2005-04-21 16:53:53 +02:00
|
|
|
/* This file contains the table with device <-> driver mappings. It also
|
|
|
|
* contains some routines to dynamically add and/ or remove device drivers
|
|
|
|
* or change mappings.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "fs.h"
|
|
|
|
#include "fproc.h"
|
|
|
|
#include <string.h>
|
2005-08-03 18:06:35 +02:00
|
|
|
#include <stdlib.h>
|
|
|
|
#include <ctype.h>
|
2005-06-02 14:43:21 +02:00
|
|
|
#include <unistd.h>
|
2005-04-21 16:53:53 +02:00
|
|
|
#include <minix/com.h>
|
2007-08-07 14:52:47 +02:00
|
|
|
#include <minix/ds.h>
|
2005-08-02 17:29:17 +02:00
|
|
|
#include "param.h"
|
2005-04-21 16:53:53 +02:00
|
|
|
|
2005-08-03 13:53:36 +02:00
|
|
|
#define NC(x) (NR_CTRLRS >= (x))
|
2005-04-21 16:53:53 +02:00
|
|
|
|
2010-04-09 23:56:44 +02:00
|
|
|
/* The order of the entries in the table determines the mapping between major
|
|
|
|
* device numbers and device drivers. Character and block devices
|
|
|
|
* can be intermixed at random. The ordering determines the device numbers in
|
|
|
|
* /dev. Note that the major device numbers used in /dev are NOT the same as
|
|
|
|
* the process numbers of the device drivers. See <minix/dmap.h> for mappings.
|
2005-04-21 16:53:53 +02:00
|
|
|
*/
|
2010-04-09 23:56:44 +02:00
|
|
|
|
|
|
|
struct dmap dmap[NR_DEVICES];
|
|
|
|
|
|
|
|
#define DT_EMPTY { no_dev, no_dev_io, NONE, "", 0, STYLE_NDEV, NULL }
|
2005-04-21 16:53:53 +02:00
|
|
|
|
2007-08-07 14:52:47 +02:00
|
|
|
/*===========================================================================*
|
|
|
|
* do_mapdriver *
|
|
|
|
*===========================================================================*/
|
|
|
|
PUBLIC int do_mapdriver()
|
|
|
|
{
|
2010-04-09 23:56:44 +02:00
|
|
|
int r, flags, major;
|
2010-04-08 15:41:35 +02:00
|
|
|
endpoint_t endpoint;
|
2007-08-07 14:52:47 +02:00
|
|
|
vir_bytes label_vir;
|
|
|
|
size_t label_len;
|
2010-01-13 00:08:50 +01:00
|
|
|
char label[LABEL_MAX];
|
2007-08-07 14:52:47 +02:00
|
|
|
|
2010-04-09 23:56:44 +02:00
|
|
|
/* Only RS can map drivers. */
|
|
|
|
if (who_e != RS_PROC_NR)
|
2007-08-07 14:52:47 +02:00
|
|
|
{
|
2010-04-09 23:56:44 +02:00
|
|
|
printf("vfs: unauthorized call of do_mapdriver by proc %d\n",
|
2007-08-07 14:52:47 +02:00
|
|
|
who_e);
|
2010-04-09 23:56:44 +02:00
|
|
|
return(EPERM);
|
2007-08-07 14:52:47 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the label */
|
|
|
|
label_vir= (vir_bytes)m_in.md_label;
|
|
|
|
label_len= m_in.md_label_len;
|
|
|
|
|
|
|
|
if (label_len+1 > sizeof(label))
|
|
|
|
{
|
|
|
|
printf("vfs:do_mapdriver: label too long\n");
|
|
|
|
return EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
r= sys_vircopy(who_e, D, label_vir, SELF, D, (vir_bytes)label,
|
|
|
|
label_len);
|
|
|
|
if (r != OK)
|
|
|
|
{
|
|
|
|
printf("vfs:do_mapdriver: sys_vircopy failed: %d\n", r);
|
|
|
|
return EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
label[label_len]= '\0';
|
|
|
|
|
2010-04-08 15:41:35 +02:00
