minix/drivers/dp8390/dp8390.c

2890 lines
73 KiB
C
Raw Normal View History

/*
* dp8390.c
*
* This file contains a ethernet device driver for NS dp8390 based ethernet
* cards.
*
* The valid messages and their parameters are:
*
2006-07-10 14:43:38 +02:00
* m_type DL_PORT DL_PROC DL_COUNT DL_MODE DL_ADDR DL_GRANT
* |------------+----------+---------+----------+---------+---------+---------|
* | HARDINT | | | | | | |
* |------------|----------|---------|----------|---------|---------|---------|
* | DL_WRITE | port nr | proc nr | count | mode | address | |
* |------------|----------|---------|----------|---------|---------|---------|
* | DL_WRITEV | port nr | proc nr | count | mode | address | |
* |------------|----------|---------|----------|---------|---------|---------|
* | DL_WRITEV_S| port nr | proc nr | count | mode | | grant |
* |------------|----------|---------|----------|---------|---------|---------|
* | DL_READ | port nr | proc nr | count | | address | |
* |------------|----------|---------|----------|---------|---------|---------|
* | DL_READV | port nr | proc nr | count | | address | |
* |------------|----------|---------|----------|---------|---------|---------|
* | DL_READV_S | port nr | proc nr | count | | | grant |
* |------------|----------|---------|----------|---------|---------|---------|
* | DL_CONF | port nr | proc nr | | mode | address | |
* |------------|----------|---------|----------|---------|---------|---------|
* | DL_GETSTAT | port nr | proc nr | | | address | |
* |------------|----------|---------|----------|---------|---------|---------|
* |DL_GETSTAT_S| port nr | proc nr | | | | grant |
* |------------|----------|---------|----------|---------|---------|---------|
* | DL_STOP | port_nr | | | | | |
* |------------|----------|---------|----------|---------|---------|---------|
*
* The messages sent are:
*
* m-type DL_PORT DL_PROC DL_COUNT DL_STAT DL_CLCK
* |-------------+----------+---------+----------+---------+---------|
* |DL_TASK_REPLY| port nr | proc nr | rd-count | err|stat| clock |
* |-------------+----------+---------+----------+---------+---------|
*
* m_type m3_i1 m3_i2 m3_ca1
* |-------------+---------+-----------+---------------|
2006-07-10 14:43:38 +02:00
* |DL_CONF_REPLY| port nr | last port | ethernet addr |
* |-------------+---------+-----------+---------------|
*
* Created: before Dec 28, 1992 by Philip Homburg <philip@f-mnx.phicoh.com>
*
* Modified Mar 10 1994 by Philip Homburg
* Become a generic dp8390 driver.
*
* Modified Dec 20 1996 by G. Falzoni <falzoni@marina.scn.de>
* Added support for 3c503 boards.
*/
#include "../drivers.h"
#include <stdlib.h>
#include <minix/com.h>
#include <minix/endpoint.h>
#include <net/hton.h>
#include <net/gen/ether.h>
#include <net/gen/eth_io.h>
#include <sys/vm_i386.h>
#include "assert.h"
#include "local.h"
#include "dp8390.h"
#define DE_PORT_NR 3
static dpeth_t de_table[DE_PORT_NR];
static u16_t eth_ign_proto;
static const char *progname;
u32_t system_hz;
/* Configuration */
typedef struct dp_conf
{
port_t dpc_port;
int dpc_irq;
phys_bytes dpc_mem;
char *dpc_envvar;
} dp_conf_t;
PRIVATE dp_conf_t dp_conf[]= /* Card addresses */
{
/* I/O port, IRQ, Buffer address, Env. var. */
{ 0x280, 3, 0xD0000, "DPETH0" },
{ 0x300, 5, 0xC8000, "DPETH1" },
{ 0x380, 10, 0xD8000, "DPETH2" },
};
/* Test if dp_conf has exactly DE_PORT_NR entries. If not then you will see
* the error: "array size is negative".
