iflag & VI_XLOCK)) {
ip = VTOI(vp);
mutex_enter(vp->v_interlock);
mutex_exit(&ulfs_ihash_lock);
if (lfs_vref(vp)) {
v_daddr = LFS_UNUSED_DADDR;
continue;
}
numrefed++;
} else {
mutex_exit(&ulfs_ihash_lock);
/*
* Don't VFS_VGET if we're being unmounted,
* since we hold vfs_busy().
*/
if (mntp->mnt_iflag & IMNT_UNMOUNT) {
v_daddr = LFS_UNUSED_DADDR;
continue;
}
error = VFS_VGET(mntp, blkp->bi_inode, &vp);
if (error) {
DLOG((DLOG_CLEAN, "lfs_bmapv: vget ino"
"%d failed with %d",
blkp->bi_inode,error));
v_daddr = LFS_UNUSED_DADDR;
continue;
} else {
KASSERT(VOP_ISLOCKED(vp));
VTOI(vp)->i_lfs_iflags |= LFSI_BMAP;
VOP_UNLOCK(vp);
numrefed++;
}
}
ip = VTOI(vp);
} else if (v_daddr == LFS_UNUSED_DADDR) {
/*
* This can only happen if the vnode is dead.
* Keep going. Note that we DO NOT set the
* bi_addr to anything -- if we failed to get
* the vnode, for example, we want to assume
* conservatively that all of its blocks *are*
* located in the segment in question.
* lfs_markv will throw them out if we are
* wrong.
*/
/* blkp->bi_daddr = LFS_UNUSED_DADDR; */
continue;
}
/* Past this point we are guaranteed that vp, ip are valid. */
if (blkp->bi_lbn == LFS_UNUSED_LBN) {
/*
* We just want the inode address, which is
* conveniently in v_daddr.
*/
blkp->bi_daddr = v_daddr;
} else {
daddr_t bi_daddr;
/* XXX ondisk32 */
error = VOP_BMAP(vp, blkp->bi_lbn, NULL,
&bi_daddr, NULL);
if (error)
{
blkp->bi_daddr = LFS_UNUSED_DADDR;
continue;
}
blkp->bi_daddr = LFS_DBTOFSB(fs, bi_daddr);
/* Fill in the block size, too */
if (blkp->bi_lbn >= 0)
blkp->bi_size = lfs_blksize(fs, ip, blkp->bi_lbn);
else
blkp->bi_size = fs->lfs_bsize;
}
}
/*
* Finish the old file, if there was one. The presence
* of a usable vnode in vp is signaled by a valid v_daddr.
*/
if (v_daddr != LFS_UNUSED_DADDR) {
lfs_vunref(vp);
/* Recycle as above. */
if (ip->i_lfs_iflags & LFSI_BMAP)
vrecycle(vp, NULL);
numrefed--;
}
#ifdef DIAGNOSTIC
if (numrefed != 0)
panic("lfs_bmapv: numrefed=%d", numrefed);
#endif
vfs_unbusy(mntp, false, NULL);
return 0;
}
/*
* sys_lfs_segclean:
*
* Mark the segment clean.
*
* 0 on success
* -1/errno is return on error.
*/
int
sys_lfs_segclean(struct lwp *l, const struct sys_lfs_segclean_args *uap, register_t *retval)
{
/* {
syscallarg(fsid_t *) fsidp;
syscallarg(u_long) segment;
} */
struct lfs *fs;
struct mount *mntp;
fsid_t fsid;
int error;
unsigned long segnum;
error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
KAUTH_REQ_SYSTEM_LFS_SEGCLEAN, NULL, NULL, NULL);
if (error)
return (error);
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
return (error);
if ((mntp = vfs_getvfs(&fsid)) == NULL)
return (ENOENT);
fs = VFSTOULFS(mntp)->um_lfs;
segnum = SCARG(uap, segment);
if ((error = vfs_busy(mntp, NULL)) != 0)
return (error);
KERNEL_LOCK(1, NULL);
lfs_seglock(fs, SEGM_PROT);
error = lfs_do_segclean(fs, segnum);
lfs_segunlock(fs);
KERNEL_UNLOCK_ONE(NULL);
vfs_unbusy(mntp, false, NULL);
return error;
}
/*
* Actually mark the segment clean.