|
|
|
r= ds_retrieve_label_endpt(label, &endpoint);
|
2007-08-07 14:52:47 +02:00
|
|
|
if (r != OK)
|
|
|
|
{
|
|
|
|
printf("vfs:do_mapdriver: ds doesn't know '%s'\n", label);
|
|
|
|
return EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Try to update device mapping. */
|
|
|
|
major= m_in.md_major;
|
2010-04-09 23:56:44 +02:00
|
|
|
flags= m_in.md_flags;
|
|
|
|
r= map_driver(label, major, endpoint, m_in.md_style, flags);
|
2007-08-07 14:52:47 +02:00
|
|
|
|
|
|
|
return(r);
|
|
|
|
}
|
|
|
|
|
2005-04-21 16:53:53 +02:00
|
|
|
/*===========================================================================*
|
|
|
|
* map_driver *
|
|
|
|
*===========================================================================*/
|
2010-04-09 23:56:44 +02:00
|
|
|
PUBLIC int map_driver(label, major, proc_nr_e, style, flags)
|
2010-04-13 12:58:41 +02:00
|
|
|
const char *label; /* name of the driver */
|
2007-08-07 14:52:47 +02:00
|
|
|
int major; /* major number of the device */
|
|
|
|
endpoint_t proc_nr_e; /* process number of the driver */
|
|
|
|
int style; /* style of the device */
|
2010-04-09 23:56:44 +02:00
|
|
|
int flags; /* device flags */
|
2007-08-07 14:52:47 +02:00
|
|
|
{
|
2010-04-09 23:56:44 +02:00
|
|
|
/* Set a new device driver mapping in the dmap table.
|
|
|
|
* If the proc_nr is set to NONE, we're supposed to unmap it.
|
2007-08-07 14:52:47 +02:00
|
|
|
*/
|
|
|
|
int proc_nr_n;
|
|
|
|
size_t len;
|
|
|
|
struct dmap *dp;
|
|
|
|
|
|
|
|
/* Get pointer to device entry in the dmap table. */
|
|
|
|
if (major < 0 || major >= NR_DEVICES) return(ENODEV);
|
|
|
|
dp = &dmap[major];
|
|
|
|
|
2010-04-09 23:56:44 +02:00
|
|
|
/* Check if we're supposed to unmap it. */
|
2007-08-07 14:52:47 +02:00
|
|
|
if(proc_nr_e == NONE) {
|
|
|
|
dp->dmap_opcl = no_dev;
|
|
|
|
dp->dmap_io = no_dev_io;
|
|
|
|
dp->dmap_driver = NONE;
|
2010-04-09 23:56:44 +02:00
|
|
|
dp->dmap_flags = flags;
|
2007-08-07 14:52:47 +02:00
|
|
|
return(OK);
|
|
|
|
}
|
|
|
|
|
2010-04-09 23:56:44 +02:00
|
|
|
/* Check process number of new driver if requested. */
|
|
|
|
if (! (flags & DRV_FORCED))
|
2007-08-07 14:52:47 +02:00
|
|
|
{
|
|
|
|
if (isokendpt(proc_nr_e, &proc_nr_n) != OK)
|
|
|
|
return(EINVAL);
|
|
|
|
}
|
|
|
|
|
2010-01-05 20:39:27 +01:00
|
|
|
if (label != NULL) {
|
|
|
|
len= strlen(label);
|
|
|
|
if (len+1 > sizeof(dp->dmap_label))
|
2010-03-05 16:05:11 +01:00
|
|
|
panic("map_driver: label too long: %d", len);
|
2010-01-05 20:39:27 +01:00
|
|
|
strcpy(dp->dmap_label, label);
|
|
|
|
}
|
2007-08-07 14:52:47 +02:00
|
|
|
|
|
|
|
/* Try to update the entry. */
|
|
|
|
switch (style) {
|
2010-04-09 23:56:44 +02:00
|
|
|
case STYLE_DEV:
|
|
|
|
dp->dmap_opcl = gen_opcl;
|
|
|
|
dp->dmap_io = gen_io;
|
|
|
|
break;
|
|
|
|
case STYLE_DEVA:
|
|
|
|
dp->dmap_opcl = gen_opcl;
|
|
|
|
dp->dmap_io = asyn_io;
|
|
|
|
break;
|
|
|
|
case STYLE_TTY:
|
|
|
|
dp->dmap_opcl = tty_opcl;
|
|
|
|
dp->dmap_io = gen_io;
|
|
|
|
break;
|
|
|
|
