minix/kernel/arch/i386/mpx.S

737 lines
18 KiB
ArmAsm
Raw Normal View History

Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
/*
* This file is part of the lowest layer of the MINIX kernel. (The other part
* is "proc.c".) The lowest layer does process switching and message handling.
* Furthermore it contains the assembler startup code for Minix and the 32-bit
* interrupt handlers. It cooperates with the code in "start.c" to set up a
* good environment for main().
*
* Kernel is entered either because of kernel-calls, ipc-calls, interrupts or
* exceptions. TSS is set so that the kernel stack is loaded. The user cotext is
* saved to the proc table and the handler of the event is called. Once the
* handler is done, switch_to_user() function is called to pick a new process,
* finish what needs to be done for the next process to run, sets its context
* and switch to userspace.
*
* For communication with the boot monitor at startup time some constant
* data are compiled into the beginning of the text segment. This facilitates
* reading the data at the start of the boot process, since only the first
* sector of the file needs to be read.
*
* Some data storage is also allocated at the end of this file. This data
* will be at the start of the data segment of the kernel and will be read
* and modified by the boot monitor before the kernel starts.
*/
2010-04-02 00:22:33 +02:00
#include "kernel/kernel.h" /* configures the kernel */
NMI watchdog is an awesome feature for debugging locked up kernels. There is not that much use for it on a single CPU, however, deadlock between kernel and system task can be delected. Or a runaway loop. If a kernel gets locked up the timer interrupts don't occure (as all interrupts are disabled in kernel mode). The only chance is to interrupt the kernel by a non-maskable interrupt. This patch generates NMIs using performance counters. It uses the most widely available performace counters. As the performance counters are highly model-specific this patch is not guaranteed to work on every machine. Unfortunately this is also true for KVM :-/ On the other hand adding this feature for other models is not extremely difficult and the framework makes it hopefully easy enough. Depending on the frequency of the CPU an NMI is generated at most about every 0.5s If the cpu's speed is less then 2Ghz it is generated at most every 1s. In general an NMI is generated much less often as the performance counter counts down only if the cpu is not idle. Therefore the overhead of this feature is fairly minimal even if the load is high. Uppon detecting that the kernel is locked up the kernel dumps the state of the kernel registers and panics. Local APIC must be enabled for the watchdog to work. The code is _always_ compiled in, however, it is only enabled if watchdog=<non-zero> is set in the boot monitor. One corner case is serial console debugging. As dumping a lot of stuff to the serial link may take a lot of time, the watchdog does not detect lockups during this time!!! as it would result in too many false positives. 10 nmi have to be handled before the lockup is detected. This means something between ~5s to 10s. Another corner case is that the watchdog is enabled only after the paging is enabled as it would be pure madness to try to get it right.
2010-01-16 21:53:55 +01:00
/* sections */
#include <machine/vm.h>
#ifdef __ACK__
.text
begtext:
#ifdef __ACK__
.rom
#else
.data
#endif
begrom:
.data
begdata:
.bss
begbss:
#endif
#include <minix/config.h>
#include <minix/const.h>
#include <minix/com.h>
#include <machine/interrupt.h>
#include "archconst.h"
2010-04-02 00:22:33 +02:00
#include "kernel/const.h"
#include "kernel/proc.h"
#include "sconst.h"
/* Selected 386 tss offsets. */
#define TSS3_S_SP0 4
/*
* Exported functions
* Note: in assembly language the .define statement applied to a function name
* is loosely equivalent to a prototype in C code -- it makes it possible to
* link to an entity declared in the assembly code but does not create
* the entity.