*/
extern int ___dummy[DE_PORT_NR == sizeof(dp_conf)/sizeof(dp_conf[0]) ? 1 : -1];
/* Card inits configured out? */
#if !ENABLE_WDETH
#define wdeth_probe(dep) (0)
#endif
#if !ENABLE_NE2000
#define ne_probe(dep) (0)
#endif
#if !ENABLE_3C503
#define el2_probe(dep) (0)
#endif
/* Some clones of the dp8390 and the PC emulator 'Bochs' require the CR_STA
* on writes to the CR register. Additional CR_STAs do not appear to hurt
* genuine dp8390s
*/
#define CR_EXTRA CR_STA
#if ENABLE_PCI
_PROTOTYPE( static void pci_conf, (void) );
#endif
_PROTOTYPE( static void do_vwrite, (message *mp, int from_int,
int vectored) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void do_vwrite_s, (message *mp, int from_int) );
_PROTOTYPE( static void do_vread, (message *mp, int vectored) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void do_vread_s, (message *mp) );
_PROTOTYPE( static void do_init, (message *mp) );
_PROTOTYPE( static void do_int, (dpeth_t *dep) );
_PROTOTYPE( static void do_getstat, (message *mp) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void do_getstat_s, (message *mp) );
2005-10-21 19:09:08 +02:00
_PROTOTYPE( static void do_getname, (message *mp) );
_PROTOTYPE( static void do_stop, (message *mp) );
_PROTOTYPE( static void dp_init, (dpeth_t *dep) );
_PROTOTYPE( static void dp_confaddr, (dpeth_t *dep) );
_PROTOTYPE( static void dp_reinit, (dpeth_t *dep) );
_PROTOTYPE( static void dp_reset, (dpeth_t *dep) );
_PROTOTYPE( static void dp_check_ints, (dpeth_t *dep) );
_PROTOTYPE( static void dp_recv, (dpeth_t *dep) );
_PROTOTYPE( static void dp_send, (dpeth_t *dep) );
_PROTOTYPE( static void dp8390_stop, (void) );
_PROTOTYPE( static void dp_getblock, (dpeth_t *dep, int page,
size_t offset, size_t size, void *dst) );
_PROTOTYPE( static void dp_pio8_getblock, (dpeth_t *dep, int page,
size_t offset, size_t size, void *dst) );
_PROTOTYPE( static void dp_pio16_getblock, (dpeth_t *dep, int page,
size_t offset, size_t size, void *dst) );
_PROTOTYPE( static int dp_pkt2user, (dpeth_t *dep, int page,
int length) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static int dp_pkt2user_s, (dpeth_t *dep, int page,
int length) );
_PROTOTYPE( static void dp_user2nic, (dpeth_t *dep, iovec_dat_t *iovp,
vir_bytes offset, int nic_addr, vir_bytes count) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void dp_user2nic_s, (dpeth_t *dep, iovec_dat_s_t *iovp,
vir_bytes offset, int nic_addr, vir_bytes count) );
_PROTOTYPE( static void dp_pio8_user2nic, (dpeth_t *dep,
iovec_dat_t *iovp, vir_bytes offset,
int nic_addr, vir_bytes count) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void dp_pio8_user2nic_s, (dpeth_t *dep,
iovec_dat_s_t *iovp, vir_bytes offset,
int nic_addr, vir_bytes count) );
_PROTOTYPE( static void dp_pio16_user2nic, (dpeth_t *dep,
iovec_dat_t *iovp, vir_bytes offset,
int nic_addr, vir_bytes count) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void dp_pio16_user2nic_s, (dpeth_t *dep,
iovec_dat_s_t *iovp, vir_bytes offset,
int nic_addr, vir_bytes count) );
_PROTOTYPE( static void dp_nic2user, (dpeth_t *dep, int nic_addr,
iovec_dat_t *iovp, vir_bytes offset, vir_bytes count) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void dp_nic2user_s, (dpeth_t *dep, int nic_addr,
iovec_dat_s_t *iovp, vir_bytes offset, vir_bytes count) );
_PROTOTYPE( static void dp_pio8_nic2user, (dpeth_t *dep, int nic_addr,
iovec_dat_t *iovp, vir_bytes offset, vir_bytes count) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void dp_pio8_nic2user_s, (dpeth_t *dep, int nic_addr,
iovec_dat_s_t *iovp, vir_bytes offset, vir_bytes count) );
_PROTOTYPE( static void dp_pio16_nic2user, (dpeth_t *dep, int nic_addr,
iovec_dat_t *iovp, vir_bytes offset, vir_bytes count) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void dp_pio16_nic2user_s, (dpeth_t *dep, int nic_addr,
iovec_dat_s_t *iovp, vir_bytes offset, vir_bytes count) );
_PROTOTYPE( static void dp_next_iovec, (iovec_dat_t *iovp) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void dp_next_iovec_s, (iovec_dat_s_t *iovp) );
_PROTOTYPE( static void conf_hw, (dpeth_t *dep) );
_PROTOTYPE( static void update_conf, (dpeth_t *dep, dp_conf_t *dcp) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void map_hw_buffer, (dpeth_t *dep) );
_PROTOTYPE( static int calc_iovec_size, (iovec_dat_t *iovp) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static int calc_iovec_size_s, (iovec_dat_s_t *iovp) );