case STYLE_CTTY:
|
|
|
|
dp->dmap_opcl = ctty_opcl;
|
|
|
|
dp->dmap_io = ctty_io;
|
|
|
|
break;
|
|
|
|
case STYLE_CLONE:
|
2011-07-27 14:23:03 +02:00
|
|
|
case STYLE_CLONE_A:
|
2010-04-09 23:56:44 +02:00
|
|
|
dp->dmap_opcl = clone_opcl;
|
|
|
|
dp->dmap_io = gen_io;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return(EINVAL);
|
2007-08-07 14:52:47 +02:00
|
|
|
}
|
|
|
|
dp->dmap_driver = proc_nr_e;
|
2010-04-09 23:56:44 +02:00
|
|
|
dp->dmap_flags = flags;
|
|
|
|
dp->dmap_style = style;
|
2008-02-22 16:01:00 +01:00
|
|
|
|
2007-08-07 14:52:47 +02:00
|
|
|
return(OK);
|
|
|
|
}
|
|
|
|
|
2005-10-05 17:38:15 +02:00
|
|
|
/*===========================================================================*
|
endpoint-aware conversion of servers.
'who', indicating caller number in pm and fs and some other servers, has
been removed in favour of 'who_e' (endpoint) and 'who_p' (proc nr.).
In both PM and FS, isokendpt() convert endpoints to process slot
numbers, returning OK if it was a valid and consistent endpoint number.
okendpt() does the same but panic()s if it doesn't succeed. (In PM,
this is pm_isok..)
pm and fs keep their own records of process endpoints in their proc tables,
which are needed to make kernel calls about those processes.
message field names have changed.
fs drivers are endpoints.
fs now doesn't try to get out of driver deadlock, as the protocol isn't
supposed to let that happen any more. (A warning is printed if ELOCKED
is detected though.)
fproc[].fp_task (indicating which driver the process is suspended on)
became an int.
PM and FS now get endpoint numbers of initial boot processes from the
kernel. These happen to be the same as the old proc numbers, to let
user processes reach them with the old numbers, but FS and PM don't know
that. All new processes after INIT, even after the generation number
wraps around, get endpoint numbers with generation 1 and higher, so
the first instances of the boot processes are the only processes ever
to have endpoint numbers in the old proc number range.
More return code checks of sys_* functions have been added.
IS has become endpoint-aware. Ditched the 'text' and 'data' fields
in the kernel dump (which show locations, not sizes, so aren't terribly
useful) in favour of the endpoint number. Proc number is still visible.
Some other dumps (e.g. dmap, rs) show endpoint numbers now too which got
the formatting changed.
PM reading segments using rw_seg() has changed - it uses other fields
in the message now instead of encoding the segment and process number and
fd in the fd field. For that it uses _read_pm() and _write_pm() which to
_taskcall()s directly in pm/misc.c.
PM now sys_exit()s itself on panic(), instead of sys_abort().
RS also talks in endpoints instead of process numbers.
2006-03-03 11:20:58 +01:00
|
|
|
* dmap_unmap_by_endpt *
|
2005-10-05 17:38:15 +02:00
|
|
|
*===========================================================================*/
|
endpoint-aware conversion of servers.