* Must be called with the segment lock held.
*/
int
lfs_do_segclean(struct lfs *fs, unsigned long segnum)
{
extern int lfs_dostats;
struct buf *bp;
CLEANERINFO *cip;
SEGUSE *sup;
if (lfs_dtosn(fs, fs->lfs_curseg) == segnum) {
return (EBUSY);
}
LFS_SEGENTRY(sup, fs, segnum, bp);
if (sup->su_nbytes) {
DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
" %d live bytes\n", segnum, sup->su_nbytes));
brelse(bp, 0);
return (EBUSY);
}
if (sup->su_flags & SEGUSE_ACTIVE) {
DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
" segment is active\n", segnum));
brelse(bp, 0);
return (EBUSY);
}
if (!(sup->su_flags & SEGUSE_DIRTY)) {
DLOG((DLOG_CLEAN, "lfs_segclean: not cleaning segment %lu:"
" segment is already clean\n", segnum));
brelse(bp, 0);
return (EALREADY);
}
fs->lfs_avail += lfs_segtod(fs, 1);
if (sup->su_flags & SEGUSE_SUPERBLOCK)
fs->lfs_avail -= lfs_btofsb(fs, LFS_SBPAD);
if (fs->lfs_version > 1 && segnum == 0 &&
fs->lfs_start < lfs_btofsb(fs, LFS_LABELPAD))
fs->lfs_avail -= lfs_btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
mutex_enter(&lfs_lock);
fs->lfs_bfree += sup->su_nsums * lfs_btofsb(fs, fs->lfs_sumsize) +
lfs_btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
fs->lfs_dmeta -= sup->su_nsums * lfs_btofsb(fs, fs->lfs_sumsize) +
lfs_btofsb(fs, sup->su_ninos * fs->lfs_ibsize);
if (fs->lfs_dmeta < 0)
fs->lfs_dmeta = 0;
mutex_exit(&lfs_lock);
sup->su_flags &= ~SEGUSE_DIRTY;
LFS_WRITESEGENTRY(sup, fs, segnum, bp);
LFS_CLEANERINFO(cip, fs, bp);
++cip->clean;
--cip->dirty;
fs->lfs_nclean = cip->clean;
cip->bfree = fs->lfs_bfree;
mutex_enter(&lfs_lock);
cip->avail = fs->lfs_avail - fs->lfs_ravail - fs->lfs_favail;
wakeup(&fs->lfs_avail);
mutex_exit(&lfs_lock);
(void) LFS_BWRITE_LOG(bp);
if (lfs_dostats)
++lfs_stats.segs_reclaimed;
return (0);
}
/*
* This will block until a segment in file system fsid is written. A timeout
* in milliseconds may be specified which will awake the cleaner automatically.
* An fsid of -1 means any file system, and a timeout of 0 means forever.
*/
int
lfs_segwait(fsid_t *fsidp, struct timeval *tv)
{
struct mount *mntp;
void *addr;
u_long timeout;
int error;
KERNEL_LOCK(1, NULL);
if (fsidp == NULL || (mntp = vfs_getvfs(fsidp)) == NULL)
addr = &lfs_allclean_wakeup;
else
addr = &VFSTOULFS(mntp)->um_lfs->lfs_nextseg;
/*
* XXX THIS COULD SLEEP FOREVER IF TIMEOUT IS {0,0}!
* XXX IS THAT WHAT IS INTENDED?