*/
.globl restore_user_context
.globl reload_cr3
.globl divide_error
.globl single_step_exception
.globl nmi
.globl breakpoint_exception
.globl overflow
.globl bounds_check
.globl inval_opcode
.globl copr_not_available
.globl double_fault
.globl copr_seg_overrun
.globl inval_tss
.globl segment_not_present
.globl stack_exception
.globl general_protection
.globl page_fault
.globl copr_error
.globl alignment_check
.globl machine_check
.globl simd_exception
.globl params_size
.globl params_offset
.globl mon_ds
.globl switch_to_user
.globl lazy_fpu
.globl hwint00 /* handlers for hardware interrupts */
.globl hwint01
.globl hwint02
.globl hwint03
.globl hwint04
.globl hwint05
.globl hwint06
.globl hwint07
.globl hwint08
.globl hwint09
.globl hwint10
.globl hwint11
.globl hwint12
.globl hwint13
.globl hwint14
.globl hwint15
/* Exported variables. */
.globl begbss
.globl begdata
.text
/*===========================================================================*/
/* MINIX */
/*===========================================================================*/
.global MINIX
MINIX:
/* this is the entry point for the MINIX kernel */
jmp over_flags /* skip over the next few bytes */
.short CLICK_SHIFT /* for the monitor: memory granularity */
flags:
/* boot monitor flags:
* call in 386 mode, make bss, make stack,
* load high, don't patch, will return,
* uses generic INT, memory vector,
* new boot code return
*/
.short 0x01FD
nop /* extra byte to sync up disassembler */
over_flags:
/* Set up a C stack frame on the monitor stack. (The monitor sets cs and ds */
/* right. The ss descriptor still references the monitor data segment.) */
movzwl %sp, %esp /* monitor stack is a 16 bit stack */
push %ebp
mov %esp, %ebp
push %esi
push %edi
cmp $0, 4(%ebp) /* monitor return vector is */
je noret /* nonzero if return possible */
incl mon_return
noret:
movl %esp, mon_sp /* save stack pointer for later return */
/* Copy the monitor global descriptor table to the address space of kernel and */
/* switch over to it. Prot_init() can then update it with immediate effect. */
sgdt gdt+GDT_SELECTOR /* get the monitor gdtr */
movl gdt+GDT_SELECTOR+2, %esi /* absolute address of GDT */
mov $gdt, %ebx /* address of kernel GDT */
mov $8*8, %ecx /* copying eight descriptors */
copygdt:
movb %es:(%esi), %al
movb %al, (%ebx)
inc %esi
inc %ebx
loop copygdt
movl gdt+DS_SELECTOR+2, %eax /* base of kernel data */
and $0x00FFFFFF, %eax /* only 24 bits */
add $gdt, %eax /* eax = vir2phys(gdt) */
movl %eax, gdt+GDT_SELECTOR+2 /* set base of GDT */
lgdt gdt+GDT_SELECTOR /* switch over to kernel GDT */
/* Locate boot parameters, set up kernel segment registers and stack. */
mov 8(%ebp), %ebx /* boot parameters offset */
mov 12(%ebp), %edx /* boot parameters length */
mov 16(%ebp), %eax /* address of a.out headers */
movl %eax, aout
mov %ds, %ax /* kernel data */
mov %ax, %es
mov %ax, %fs
mov %ax, %gs
mov %ax, %ss
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
mov $k_boot_stktop, %esp /* set sp to point to the top of kernel stack */
/* Save boot parameters into these global variables for i386 code */
movl %edx, params_size
movl %ebx, params_offset
movl $SS_SELECTOR, mon_ds
/* Call C startup code to set up a proper environment to run main(). */
push %edx
push %ebx
push $SS_SELECTOR
push $DS_SELECTOR
push $CS_SELECTOR
call cstart /* cstart(cs, ds, mds, parmoff, parmlen) */
add $5*4, %esp
/* Reload gdtr, idtr and the segment registers to global descriptor table set */
/* up by prot_init(). */
lgdt gdt+GDT_SELECTOR
lidt gdt+IDT_SELECTOR
ljmp $CS_SELECTOR, $csinit
csinit:
movw $DS_SELECTOR, %ax
mov %ax, %ds
mov %ax, %es
mov %ax, %fs
mov %ax, %gs
mov %ax, %ss
movw $TSS_SELECTOR, %ax /* no other TSS is used */
ltr %ax
push $0 /* set flags to known good state */
popf /* esp, clear nested task and int enable */
jmp main /* main() */
/*===========================================================================*/
/* interrupt handlers */
/* interrupt handlers for 386 32-bit protected mode */
/*===========================================================================*/
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
#define PIC_IRQ_HANDLER(irq) \
push $irq ;\
call irq_handle /* intr_handle(irq_handlers[irq]) */ ;\
add $4, %esp ;
/*===========================================================================*/
/* hwint00 - 07 */
/*===========================================================================*/
/* Note this is a macro, it just looks like a subroutine. */