_PROTOTYPE( static void reply, (dpeth_t *dep, int err, int may_block) );
_PROTOTYPE( static void mess_reply, (message *req, message *reply) );
_PROTOTYPE( static void get_userdata, (int user_proc,
vir_bytes user_addr, vir_bytes count, void *loc_addr) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void get_userdata_s, (int user_proc,
cp_grant_id_t grant, vir_bytes offset, vir_bytes count,
void *loc_addr) );
_PROTOTYPE( static void put_userdata, (int user_proc,
vir_bytes user_addr, vir_bytes count, void *loc_addr) );
2006-07-10 14:43:38 +02:00
_PROTOTYPE( static void put_userdata_s, (int user_proc,
cp_grant_id_t grant, size_t count, void *loc_addr) );
_PROTOTYPE( static void insb, (port_t port, void *buf, size_t size) );
_PROTOTYPE( static void insw, (port_t port, void *buf, size_t size) );
_PROTOTYPE( static void do_vir_insb, (port_t port, int proc,
vir_bytes buf, size_t size) );
_PROTOTYPE( static void do_vir_insw, (port_t port, int proc,
vir_bytes buf, size_t size) );
_PROTOTYPE( static void do_vir_outsb, (port_t port, int proc,
vir_bytes buf, size_t size) );
_PROTOTYPE( static void do_vir_outsw, (port_t port, int proc,
vir_bytes buf, size_t size) );
PRIVATE int handle_hw_intr(void)
{
int i, r, irq;
dpeth_t *dep;
for (i= 0, dep= &de_table[0]; i<DE_PORT_NR; i++, dep++)
{
if (dep->de_mode != DEM_ENABLED)
continue;
assert(dep->de_flags & DEF_ENABLED);
irq= dep->de_irq;
assert(irq >= 0 && irq < NR_IRQ_VECTORS);
if (dep->de_int_pending || 1)
{
dep->de_int_pending= 0;
dp_check_ints(dep);
do_int(dep);
r= sys_irqenable(&dep->de_hook);
if (r != OK)
{
panic("DP8390",
"unable enable interrupts", r);
}
}
}
return r;
}
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* SEF functions and variables. */
FORWARD _PROTOTYPE( void sef_local_startup, (void) );
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
FORWARD _PROTOTYPE( int sef_cb_init_fresh, (int type, sef_init_info_t *info) );
EXTERN int env_argc;
EXTERN char **env_argv;
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/*===========================================================================*
* dpeth_task *
*===========================================================================*/
int main(int argc, char *argv[])
{
message m;
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
int r;
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* SEF local startup. */
env_setargs(argc, argv);
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
sef_local_startup();
2005-10-21 19:09:08 +02:00
while (TRUE)
{
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
if ((r= sef_receive(ANY, &m)) != OK)
panic("", "dp8390: sef_receive failed", r);
if (is_notify(m.m_type)) {
switch (_ENDPOINT_P(m.m_source)) {
case HARDWARE:
r = handle_hw_intr();
break;
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
case PM_PROC_NR:
{
sigset_t set;
if (getsigset(&set) != 0) break;
if (sigismember(&set, SIGTERM))
dp8390_stop();
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
break;
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
}
case CLOCK:
printf("dp8390: notify from CLOCK\n");
break;
default:
panic("", "dp8390: illegal notify from",
m.m_source);
}
/* done, get a new message */
continue;
}
switch (m.m_type)
{
case DL_WRITE: do_vwrite(&m, FALSE, FALSE); break;
case DL_WRITEV: do_vwrite(&m, FALSE, TRUE); break;
2006-07-10 14:43:38 +02:00
case DL_WRITEV_S: do_vwrite_s(&m, FALSE); break;
case DL_READ: do_vread(&m, FALSE); break;
case DL_READV: do_vread(&m, TRUE); break;
2006-07-10 14:43:38 +02:00
case DL_READV_S: do_vread_s(&m); break;
case DL_CONF: do_init(&m); break;
case DL_GETSTAT: do_getstat(&m); break;
2006-07-10 14:43:38 +02:00
case DL_GETSTAT_S: do_getstat_s(&m); break;
2005-10-21 19:09:08 +02:00
case DL_GETNAME: do_getname(&m); break;
case DL_STOP: do_stop(&m); break;
default:
panic("", "dp8390: illegal message", m.m_type);
}
}
}
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/*===========================================================================*
* sef_local_startup *
*===========================================================================*/
PRIVATE void sef_local_startup()
{
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
/* Register init callbacks. */
sef_setcb_init_fresh(sef_cb_init_fresh);