*/
timeout = tvtohz(tv);
error = tsleep(addr, PCATCH | PVFS, "segment", timeout);
KERNEL_UNLOCK_ONE(NULL);
return (error == ERESTART ? EINTR : 0);
}
/*
* sys_lfs_segwait:
*
* System call wrapper around lfs_segwait().
*
* 0 on success
* 1 on timeout
* -1/errno is return on error.
*/
int
sys___lfs_segwait50(struct lwp *l, const struct sys___lfs_segwait50_args *uap,
register_t *retval)
{
/* {
syscallarg(fsid_t *) fsidp;
syscallarg(struct timeval *) tv;
} */
struct timeval atv;
fsid_t fsid;
int error;
/* XXX need we be su to segwait? */
error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
KAUTH_REQ_SYSTEM_LFS_SEGWAIT, NULL, NULL, NULL);
if (error)
return (error);
if ((error = copyin(SCARG(uap, fsidp), &fsid, sizeof(fsid_t))) != 0)
return (error);
if (SCARG(uap, tv)) {
error = copyin(SCARG(uap, tv), &atv, sizeof(struct timeval));
if (error)
return (error);
if (itimerfix(&atv))
return (EINVAL);
} else /* NULL or invalid */
atv.tv_sec = atv.tv_usec = 0;
return lfs_segwait(&fsid, &atv);
}
/*
* VFS_VGET call specialized for the cleaner. The cleaner already knows the
* daddr from the ifile, so don't look it up again. If the cleaner is
* processing IINFO structures, it may have the ondisk inode already, so
* don't go retrieving it again.
*
* we lfs_vref, and it is the caller's responsibility to lfs_vunref
* when finished.
*/
int
lfs_fasthashget(dev_t dev, ino_t ino, struct vnode **vpp)
{
struct vnode *vp;
mutex_enter(&ulfs_ihash_lock);
if ((vp = ulfs_ihashlookup(dev, ino)) != NULL) {
mutex_enter(vp->v_interlock);
mutex_exit(&ulfs_ihash_lock);
if (vp->v_iflag & VI_XLOCK) {
DLOG((DLOG_CLEAN, "lfs_fastvget: ino %d VI_XLOCK\n",
ino));
lfs_stats.clean_vnlocked++;
mutex_exit(vp->v_interlock);
return EAGAIN;
}
if (lfs_vref(vp)) {
DLOG((DLOG_CLEAN, "lfs_fastvget: lfs_vref failed"
" for ino %d\n", ino));
lfs_stats.clean_inlocked++;
return EAGAIN;
}
} else {
mutex_exit(&ulfs_ihash_lock);
}
*vpp = vp;
return (0);
}
int
lfs_fastvget(struct mount *mp, ino_t ino, daddr_t daddr, struct vnode **vpp,
struct ulfs1_dinode *dinp)
{
struct inode *ip;
struct ulfs1_dinode *dip;
struct vnode *vp;
struct ulfsmount *ump;
dev_t dev;
int error, retries;
struct buf *bp;
struct lfs *fs;
ump = VFSTOULFS(mp);
dev = ump->um_dev;
fs = ump->um_lfs;
/*
* Wait until the filesystem is fully mounted before allowing vget
* to complete. This prevents possible problems with roll-forward.
*/
mutex_enter(&lfs_lock);
while (fs->lfs_flags & LFS_NOTYET) {
mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_fnotyet", 0,
&lfs_lock);
}
mutex_exit(&lfs_lock);
/*
* This is playing fast and loose. Someone may have the inode
* locked, in which case they are going to be distinctly unhappy
* if we trash something.
*/
error = lfs_fasthashget(dev, ino, vpp);
if (error != 0 || *vpp != NULL)
return (error);
/*
* getnewvnode(9) will call vfs_busy, which will block if the
* filesystem is being unmounted; but umount(9) is waiting for
* us because we're already holding the fs busy.