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
#define hwint_master(irq) \
TEST_INT_IN_KERNEL(4, 0f) ;\
\
SAVE_PROCESS_CTX(0) ;\
push %ebp ;\
call context_stop ;\
add $4, %esp ;\
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
movl $0, %ebp /* for stack trace */ ;\
PIC_IRQ_HANDLER(irq) ;\
movb $END_OF_INT, %al ;\
outb $INT_CTL /* reenable interrupts in master pic */ ;\
jmp switch_to_user ;\
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
\
0: \
pusha ;\
call context_stop_idle ;\
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
PIC_IRQ_HANDLER(irq) ;\
movb $END_OF_INT, %al ;\
outb $INT_CTL /* reenable interrupts in master pic */ ;\
CLEAR_IF(10*4(%esp)) ;\
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
popa ;\
iret ;
/* Each of these entry points is an expansion of the hwint_master macro */
.balign 16
hwint00:
/* Interrupt routine for irq 0 (the clock). */
hwint_master(0)
.balign 16
hwint01:
/* Interrupt routine for irq 1 (keyboard) */
hwint_master(1)
.balign 16
hwint02:
/* Interrupt routine for irq 2 (cascade!) */
hwint_master(2)
.balign 16
hwint03:
/* Interrupt routine for irq 3 (second serial) */
hwint_master(3)
.balign 16
hwint04:
/* Interrupt routine for irq 4 (first serial) */
hwint_master(4)
.balign 16
hwint05:
/* Interrupt routine for irq 5 (XT winchester) */
hwint_master(5)
.balign 16
hwint06:
/* Interrupt routine for irq 6 (floppy) */
hwint_master(6)
.balign 16
hwint07:
/* Interrupt routine for irq 7 (printer) */
hwint_master(7)
/*===========================================================================*/
/* hwint08 - 15 */
/*===========================================================================*/
/* Note this is a macro, it just looks like a subroutine. */
#define hwint_slave(irq) \
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
TEST_INT_IN_KERNEL(4, 0f) ;\
\
SAVE_PROCESS_CTX(0) ;\
push %ebp ;\
call context_stop ;\
add $4, %esp ;\
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
movl $0, %ebp /* for stack trace */ ;\
PIC_IRQ_HANDLER(irq) ;\
movb $END_OF_INT, %al ;\
outb $INT_CTL /* reenable interrupts in master pic */ ;\
outb $INT2_CTL /* reenable slave 8259 */ ;\
jmp switch_to_user ;\
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
\
0: \
pusha ;\
call context_stop_idle ;\
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
PIC_IRQ_HANDLER(irq) ;\
movb $END_OF_INT, %al ;\
outb $INT_CTL /* reenable interrupts in master pic */ ;\
outb $INT2_CTL /* reenable slave 8259 */ ;\
CLEAR_IF(10*4(%esp)) ;\
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
popa ;\
iret ;
/* Each of these entry points is an expansion of the hwint_slave macro */
.balign 16
hwint08:
/* Interrupt routine for irq 8 (realtime clock) */
hwint_slave(8)
.balign 16
hwint09:
/* Interrupt routine for irq 9 (irq 2 redirected) */
hwint_slave(9)
.balign 16
hwint10:
/* Interrupt routine for irq 10 */
hwint_slave(10)
.balign 16
hwint11:
/* Interrupt routine for irq 11 */
hwint_slave(11)
.balign 16
hwint12:
/* Interrupt routine for irq 12 */
hwint_slave(12)
.balign 16
hwint13:
/* Interrupt routine for irq 13 (FPU exception) */
hwint_slave(13)
.balign 16
hwint14:
/* Interrupt routine for irq 14 (AT winchester) */
hwint_slave(14)
.balign 16
hwint15:
/* Interrupt routine for irq 15 */
hwint_slave(15)
/*
* IPC is only from a process to kernel
*/
2009-11-13 10:30:45 +01:00
.balign 16
.globl ipc_entry
ipc_entry:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
SAVE_PROCESS_CTX(0)
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
/* save the pointer to the current process */
push %ebp
/*
* pass the syscall arguments from userspace to the handler.
* SAVE_PROCESS_CTX() does not clobber these registers, they are still
* set as the userspace have set them
*/
push %ebx
push %eax
push %ecx
/* stop user process cycles */
push %ebp
call context_stop
add $4, %esp
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
/* for stack trace */
movl $0, %ebp
call do_ipc
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
/* restore the current process pointer and save the return value */
add $3 * 4, %esp
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
pop %esi
mov %eax, AXREG(%esi)
jmp switch_to_user
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
/*
* kernel call is only from a process to kernel
*/
.balign 16
.globl kernel_call_entry
kernel_call_entry:
SAVE_PROCESS_CTX(0)
/* save the pointer to the current process */
push %ebp
/*
* pass the syscall arguments from userspace to the handler.