'who', indicating caller number in pm and fs and some other servers, has
been removed in favour of 'who_e' (endpoint) and 'who_p' (proc nr.).
In both PM and FS, isokendpt() convert endpoints to process slot
numbers, returning OK if it was a valid and consistent endpoint number.
okendpt() does the same but panic()s if it doesn't succeed. (In PM,
this is pm_isok..)
pm and fs keep their own records of process endpoints in their proc tables,
which are needed to make kernel calls about those processes.
message field names have changed.
fs drivers are endpoints.
fs now doesn't try to get out of driver deadlock, as the protocol isn't
supposed to let that happen any more. (A warning is printed if ELOCKED
is detected though.)
fproc[].fp_task (indicating which driver the process is suspended on)
became an int.
PM and FS now get endpoint numbers of initial boot processes from the
kernel. These happen to be the same as the old proc numbers, to let
user processes reach them with the old numbers, but FS and PM don't know
that. All new processes after INIT, even after the generation number
wraps around, get endpoint numbers with generation 1 and higher, so
the first instances of the boot processes are the only processes ever
to have endpoint numbers in the old proc number range.
More return code checks of sys_* functions have been added.
IS has become endpoint-aware. Ditched the 'text' and 'data' fields
in the kernel dump (which show locations, not sizes, so aren't terribly
useful) in favour of the endpoint number. Proc number is still visible.
Some other dumps (e.g. dmap, rs) show endpoint numbers now too which got
the formatting changed.
PM reading segments using rw_seg() has changed - it uses other fields
in the message now instead of encoding the segment and process number and
fd in the fd field. For that it uses _read_pm() and _write_pm() which to
_taskcall()s directly in pm/misc.c.
PM now sys_exit()s itself on panic(), instead of sys_abort().
RS also talks in endpoints instead of process numbers.
2006-03-03 11:20:58 +01:00
|
|
|
PUBLIC void dmap_unmap_by_endpt(int proc_nr_e)
|
2005-10-05 17:38:15 +02:00
|
|
|
{
|
|
|
|
int i, r;
|
|
|
|
for (i=0; i<NR_DEVICES; i++)
|
endpoint-aware conversion of servers.
'who', indicating caller number in pm and fs and some other servers, has
been removed in favour of 'who_e' (endpoint) and 'who_p' (proc nr.).
In both PM and FS, isokendpt() convert endpoints to process slot
numbers, returning OK if it was a valid and consistent endpoint number.
okendpt() does the same but panic()s if it doesn't succeed. (In PM,
this is pm_isok..)
pm and fs keep their own records of process endpoints in their proc tables,
which are needed to make kernel calls about those processes.
message field names have changed.
fs drivers are endpoints.
fs now doesn't try to get out of driver deadlock, as the protocol isn't
supposed to let that happen any more. (A warning is printed if ELOCKED
is detected though.)
fproc[].fp_task (indicating which driver the process is suspended on)
became an int.
PM and FS now get endpoint numbers of initial boot processes from the
kernel. These happen to be the same as the old proc numbers, to let
user processes reach them with the old numbers, but FS and PM don't know
that. All new processes after INIT, even after the generation number
wraps around, get endpoint numbers with generation 1 and higher, so
the first instances of the boot processes are the only processes ever
to have endpoint numbers in the old proc number range.
More return code checks of sys_* functions have been added.
IS has become endpoint-aware. Ditched the 'text' and 'data' fields
in the kernel dump (which show locations, not sizes, so aren't terribly
useful) in favour of the endpoint number. Proc number is still visible.
Some other dumps (e.g. dmap, rs) show endpoint numbers now too which got
the formatting changed.
PM reading segments using rw_seg() has changed - it uses other fields
in the message now instead of encoding the segment and process number and
fd in the fd field. For that it uses _read_pm() and _write_pm() which to
_taskcall()s directly in pm/misc.c.
PM now sys_exit()s itself on panic(), instead of sys_abort().
