minix/servers/inet/inet.c

347 lines
7.7 KiB
C
Raw Normal View History

2005-04-21 16:53:53 +02:00
/* this file contains the interface of the network software with rest of
minix. Furthermore it contains the main loop of the network task.
Copyright 1995 Philip Homburg
The valid messages and their parameters are:
from FS:
__________________________________________________________________
| | | | | | |
| m_type | DEVICE | PROC_NR | COUNT | POSITION | ADDRESS |
|_______________|___________|_________|_______|__________|_________|
| | | | | | |
| NW_OPEN | minor dev | proc nr | mode | | |
|_______________|___________|_________|_______|__________|_________|
| | | | | | |
| NW_CLOSE | minor dev | proc nr | | | |
|_______________|___________|_________|_______|__________|_________|
| | | | | | |
| NW_IOCTL | minor dev | proc nr | | NWIO.. | address |
|_______________|___________|_________|_______|__________|_________|
| | | | | | |
| NW_READ | minor dev | proc nr | count | | address |
|_______________|___________|_________|_______|__________|_________|
| | | | | | |
| NW_WRITE | minor dev | proc nr | count | | address |
|_______________|___________|_________|_______|__________|_________|
| | | | | | |
| NW_CANCEL | minor dev | proc nr | | | |
|_______________|___________|_________|_______|__________|_________|
from DL_ETH:
2005-04-21 16:53:53 +02:00
_______________________________________________________________________
| | | | | | |
| m_type | DL_PORT | DL_PROC | DL_COUNT | DL_STAT | DL_TIME |
|_______________|___________|_________|__________|____________|_________|
| | | | | | |
| DL_CONF_REPLY | minor dev | proc nr | rd_count | 0 | stat | time |
2005-04-21 16:53:53 +02:00
|_______________|___________|_________|__________|____________|_________|
| | | | | | |
| DL_TASK_REPLY | minor dev | proc nr | rd_count | err | stat | time |
2005-04-21 16:53:53 +02:00
|_______________|___________|_________|__________|____________|_________|
*/
#include "inet.h"
#define _MINIX_SOURCE 1
2005-04-21 16:53:53 +02:00
#include <fcntl.h>
#include <time.h>
2005-04-21 16:53:53 +02:00
#include <unistd.h>
#include <sys/svrctl.h>
#include <minix/ds.h>
#include <minix/endpoint.h>
2005-04-21 16:53:53 +02:00
#include "mq.h"
#include "qp.h"
2005-04-21 16:53:53 +02:00
#include "proto.h"
#include "generic/type.h"
#include "generic/arp.h"
2005-04-21 16:53:53 +02:00
#include "generic/assert.h"
#include "generic/buf.h"
#include "generic/clock.h"
#include "generic/eth.h"
#include "generic/event.h"
#include "generic/ip.h"
#include "generic/psip.h"
#include "generic/rand256.h"
2005-04-21 16:53:53 +02:00
#include "generic/sr.h"
#include "generic/tcp.h"
#include "generic/udp.h"
THIS_FILE
#define RANDOM_DEV_NAME "/dev/random"
2005-04-21 16:53:53 +02:00
int this_proc; /* Process number of this server. */
/* Killing Solaris */
int killer_inet= 0;
2005-04-21 16:53:53 +02:00
#ifdef BUF_CONSISTENCY_CHECK
extern int inet_buf_debug;
#endif
2008-12-11 15:54:42 +01:00
#if HZ_DYNAMIC
u32_t system_hz;
#endif
2005-04-21 16:53:53 +02:00
_PROTOTYPE( void main, (void) );
FORWARD _PROTOTYPE( void nw_conf, (void) );
2005-04-21 16:53:53 +02:00
FORWARD _PROTOTYPE( void nw_init, (void) );
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* SEF functions and variables. */
FORWARD _PROTOTYPE( void sef_local_startup, (void) );
2005-04-21 16:53:53 +02:00
PUBLIC void main()
{
mq_t *mq;
int r;
int source, m_type, timerand, fd;
u32_t tasknr;
struct fssignon device;
u8_t randbits[32];
struct timeval tv;
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* SEF local startup. */
sef_local_startup();
#if DEBUG
printf("Starting inet...\n");
printf("%s\n", version);
#endif
2008-12-11 15:54:42 +01:00
#if HZ_DYNAMIC
system_hz = sys_hz();
#endif
/* Read configuration. */
nw_conf();
/* Get a random number */
timerand= 1;
fd= open(RANDOM_DEV_NAME, O_RDONLY | O_NONBLOCK);
if (fd != -1)
{
r= read(fd, randbits, sizeof(randbits));
if (r == sizeof(randbits))
timerand= 0;
else
{
2009-04-02 13:56:50 +02:00
printf("inet: unable to read random data from %s: %s\n",
RANDOM_DEV_NAME, r == -1 ? strerror(errno) :