* SAVE_PROCESS_CTX() does not clobber these registers, they are still
* set as the userspace have set them
*/
push %eax
/* stop user process cycles */
push %ebp
call context_stop
add $4, %esp
/* for stack trace */
movl $0, %ebp
call kernel_call
/* restore the current process pointer and save the return value */
add $8, %esp
jmp switch_to_user
2009-11-13 10:30:45 +01:00
.balign 16
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
/*
* called by the exception interrupt vectors. If the exception does not push
* errorcode, we assume that the vector handler pushed 0 instead. Next pushed
* thing is the vector number. From this point on we can continue as if every
* exception pushes an error code
*/
exception_entry:
/*
* check if it is a nested trap by comparing the saved code segment
* descriptor with the kernel CS first
*/
TEST_INT_IN_KERNEL(12, exception_entry_nested)
exception_entry_from_user:
SAVE_PROCESS_CTX(8)
/* stop user process cycles */
push %ebp
call context_stop
add $4, %esp
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
/* for stack trace clear %ebp */
movl $0, %ebp
/*
* push a pointer to the interrupt state pushed by the cpu and the
* vector number pushed by the vector handler just before calling
* exception_entry and call the exception handler.
*/
push %esp
push $0 /* it's not a nested exception */
call exception_handler
jmp switch_to_user
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
exception_entry_nested:
pusha
mov %esp, %eax
add $(8 * 4), %eax
push %eax
pushl $1 /* it's a nested exception */
call exception_handler
add $8, %esp
popa
/* clear the error code and the exception number */
add $8, %esp
/* resume execution at the point of exception */
iret
/*===========================================================================*/
/* restart */
/*===========================================================================*/
restore_user_context:
mov 4(%esp), %ebp /* will assume P_STACKBASE == 0 */
NMI watchdog is an awesome feature for debugging locked up kernels. There is not that much use for it on a single CPU, however, deadlock between kernel and system task can be delected. Or a runaway loop. If a kernel gets locked up the timer interrupts don't occure (as all interrupts are disabled in kernel mode). The only chance is to interrupt the kernel by a non-maskable interrupt. This patch generates NMIs using performance counters. It uses the most widely available performace counters. As the performance counters are highly model-specific this patch is not guaranteed to work on every machine. Unfortunately this is also true for KVM :-/ On the other hand adding this feature for other models is not extremely difficult and the framework makes it hopefully easy enough. Depending on the frequency of the CPU an NMI is generated at most about every 0.5s If the cpu's speed is less then 2Ghz it is generated at most every 1s. In general an NMI is generated much less often as the performance counter counts down only if the cpu is not idle. Therefore the overhead of this feature is fairly minimal even if the load is high. Uppon detecting that the kernel is locked up the kernel dumps the state of the kernel registers and panics. Local APIC must be enabled for the watchdog to work. The code is _always_ compiled in, however, it is only enabled if watchdog=<non-zero> is set in the boot monitor. One corner case is serial console debugging. As dumping a lot of stuff to the serial link may take a lot of time, the watchdog does not detect lockups during this time!!! as it would result in too many false positives. 10 nmi have to be handled before the lockup is detected. This means something between ~5s to 10s. Another corner case is that the watchdog is enabled only after the paging is enabled as it would be pure madness to try to get it right.