RS also talks in endpoints instead of process numbers.
2006-03-03 11:20:58 +01:00
|
|
|
if(dmap[i].dmap_driver && dmap[i].dmap_driver == proc_nr_e)
|
2010-01-05 20:39:27 +01:00
|
|
|
if((r=map_driver(NULL, i, NONE, 0, 0)) != OK)
|
endpoint-aware conversion of servers.
'who', indicating caller number in pm and fs and some other servers, has
been removed in favour of 'who_e' (endpoint) and 'who_p' (proc nr.).
In both PM and FS, isokendpt() convert endpoints to process slot
numbers, returning OK if it was a valid and consistent endpoint number.
okendpt() does the same but panic()s if it doesn't succeed. (In PM,
this is pm_isok..)
pm and fs keep their own records of process endpoints in their proc tables,
which are needed to make kernel calls about those processes.
message field names have changed.
fs drivers are endpoints.
fs now doesn't try to get out of driver deadlock, as the protocol isn't
supposed to let that happen any more. (A warning is printed if ELOCKED
is detected though.)
fproc[].fp_task (indicating which driver the process is suspended on)
became an int.
PM and FS now get endpoint numbers of initial boot processes from the
kernel. These happen to be the same as the old proc numbers, to let
user processes reach them with the old numbers, but FS and PM don't know
that. All new processes after INIT, even after the generation number
wraps around, get endpoint numbers with generation 1 and higher, so
the first instances of the boot processes are the only processes ever
to have endpoint numbers in the old proc number range.
More return code checks of sys_* functions have been added.
IS has become endpoint-aware. Ditched the 'text' and 'data' fields
in the kernel dump (which show locations, not sizes, so aren't terribly
useful) in favour of the endpoint number. Proc number is still visible.
Some other dumps (e.g. dmap, rs) show endpoint numbers now too which got
the formatting changed.
PM reading segments using rw_seg() has changed - it uses other fields
in the message now instead of encoding the segment and process number and
fd in the fd field. For that it uses _read_pm() and _write_pm() which to
_taskcall()s directly in pm/misc.c.
PM now sys_exit()s itself on panic(), instead of sys_abort().
RS also talks in endpoints instead of process numbers.
2006-03-03 11:20:58 +01:00
|
|
|
printf("FS: unmap of p %d / d %d failed: %d\n", proc_nr_e,i,r);
|
2005-10-05 17:38:15 +02:00
|
|
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2010-04-09 23:56:44 +02:00
|
|
|
/*===========================================================================*
|
|
|
|
* map_service *
|
|
|
|
*===========================================================================*/
|
|
|
|
PUBLIC int map_service(struct rprocpub *rpub)
|
|
|
|
{
|
|
|
|
/* Map a new service by storing its device driver properties. */
|
|
|
|
int r;
|
|
|
|
|
|
|
|
/* Not a driver, nothing more to do. */
|
|
|
|
if(!rpub->dev_nr) {
|
|
|
|
return OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Map driver. */
|
|
|
|
r = map_driver(rpub->label, rpub->dev_nr, rpub->endpoint,
|
|
|
|
rpub->dev_style, rpub->dev_flags);
|
|
|
|
if(r != OK) {
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If driver has two major numbers associated, also map the other one. */
|
|
|
|
if(rpub->dev_style2 != STYLE_NDEV) {
|
|
|
|
r = map_driver(rpub->label, rpub->dev_nr+1, rpub->endpoint,
|
|
|
|
rpub->dev_style2, rpub->dev_flags);
|
|
|
|
if(r != OK) {
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return OK;
|
|
|
|
}
|
|
|
|
|
2005-04-21 16:53:53 +02:00
|
|
|
/*===========================================================================*
|
2005-08-05 20:57:20 +02:00
|
|
|
* build_dmap *
|
2005-04-21 16:53:53 +02:00
|
|
|
*===========================================================================*/
|
2005-08-05 20:57:20 +02:00
|
|
|
PUBLIC void build_dmap()
|
2005-04-21 16:53:53 +02:00
