364 lines
9.9 KiB
C
364 lines
9.9 KiB
C
|
/* $NetBSD: hdtoa.c,v 1.6 2008/03/21 23:13:48 christos Exp $ */
|
||
|
|
||
|
/*-
|
||
|
* Copyright (c) 2004, 2005 David Schultz <das@FreeBSD.ORG>
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include <sys/cdefs.h>
|
||
|
#if 0
|
||
|
__FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.4 2007/01/03 04:57:58 das Exp $");
|
||
|
#else
|
||
|
__RCSID("$NetBSD: hdtoa.c,v 1.6 2008/03/21 23:13:48 christos Exp $");
|
||
|
#endif
|
||
|
|
||
|
#include <float.h>
|
||
|
#include <limits.h>
|
||
|
#include <math.h>
|
||
|
#ifndef __vax__
|
||
|
#include <machine/ieee.h>
|
||
|
#else
|
||
|
#include <machine/vaxfp.h>
|
||
|
#define ieee_double_u vax_dfloating_u
|
||
|
#define dblu_d dfltu_d
|
||
|
#define dblu_dbl dfltu_dflt
|
||
|
#define dbl_sign dflt_sign
|
||
|
#define dbl_exp dflt_exp
|
||
|
#define dbl_frach dflt_frach
|
||
|
#define dbl_fracm dflt_fracm
|
||
|
#define dbl_fracl dflt_fracl
|
||
|
#define DBL_FRACHBITS DFLT_FRACHBITS
|
||
|
#define DBL_FRACMBITS DFLT_FRACMBITS
|
||
|
#define DBL_FRACLBITS DFLT_FRACLBITS
|
||
|
#define DBL_EXPBITS DFLT_EXPBITS
|
||
|
#endif
|
||
|
#include "gdtoaimp.h"
|
||
|
|
||
|
/* Strings values used by dtoa() */
|
||
|
#define INFSTR "Infinity"
|
||
|
#define NANSTR "NaN"
|
||
|
|
||
|
#define DBL_ADJ (DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
|
||
|
#define LDBL_ADJ (LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
|
||
|
|
||
|
/*
|
||
|
* Round up the given digit string. If the digit string is fff...f,
|
||
|
* this procedure sets it to 100...0 and returns 1 to indicate that
|
||
|
* the exponent needs to be bumped. Otherwise, 0 is returned.
|
||
|
*/
|
||
|
static int
|
||
|
roundup(char *s0, int ndigits)
|
||
|
{
|
||
|
char *s;
|
||
|
|
||
|
for (s = s0 + ndigits - 1; *s == 0xf; s--) {
|
||
|
if (s == s0) {
|
||
|
*s = 1;
|
||
|
return (1);
|
||
|
}
|
||
|
*s = 0;
|
||
|
}
|
||
|
++*s;
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Round the given digit string to ndigits digits according to the
|
||
|
* current rounding mode. Note that this could produce a string whose
|
||
|
* value is not representable in the corresponding floating-point
|
||
|
* type. The exponent pointed to by decpt is adjusted if necessary.
|
||
|
*/
|
||
|
static void
|
||
|
dorounding(char *s0, int ndigits, int sign, int *decpt)
|
||
|
{
|
||
|
int adjust = 0; /* do we need to adjust the exponent? */
|
||
|
|
||
|
switch (FLT_ROUNDS) {
|
||
|
case 0: /* toward zero */
|
||
|
default: /* implementation-defined */
|
||
|
break;
|
||
|
case 1: /* to nearest, halfway rounds to even */
|
||
|
if ((s0[ndigits] > 8) ||
|
||
|
(s0[ndigits] == 8 && s0[ndigits - 1] & 1))
|
||
|
adjust = roundup(s0, ndigits);
|
||
|
break;
|
||
|
case 2: /* toward +inf */
|
||
|
if (sign == 0)
|
||
|
adjust = roundup(s0, ndigits);
|
||
|
break;
|
||
|
case 3: /* toward -inf */
|
||
|
if (sign != 0)
|
||
|
adjust = roundup(s0, ndigits);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (adjust)
|
||
|
*decpt += 4;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This procedure converts a double-precision number in IEEE format
|
||
|
* into a string of hexadecimal digits and an exponent of 2. Its
|
||
|
* behavior is bug-for-bug compatible with dtoa() in mode 2, with the
|
||
|
* following exceptions:
|
||
|
*
|
||
|
* - An ndigits < 0 causes it to use as many digits as necessary to
|
||
|
* represent the number exactly.
|
||
|
* - The additional xdigs argument should point to either the string
|
||
|
* "0123456789ABCDEF" or the string "0123456789abcdef", depending on
|
||
|
* which case is desired.