2010-01-16 21:53:55 +01:00
/* reconstruct the stack for iret */
movl SSREG(%ebp), %eax
push %eax
movl SPREG(%ebp), %eax
push %eax
movl PSWREG(%ebp), %eax
push %eax
movl CSREG(%ebp), %eax
push %eax
movl PCREG(%ebp), %eax
push %eax
RESTORE_GP_REGS(%ebp)
RESTORE_SEGS(%ebp)
movl %ss:BPREG(%ebp), %ebp
iret /* continue process */
/*===========================================================================*/
/* exception handlers */
/*===========================================================================*/
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
#define EXCEPTION_ERR_CODE(vector) \
push $vector ;\
jmp exception_entry
#define EXCEPTION_NO_ERR_CODE(vector) \
pushl $0 ;\
EXCEPTION_ERR_CODE(vector)
divide_error:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_NO_ERR_CODE(DIVIDE_VECTOR)
single_step_exception:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_NO_ERR_CODE(DEBUG_VECTOR)
nmi:
NMI watchdog is an awesome feature for debugging locked up kernels. There is not that much use for it on a single CPU, however, deadlock between kernel and system task can be delected. Or a runaway loop. If a kernel gets locked up the timer interrupts don't occure (as all interrupts are disabled in kernel mode). The only chance is to interrupt the kernel by a non-maskable interrupt. This patch generates NMIs using performance counters. It uses the most widely available performace counters. As the performance counters are highly model-specific this patch is not guaranteed to work on every machine. Unfortunately this is also true for KVM :-/ On the other hand adding this feature for other models is not extremely difficult and the framework makes it hopefully easy enough. Depending on the frequency of the CPU an NMI is generated at most about every 0.5s If the cpu's speed is less then 2Ghz it is generated at most every 1s. In general an NMI is generated much less often as the performance counter counts down only if the cpu is not idle. Therefore the overhead of this feature is fairly minimal even if the load is high. Uppon detecting that the kernel is locked up the kernel dumps the state of the kernel registers and panics. Local APIC must be enabled for the watchdog to work. The code is _always_ compiled in, however, it is only enabled if watchdog=<non-zero> is set in the boot monitor. One corner case is serial console debugging. As dumping a lot of stuff to the serial link may take a lot of time, the watchdog does not detect lockups during this time!!! as it would result in too many false positives. 10 nmi have to be handled before the lockup is detected. This means something between ~5s to 10s. Another corner case is that the watchdog is enabled only after the paging is enabled as it would be pure madness to try to get it right.
2010-01-16 21:53:55 +01:00
#ifndef CONFIG_WATCHDOG
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_NO_ERR_CODE(NMI_VECTOR)
NMI watchdog is an awesome feature for debugging locked up kernels. There is not that much use for it on a single CPU, however, deadlock between kernel and system task can be delected. Or a runaway loop. If a kernel gets locked up the timer interrupts don't occure (as all interrupts are disabled in kernel mode). The only chance is to interrupt the kernel by a non-maskable interrupt. This patch generates NMIs using performance counters. It uses the most widely available performace counters. As the performance counters are highly model-specific this patch is not guaranteed to work on every machine. Unfortunately this is also true for KVM :-/ On the other hand adding this feature for other models is not extremely difficult and the framework makes it hopefully easy enough. Depending on the frequency of the CPU an NMI is generated at most about every 0.5s If the cpu's speed is less then 2Ghz it is generated at most every 1s. In general an NMI is generated much less often as the performance counter counts down only if the cpu is not idle. Therefore the overhead of this feature is fairly minimal even if the load is high. Uppon detecting that the kernel is locked up the kernel dumps the state of the kernel registers and panics. Local APIC must be enabled for the watchdog to work. The code is _always_ compiled in, however, it is only enabled if watchdog=<non-zero> is set in the boot monitor. One corner case is serial console debugging. As dumping a lot of stuff to the serial link may take a lot of time, the watchdog does not detect lockups during this time!!! as it would result in too many false positives. 10 nmi have to be handled before the lockup is detected. This means something between ~5s to 10s. Another corner case is that the watchdog is enabled only after the paging is enabled as it would be pure madness to try to get it right.
2010-01-16 21:53:55 +01:00
#else
/*
* We have to be very careful as this interrupt can occur anytime. On
* the other hand, if it interrupts a user process, we will resume the
* same process which makes things a little simpler. We know that we are
* already on kernel stack whenever it happened and we can be
* conservative and save everything as we don't need to be extremely
* efficient as the interrupt is infrequent and some overhead is already
* expected.