|
|
|
{
|
2010-04-09 23:56:44 +02:00
|
|
|
/* Initialize the table with empty device <-> driver mappings. */
|
2006-03-15 16:34:12 +01:00
|
|
|
int i;
|
2010-04-09 23:56:44 +02:00
|
|
|
struct dmap dmap_default = DT_EMPTY;
|
2005-08-05 20:57:20 +02:00
|
|
|
|
|
|
|
for (i=0; i<NR_DEVICES; i++) {
|
2010-04-09 23:56:44 +02:00
|
|
|
dmap[i] = dmap_default;
|
2005-08-05 20:57:20 +02:00
|
|
|
}
|
2005-04-21 16:53:53 +02:00
|
|
|
}
|
|
|
|
|
2005-10-20 21:39:32 +02:00
|
|
|
/*===========================================================================*
|
|
|
|
* dmap_driver_match *
|
|
|
|
*===========================================================================*/
|
2009-09-22 23:48:26 +02:00
|
|
|
PUBLIC int dmap_driver_match(endpoint_t proc, int major)
|
2005-10-20 21:39:32 +02:00
|
|
|
{
|
|
|
|
if (major < 0 || major >= NR_DEVICES) return(0);
|
|
|
|
if(dmap[major].dmap_driver != NONE && dmap[major].dmap_driver == proc)
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*===========================================================================*
|
endpoint-aware conversion of servers.
'who', indicating caller number in pm and fs and some other servers, has
been removed in favour of 'who_e' (endpoint) and 'who_p' (proc nr.).
In both PM and FS, isokendpt() convert endpoints to process slot
numbers, returning OK if it was a valid and consistent endpoint number.
okendpt() does the same but panic()s if it doesn't succeed. (In PM,
this is pm_isok..)
pm and fs keep their own records of process endpoints in their proc tables,
which are needed to make kernel calls about those processes.
message field names have changed.
fs drivers are endpoints.
fs now doesn't try to get out of driver deadlock, as the protocol isn't
supposed to let that happen any more. (A warning is printed if ELOCKED
is detected though.)
fproc[].fp_task (indicating which driver the process is suspended on)
became an int.
PM and FS now get endpoint numbers of initial boot processes from the
kernel. These happen to be the same as the old proc numbers, to let
user processes reach them with the old numbers, but FS and PM don't know
that. All new processes after INIT, even after the generation number
wraps around, get endpoint numbers with generation 1 and higher, so
the first instances of the boot processes are the only processes ever
to have endpoint numbers in the old proc number range.
More return code checks of sys_* functions have been added.
IS has become endpoint-aware. Ditched the 'text' and 'data' fields
in the kernel dump (which show locations, not sizes, so aren't terribly
useful) in favour of the endpoint number. Proc number is still visible.
Some other dumps (e.g. dmap, rs) show endpoint numbers now too which got
the formatting changed.
PM reading segments using rw_seg() has changed - it uses other fields
in the message now instead of encoding the segment and process number and
fd in the fd field. For that it uses _read_pm() and _write_pm() which to
_taskcall()s directly in pm/misc.c.
PM now sys_exit()s itself on panic(), instead of sys_abort().
RS also talks in endpoints instead of process numbers.
2006-03-03 11:20:58 +01:00
|
|
|
* dmap_endpt_up *
|
2005-10-20 21:39:32 +02:00
|
|
|
*===========================================================================*/
|
Split block/character protocols and libdriver
This patch separates the character and block driver communication
protocols. The old character protocol remains the same, but a new
block protocol is introduced. The libdriver library is replaced by
two new libraries: libchardriver and libblockdriver. Their exposed
API, and drivers that use them, have been updated accordingly.
Together, libbdev and libblockdriver now completely abstract away
the message format used by the block protocol. As the memory driver
is both a character and a block device driver, it now implements its
own message loop.