|
||
|
* - This routine does not repeat dtoa's mistake of setting decpt
|
||
|
* to 9999 in the case of an infinity or NaN. INT_MAX is used
|
||
|
* for this purpose instead.
|
||
|
*
|
||
|
* Note that the C99 standard does not specify what the leading digit
|
||
|
* should be for non-zero numbers. For instance, 0x1.3p3 is the same
|
||
|
* as 0x2.6p2 is the same as 0x4.cp3. This implementation chooses the
|
||
|
* first digit so that subsequent digits are aligned on nibble
|
||
|
* boundaries (before rounding).
|
||
|
*
|
||
|
* Inputs: d, xdigs, ndigits
|
||
|
* Outputs: decpt, sign, rve
|
||
|
*/
|
||
|
char *
|
||
|
hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
|
||
|
char **rve)
|
||
|
{
|
||
|
static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
|
||
|
union ieee_double_u u;
|
||
|
char *s, *s0;
|
||
|
size_t bufsize;
|
||
|
|
||
|
u.dblu_d = d;
|
||
|
*sign = u.dblu_dbl.dbl_sign;
|
||
|
|
||
|
switch (fpclassify(d)) {
|
||
|
case FP_NORMAL:
|
||
|
*decpt = u.dblu_dbl.dbl_exp - DBL_ADJ;
|
||
|
break;
|
||
|
case FP_ZERO:
|
||
|
*decpt = 1;
|
||
|
return (nrv_alloc("0", rve, 1));
|
||
|
case FP_SUBNORMAL:
|
||
|
u.dblu_d *= 0x1p514;
|
||
|
*decpt = u.dblu_dbl.dbl_exp - (514 + DBL_ADJ);
|
||
|
break;
|
||
|
case FP_INFINITE:
|
||
|
*decpt = INT_MAX;
|
||
|
return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
|
||
|
case FP_NAN:
|
||
|
*decpt = INT_MAX;
|
||
|
return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
|
||
|
default:
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
/* FP_NORMAL or FP_SUBNORMAL */
|
||
|
|
||
|
if (ndigits == 0) /* dtoa() compatibility */
|
||
|
ndigits = 1;
|
||
|
|
||
|
/*
|
||
|
* For simplicity, we generate all the digits even if the
|
||
|
* caller has requested fewer.
|
||
|
*/
|
||
|
bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
|
||
|
s0 = rv_alloc(bufsize);
|
||
|
if (s0 == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
/*
|
||
|
* We work from right to left, first adding any requested zero
|
||
|
* padding, then the least significant portion of the
|
||
|
* mantissa, followed by the most significant. The buffer is
|
||
|
* filled with the byte values 0x0 through 0xf, which are
|
||
|
* converted to xdigs[0x0] through xdigs[0xf] after the
|
||
|
* rounding phase.
|
||
|
*/
|
||
|
for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
|
||
|
*s = 0;
|
||
|
for (; s > s0 + sigfigs - (DBL_FRACLBITS / 4) - 1 && s > s0; s--) {
|
||
|
*s = u.dblu_dbl.dbl_fracl & 0xf;
|
||
|
u.dblu_dbl.dbl_fracl >>= 4;
|
||
|
}
|
||
|
#ifdef DBL_FRACMBITS
|
||
|
for (; s > s0; s--) {
|
||
|
*s = u.dblu_dbl.dbl_fracm & 0xf;
|
||
|
u.dblu_dbl.dbl_fracm >>= 4;
|
||
|
}
|
||
|
#endif
|
||
|
for (; s > s0; s--) {
|
||
|
*s = u.dblu_dbl.dbl_frach & 0xf;
|
||
|
u.dblu_dbl.dbl_frach >>= 4;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* At this point, we have snarfed all the bits in the
|
||
|
* mantissa, with the possible exception of the highest-order
|
||
|
* (partial) nibble, which is dealt with by the next
|
||
|
* statement. We also tack on the implicit normalization bit.
|
||
|
*/
|
||
|
*s = u.dblu_dbl.dbl_frach | (1U << ((DBL_MANT_DIG - 1) % 4));
|
||
|
|
||
|
/* If ndigits < 0, we are expected to auto-size the precision. */
|
||
|
if (ndigits < 0) {
|
||
|
for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (sigfigs > ndigits && s0[ndigits] != 0)
|
||
|
dorounding(s0, ndigits, u.dblu_dbl.dbl_sign, decpt);
|
||
|
|
||
|
s = s0 + ndigits;
|
||
|
if (rve != NULL)
|
||
|
*rve = s;
|
||
|
*s-- = '\0';
|
||
|
for (; s >= s0; s--)
|
||
|
*s = xdigs[(unsigned int)*s];
|
||
|
|
||
|
return (s0);
|
||
|
}
|
||
|
|
||
|
#if (LDBL_MANT_DIG > DBL_MANT_DIG)
|
||
|
|
||
|
/*
|
||
|
* This is the long double version of hdtoa().