*/
/*
* save the important registers. We don't save %cs and %ss and they are
* saved and restored by CPU
*/
pushw %ds
pushw %es
pushw %fs
pushw %gs
pusha
/*
* We cannot be sure about the state of the kernel segment register,
* however, we always set %ds and %es to the same as %ss
*/
mov %ss, %si
mov %si, %ds
mov %si, %es
push %esp
call nmi_watchdog_handler
add $4, %esp
/* restore all the important registers as they were before the trap */
popa
popw %gs
popw %fs
popw %es
popw %ds
iret
#endif
breakpoint_exception:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_NO_ERR_CODE(BREAKPOINT_VECTOR)
overflow:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_NO_ERR_CODE(OVERFLOW_VECTOR)
bounds_check:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_NO_ERR_CODE(BOUNDS_VECTOR)
inval_opcode:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_NO_ERR_CODE(INVAL_OP_VECTOR)
copr_not_available:
TEST_INT_IN_KERNEL(4, copr_not_available_in_kernel)
clts
cld /* set direction flag to a known value */
SAVE_PROCESS_CTX_NON_LAZY(0)
/* stop user process cycles */
push %ebp
call context_stop
pop %ebp
lea P_MISC_FLAGS(%ebp), %ebx
movw (%ebx), %cx
and $MF_FPU_INITIALIZED, %cx
jnz 0f /* jump if FPU is already initialized */
orw $MF_FPU_INITIALIZED, (%ebx)
fninit
jmp copr_return
0: /* load FPU context for current process */
mov %ss:FP_SAVE_AREA_P(%ebp), %eax
cmp $0, osfxsr_feature
jz fp_l_no_fxsr /* FXSR is not avaible. */
/* DO NOT CHANGE THE OPERAND!!! gas2ack does not handle it yet */
fxrstor (%eax)
jmp copr_return
fp_l_no_fxsr:
/* DO NOT CHANGE THE OPERAND!!! gas2ack does not handle it yet */
frstor (%eax)
copr_return:
orw $MF_USED_FPU, (%ebx) /* fpu was used during last execution */
jmp switch_to_user
copr_not_available_in_kernel:
movl $0, (%esp)
call panic
double_fault:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_ERR_CODE(DOUBLE_FAULT_VECTOR)
copr_seg_overrun:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_NO_ERR_CODE(COPROC_SEG_VECTOR)
inval_tss:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_ERR_CODE(INVAL_TSS_VECTOR)
segment_not_present:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_ERR_CODE(SEG_NOT_VECTOR)
stack_exception:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_ERR_CODE(STACK_FAULT_VECTOR)
general_protection:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_ERR_CODE(PROTECTION_VECTOR)
page_fault:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_ERR_CODE(PAGE_FAULT_VECTOR)
copr_error:
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
EXCEPTION_NO_ERR_CODE(COPROC_ERR_VECTOR)
alignment_check:
EXCEPTION_NO_ERR_CODE(ALIGNMENT_CHECK_VECTOR)
machine_check:
EXCEPTION_NO_ERR_CODE(MACHINE_CHECK_VECTOR)
simd_exception:
EXCEPTION_NO_ERR_CODE(SIMD_EXCEPTION_VECTOR)
/*===========================================================================*/
/* lazy_fpu */
/*===========================================================================*/
/* void lazy_fpu(struct proc *pptr)
* It's called, when we are on kernel stack.
* Actualy lazy code is just few lines, which check MF_USED_FPU,
* another part is save_init_fpu().
*/
lazy_fpu:
push %ebp
mov %esp, %ebp
push %eax
push %ebx
push %ecx
cmp $0, fpu_presence /* Do we have FPU? */
jz no_fpu_available
mov 8(%ebp), %eax /* Get pptr */
lea P_MISC_FLAGS(%eax), %ebx
movw (%ebx), %cx
and $MF_USED_FPU, %cx
jz 0f /* Don't save FPU */
mov %ss:FP_SAVE_AREA_P(%eax), %eax
cmp $0, osfxsr_feature
jz fp_s_no_fxsr /* FXSR is not avaible. */
/* DO NOT CHANGE THE OPERAND!!! gas2ack does not handle it yet */
fxsave (%eax)
fninit
jmp fp_saved
fp_s_no_fxsr:
/* DO NOT CHANGE THE OPERAND!!! gas2ack does not handle it yet */
fnsave (%eax)
fwait /* required for compatibility with processors prior pentium */
fp_saved:
andw $~MF_USED_FPU, (%ebx)
0: mov %cr0, %eax
or $0x00000008, %eax /* Set TS flag */
mov %eax, %cr0
no_fpu_available:
pop %ecx
pop %ebx
pop %eax
pop %ebp
ret
/*===========================================================================*/
/* reload_cr3 */
/*===========================================================================*/
/* PUBLIC void reload_cr3(void); */
reload_cr3:
push %ebp
mov %esp, %ebp
mov %cr3, %eax
mov %eax, %cr3
pop %ebp
ret
/*===========================================================================*/
/* data */
/*===========================================================================*/
#ifdef __ACK__
.rom /* Before the string table please */
#else
.data
#endif
.short 0x526F /* this must be the first data entry (magic #) */
.bss
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
/*
2010-03-18 17:18:22 +01:00
* the kernel stack
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
*/
.globl k_boot_stktop
k_boot_stack:
.space 4096 /* kernel stack */ /* FIXME use macro here */
k_boot_stktop: /* top of kernel stack */