r == 0 ? "EOF" : "not enough data");
}
close(fd);
}
else
{
2009-04-02 13:56:50 +02:00
printf("inet: unable to open random device %s: %s\n",
RANDOM_DEV_NAME, strerror(errno));
}
if (timerand)
{
2009-04-02 13:56:50 +02:00
printf("inet: using current time for random-number seed\n");
r= gettimeofday(&tv, NULL);
if (r == -1)
{
printf("sysutime failed: %s\n", strerror(errno));
exit(1);
}
memcpy(randbits, &tv, sizeof(tv));
}
init_rand256(randbits);
/* Our new identity as a server. */
r= ds_retrieve_u32("inet", &tasknr);
if (r != OK)
ip_panic(("inet: ds_retrieve_u32 failed for 'inet': %d", r));
this_proc= tasknr;
/* Register the device group. */
device.dev= ip_dev;
device.style= STYLE_CLONE;
if (svrctl(FSSIGNON, (void *) &device) == -1) {
printf("inet: error %d on registering ethernet devices\n",
errno);
pause();
}
#ifdef BUF_CONSISTENCY_CHECK
inet_buf_debug= (getenv("inetbufdebug") &&
(strcmp(getenv("inetbufdebug"), "on") == 0));
inet_buf_debug= 100;
if (inet_buf_debug)
{
ip_warning(( "buffer consistency check enabled" ));
}
#endif
if (getenv("killerinet"))
{
ip_warning(( "killer inet active" ));
killer_inet= 1;
}
2005-04-21 16:53:53 +02:00
nw_init();
while (TRUE)
{
#ifdef BUF_CONSISTENCY_CHECK
if (inet_buf_debug)
{
static int buf_debug_count= 0;
if (++buf_debug_count >= inet_buf_debug)
2005-04-21 16:53:53 +02:00
{
buf_debug_count= 0;
if (!bf_consistency_check())
break;
}
}
#endif
if (ev_head)
{
ev_process();
continue;
}
if (clck_call_expire)
{
clck_expire_timers();
continue;
}
mq= mq_get();
if (!mq)
ip_panic(("out of messages"));
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
r= sef_receive(ANY, &mq->mq_mess);
if (r<0)
{
2005-04-21 16:53:53 +02:00
ip_panic(("unable to receive: %d", r));
}
reset_time();
source= mq->mq_mess.m_source;
m_type= mq->mq_mess.m_type;
if (source == FS_PROC_NR)
{
2005-04-21 16:53:53 +02:00
sr_rec(mq);
}
else if (is_notify(m_type))
{
if (_ENDPOINT_P(source) == CLOCK)
{
clck_tick(&mq->mq_mess);
mq_free(mq);
}
else if (_ENDPOINT_P(source) == PM_PROC_NR)
{
/* signaled */
/* probably SIGTERM */
mq_free(mq);
}
else
{
/* A driver is (re)started. */
eth_check_drivers(&mq->mq_mess);
mq_free(mq);
}
}
else if (m_type == DL_CONF_REPLY || m_type == DL_TASK_REPLY ||
m_type == DL_NAME_REPLY || m_type == DL_STAT_REPLY)
2005-04-21 16:53:53 +02:00
{
eth_rec(&mq->mq_mess);
mq_free(mq);
}
else
{
printf("inet: got bad message type 0x%x from %d\n",
mq->mq_mess.m_type, mq->mq_mess.m_source);
mq_free(mq);
}
2005-04-21 16:53:53 +02:00
}
ip_panic(("task is not allowed to terminate"));
}
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/*===========================================================================*
* sef_local_startup *
*===========================================================================*/
PRIVATE void sef_local_startup()
{
/* No live update support for now. */
/* Let SEF perform startup. */
sef_startup();
}
PRIVATE void nw_conf()
2005-04-21 16:53:53 +02:00
{
read_conf();
eth_prep();
arp_prep();
psip_prep();
ip_prep();
tcp_prep();
udp_prep();
}
2005-04-21 16:53:53 +02:00
PRIVATE void nw_init()
{
2005-04-21 16:53:53 +02:00
mq_init();
bf_init();
clck_init();
sr_init();
qp_init();
2005-04-21 16:53:53 +02:00
eth_init();
arp_init();
psip_init();
ip_init();
tcp_init();
udp_init();
}
PUBLIC void panic0(file, line)
char *file;
int line;
{
printf("panic at %s, %d: ", file, line);
}
PUBLIC void inet_panic()
2005-04-21 16:53:53 +02:00
{
printf("\ninet stacktrace: ");
2008-12-11 15:54:42 +01:00
util_stacktrace();
(panic)("INET","aborted due to a panic",NO_NUM);
for(;;);
}
2005-04-21 16:53:53 +02:00
#if !NDEBUG
PUBLIC void bad_assertion(file, line, what)
char *file;
int line;
char *what;
{
panic0(file, line);
printf("assertion \"%s\" failed", what);
panic();
2005-04-21 16:53:53 +02:00
}
PUBLIC void bad_compare(file, line, lhs, what, rhs)
char *file;
int line;
int lhs;
char *what;
int rhs;
{
panic0(file, line);
printf("compare (%d) %s (%d) failed", lhs, what, rhs);
panic();
2005-04-21 16:53:53 +02:00
}
#endif /* !NDEBUG */
/*
* $PchId: inet.c,v 1.23 2005/06/28 14:27:22 philip Exp $
2005-04-21 16:53:53 +02:00
*/