* XXXMP
*/
if (mp->mnt_iflag & IMNT_UNMOUNT) {
*vpp = NULL;
return EDEADLK;
}
error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, NULL, &vp);
if (error) {
*vpp = NULL;
return (error);
}
mutex_enter(&ulfs_hashlock);
error = lfs_fasthashget(dev, ino, vpp);
if (error != 0 || *vpp != NULL) {
mutex_exit(&ulfs_hashlock);
ungetnewvnode(vp);
return (error);
}
/* Allocate new vnode/inode. */
lfs_vcreate(mp, ino, vp);
/*
* Put it onto its hash chain and lock it so that other requests for
* this inode will block if they arrive while we are sleeping waiting
* for old data structures to be purged or for the contents of the
* disk portion of this inode to be read.
*/
ip = VTOI(vp);
ulfs_ihashins(ip);
mutex_exit(&ulfs_hashlock);
#ifdef notyet
/* Not found in the cache => this vnode was loaded only for cleaning. */
ip->i_lfs_iflags |= LFSI_BMAP;
#endif
/*
* XXX
* This may not need to be here, logically it should go down with
* the i_devvp initialization.
* Ask Kirk.
*/
ip->i_lfs = fs;
/* Read in the disk contents for the inode, copy into the inode. */
if (dinp) {
error = copyin(dinp, ip->i_din.ffs1_din, sizeof (struct ulfs1_dinode));
if (error) {
DLOG((DLOG_CLEAN, "lfs_fastvget: dinode copyin failed"
" for ino %d\n", ino));
ulfs_ihashrem(ip);
/* Unlock and discard unneeded inode. */
VOP_UNLOCK(vp);
lfs_vunref(vp);
*vpp = NULL;
return (error);
}
if (ip->i_number != ino)
panic("lfs_fastvget: I was fed the wrong inode!");
} else {
retries = 0;
again:
error = bread(ump->um_devvp, LFS_FSBTODB(fs, daddr), fs->lfs_ibsize,
NOCRED, 0, &bp);
if (error) {
DLOG((DLOG_CLEAN, "lfs_fastvget: bread failed (%d)\n",
error));
/*
* The inode does not contain anything useful, so it
* would be misleading to leave it on its hash chain.
* Iput() will return it to the free list.
*/
ulfs_ihashrem(ip);
/* Unlock and discard unneeded inode. */
VOP_UNLOCK(vp);
lfs_vunref(vp);
*vpp = NULL;
return (error);
}
dip = lfs_ifind(ump->um_lfs, ino, bp);
if (dip == NULL) {
/* Assume write has not completed yet; try again */
brelse(bp, BC_INVAL);
++retries;
if (retries > LFS_IFIND_RETRIES)
panic("lfs_fastvget: dinode not found");
DLOG((DLOG_CLEAN, "lfs_fastvget: dinode not found,"
" retrying...\n"));
goto again;
}
*ip->i_din.ffs1_din = *dip;
brelse(bp, 0);
}
lfs_vinit(mp, &vp);
*vpp = vp;
KASSERT(VOP_ISLOCKED(vp));
VOP_UNLOCK(vp);
return (0);
}
/*
* Make up a "fake" cleaner buffer, copy the data from userland into it.
*/
struct buf *
lfs_fakebuf(struct lfs *fs, struct vnode *vp, int lbn, size_t size, void *uaddr)
{
struct buf *bp;
int error;
KASSERT(VTOI(vp)->i_number != LFS_IFILE_INUM);
bp = lfs_newbuf(VTOI(vp)->i_lfs, vp, lbn, size, LFS_NB_CLEAN);
error = copyin(uaddr, bp->b_data, size);
if (error) {
lfs_freebuf(fs, bp);
return NULL;
}
KDASSERT(bp->b_iodone == lfs_callback);
#if 0
mutex_enter(&lfs_lock);
++fs->lfs_iocount;
mutex_exit(&lfs_lock);
#endif
bp->b_bufsize = size;
bp->b_bcount = size;
return (bp);
}