|
||
|
*/
|
||
|
char *
|
||
|
hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
|
||
|
char **rve)
|
||
|
{
|
||
|
static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
|
||
|
union ieee_ext_u u;
|
||
|
char *s, *s0;
|
||
|
size_t bufsize;
|
||
|
|
||
|
u.extu_ld = e;
|
||
|
*sign = u.extu_ext.ext_sign;
|
||
|
|
||
|
switch (fpclassify(e)) {
|
||
|
case FP_NORMAL:
|
||
|
*decpt = u.extu_ext.ext_exp - LDBL_ADJ;
|
||
|
break;
|
||
|
case FP_ZERO:
|
||
|
*decpt = 1;
|
||
|
return (nrv_alloc("0", rve, 1));
|
||
|
case FP_SUBNORMAL:
|
||
|
u.extu_ld *= 0x1p514L;
|
||
|
*decpt = u.extu_ext.ext_exp - (514 + LDBL_ADJ);
|
||
|
break;
|
||
|
case FP_INFINITE:
|
||
|
*decpt = INT_MAX;
|
||
|
return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
|
||
|
case FP_NAN:
|
||
|
*decpt = INT_MAX;
|
||
|
return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
|
||
|
default:
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
/* FP_NORMAL or FP_SUBNORMAL */
|
||
|
|
||
|
if (ndigits == 0) /* dtoa() compatibility */
|
||
|
ndigits = 1;
|
||
|
|
||
|
/*
|
||
|
* For simplicity, we generate all the digits even if the
|
||
|
* caller has requested fewer.
|
||
|
*/
|
||
|
bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
|
||
|
s0 = rv_alloc(bufsize);
|
||
|
if (s0 == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
/*
|
||
|
* We work from right to left, first adding any requested zero
|
||
|
* padding, then the least significant portion of the
|
||
|
* mantissa, followed by the most significant. The buffer is
|
||
|
* filled with the byte values 0x0 through 0xf, which are
|
||
|
* converted to xdigs[0x0] through xdigs[0xf] after the
|
||
|
* rounding phase.
|
||
|
*/
|
||
|
for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
|
||
|
*s = 0;
|
||
|
for (; s > s0 + sigfigs - (EXT_FRACLBITS / 4) - 1 && s > s0; s--) {
|
||
|
*s = u.extu_ext.ext_fracl & 0xf;
|
||
|
u.extu_ext.ext_fracl >>= 4;
|
||
|
}
|
||
|
#ifdef EXT_FRACHMBITS
|
||
|
for (; s > s0; s--) {
|
||
|
*s = u.extu_ext.ext_frachm & 0xf;
|
||
|
u.extu_ext.ext_frachm >>= 4;
|
||
|
}
|
||
|
#endif
|
||
|
#ifdef EXT_FRACLMBITS
|
||
|
for (; s > s0; s--) {
|
||
|
*s = u.extu_ext.ext_fraclm & 0xf;
|
||
|
u.extu_ext.ext_fraclm >>= 4;
|
||
|
}
|
||
|
#endif
|
||
|
for (; s > s0; s--) {
|
||
|
*s = u.extu_ext.ext_frach & 0xf;
|
||
|
u.extu_ext.ext_frach >>= 4;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* At this point, we have snarfed all the bits in the
|
||
|
* mantissa, with the possible exception of the highest-order
|
||
|
* (partial) nibble, which is dealt with by the next
|
||
|
* statement. We also tack on the implicit normalization bit.
|
||
|
*/
|
||
|
*s = u.extu_ext.ext_frach | (1U << ((LDBL_MANT_DIG - 1) % 4));
|
||
|
|
||
|
/* If ndigits < 0, we are expected to auto-size the precision. */
|
||
|
if (ndigits < 0) {
|
||
|
for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (sigfigs > ndigits && s0[ndigits] != 0)
|
||
|
dorounding(s0, ndigits, u.extu_ext.ext_sign, decpt);
|
||
|
|
||
|
s = s0 + ndigits;
|
||
|
if (rve != NULL)
|
||
|
*rve = s;
|
||
|
*s-- = '\0';
|
||
|
for (; s >= s0; s--)
|
||
|
*s = xdigs[(unsigned int)*s];
|
||
|
|
||
|
return (s0);
|
||
|
}
|
||
|
|
||
|
#else /* (LDBL_MANT_DIG == DBL_MANT_DIG) */
|
||
|
|
||
|
char *
|
||
|
hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
|
||
|
char **rve)
|
||
|
{
|
||
|
|
||
|
return (hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
|
||
|
}
|
||
|
|
||
|
#endif /* (LDBL_MANT_DIG == DBL_MANT_DIG) */
|