The most important semantic change made to the block protocol is that
it is no longer possible to return both partial results and an error
for a single transfer. This simplifies the interaction between the
caller and the driver, as the I/O vector no longer needs to be copied
back. Also, drivers are now no longer supposed to decide based on the
layout of the I/O vector when a transfer should be cut short. Put
simply, transfers are now supposed to either succeed completely, or
result in an error.
After this patch, the state of the various pieces is as follows:
- block protocol: stable
- libbdev API: stable for synchronous communication
- libblockdriver API: needs slight revision (the drvlib/partition API
in particular; the threading API will also change shortly)
- character protocol: needs cleanup
- libchardriver API: needs cleanup accordingly
- driver restarts: largely unsupported until endpoint changes are
reintroduced
As a side effect, this patch eliminates several bugs, hacks, and gcc
-Wall and -W warnings all over the place. It probably introduces a
few new ones, too.
Update warning: this patch changes the protocol between MFS and disk
drivers, so in order to use old/new images, the MFS from the ramdisk
must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
|
|
|
PUBLIC void dmap_endpt_up(int proc_e, int is_blk)
|
2005-10-20 21:39:32 +02:00
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for (i=0; i<NR_DEVICES; i++) {
|
|
|
|
if(dmap[i].dmap_driver != NONE
|
2010-04-08 15:41:35 +02:00
|
|
|
&& dmap[i].dmap_driver == proc_e) {
|
Split block/character protocols and libdriver
This patch separates the character and block driver communication
protocols. The old character protocol remains the same, but a new
block protocol is introduced. The libdriver library is replaced by
two new libraries: libchardriver and libblockdriver. Their exposed
API, and drivers that use them, have been updated accordingly.
Together, libbdev and libblockdriver now completely abstract away
the message format used by the block protocol. As the memory driver
is both a character and a block device driver, it now implements its
own message loop.
The most important semantic change made to the block protocol is that
it is no longer possible to return both partial results and an error
for a single transfer. This simplifies the interaction between the
caller and the driver, as the I/O vector no longer needs to be copied
back. Also, drivers are now no longer supposed to decide based on the
layout of the I/O vector when a transfer should be cut short. Put
simply, transfers are now supposed to either succeed completely, or
result in an error.
After this patch, the state of the various pieces is as follows:
- block protocol: stable
- libbdev API: stable for synchronous communication
- libblockdriver API: needs slight revision (the drvlib/partition API
in particular; the threading API will also change shortly)
- character protocol: needs cleanup
- libchardriver API: needs cleanup accordingly
- driver restarts: largely unsupported until endpoint changes are
reintroduced
As a side effect, this patch eliminates several bugs, hacks, and gcc
-Wall and -W warnings all over the place. It probably introduces a
few new ones, too.
Update warning: this patch changes the protocol between MFS and disk
drivers, so in order to use old/new images, the MFS from the ramdisk
must be used to mount all file systems.
2011-11-22 13:27:53 +01:00
|
|
|
|
|
|
|
if (is_blk)
|
|
|
|
bdev_up(i);
|
|
|
|
else
|
|
|
|
cdev_up(i);
|
2005-10-20 21:39:32 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2011-04-13 15:25:34 +02:00
|
|
|
|
|
|
|
/*===========================================================================*
|
|
|
|
* get_dmap *
|
|
|
|
*===========================================================================*/
|
|
|
|
PUBLIC struct dmap *get_dmap(endpoint_t proc_e)
|
|
|
|
{
|
|
|
|
/* See if 'proc_e' endpoint belongs to a valid dmap entry. If so, return a
|
|
|
|
* pointer */
|
|
|
|
|
|
|
|
int major;
|
|
|
|
for (major = 0; major < NR_DEVICES; major++)
|
|
|
|
if (dmap_driver_match(proc_e, major))
|
|
|
|
return(&dmap[major]);
|
|
|
|
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
|