sef_setcb_init_restart(sef_cb_init_fresh);
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* No live update support for now. */
/* Let SEF perform startup. */
sef_startup();
}
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
/*===========================================================================*
* sef_cb_init_fresh *
*===========================================================================*/
PRIVATE int sef_cb_init_fresh(int type, sef_init_info_t *info)
{
/* Initialize the dp8390 driver. */
int i, r, tasknr;
dpeth_t *dep;
long v;
system_hz = sys_hz();
if (env_argc < 1)
{
panic("DP8390",
"A head which at this time has no name", NO_NUM);
}
(progname=strrchr(env_argv[0],'/')) ? progname++
: (progname=env_argv[0]);
for (i= 0, dep= de_table; i<DE_PORT_NR; i++, dep++)
{
strcpy(dep->de_name, "dp8390#0");
dep->de_name[7] += i;
}
v= 0;
(void) env_parse("ETH_IGN_PROTO", "x", 0, &v, 0x0000L, 0xFFFFL);
eth_ign_proto= htons((u16_t) v);
/* Try to notify inet that we are present (again) */
r = _pm_findproc("inet", &tasknr);
if (r == OK)
notify(tasknr);
return(OK);
}
#if 0
/*===========================================================================*
* dp8390_dump *
*===========================================================================*/
void dp8390_dump()
{
dpeth_t *dep;
int i, isr;
printf("\n");
for (i= 0, dep = &de_table[0]; i<DE_PORT_NR; i++, dep++)
{
#if XXX
if (dep->de_mode == DEM_DISABLED)
printf("dp8390 port %d is disabled\n", i);
else if (dep->de_mode == DEM_SINK)
printf("dp8390 port %d is in sink mode\n", i);
#endif
if (dep->de_mode != DEM_ENABLED)
continue;
printf("dp8390 statistics of port %d:\n", i);
printf("recvErr :%8ld\t", dep->de_stat.ets_recvErr);
printf("sendErr :%8ld\t", dep->de_stat.ets_sendErr);
printf("OVW :%8ld\n", dep->de_stat.ets_OVW);
printf("CRCerr :%8ld\t", dep->de_stat.ets_CRCerr);
printf("frameAll :%8ld\t", dep->de_stat.ets_frameAll);
printf("missedP :%8ld\n", dep->de_stat.ets_missedP);
printf("packetR :%8ld\t", dep->de_stat.ets_packetR);
printf("packetT :%8ld\t", dep->de_stat.ets_packetT);
printf("transDef :%8ld\n", dep->de_stat.ets_transDef);
printf("collision :%8ld\t", dep->de_stat.ets_collision);
printf("transAb :%8ld\t", dep->de_stat.ets_transAb);
printf("carrSense :%8ld\n", dep->de_stat.ets_carrSense);
printf("fifoUnder :%8ld\t", dep->de_stat.ets_fifoUnder);
printf("fifoOver :%8ld\t", dep->de_stat.ets_fifoOver);
printf("CDheartbeat:%8ld\n", dep->de_stat.ets_CDheartbeat);
printf("OWC :%8ld\t", dep->de_stat.ets_OWC);
isr= inb_reg0(dep, DP_ISR);
printf("dp_isr = 0x%x + 0x%x, de_flags = 0x%x\n", isr,
inb_reg0(dep, DP_ISR), dep->de_flags);
}
}
#endif
/*===========================================================================*
* dp8390_stop *
*===========================================================================*/
static void dp8390_stop()
{
message mess;
int i;
for (i= 0; i<DE_PORT_NR; i++)
{
if (de_table[i].de_mode != DEM_ENABLED)
continue;
mess.m_type= DL_STOP;
mess.DL_PORT= i;
do_stop(&mess);
}
}
#if ENABLE_PCI
/*===========================================================================*
* pci_conf *
*===========================================================================*/
static void pci_conf()
{
int i, h;
char *envvar;
struct dpeth *dep;
static char envfmt[] = "*:d.d.d";
long v;
static int first_time= 1;
if (!first_time)
return;
first_time= 0;
for (i= 0, dep= de_table; i<DE_PORT_NR; i++, dep++)
{
envvar= dp_conf[i].dpc_envvar;
if (!(dep->de_pci= env_prefix(envvar, "pci")))
continue; /* no PCI config */
v= 0;
(void) env_parse(envvar, envfmt, 1, &v, 0, 255);
dep->de_pcibus= v;
v= 0;
(void) env_parse(envvar, envfmt, 2, &v, 0, 255);
dep->de_pcidev= v;
v= 0;
(void) env_parse(envvar, envfmt, 3, &v, 0, 255);
dep->de_pcifunc= v;
}
for (h= 1; h >= 0; h--) {
for (i= 0, dep= de_table; i<DE_PORT_NR; i++, dep++)
{
if (!dep->de_pci)
{
printf("pci: no pci for port %d\n", i);
continue;
}
if (((dep->de_pcibus | dep->de_pcidev |
dep->de_pcifunc) != 0) != h)
{
continue;
}
if (!rtl_probe(dep))
dep->de_pci= -1;
}
}
}
#endif /* ENABLE_PCI */
/*===========================================================================*
* do_vwrite *
*===========================================================================*/
static void do_vwrite(mp, from_int, vectored)
message *mp;
int from_int;
int vectored;
{
int port, count, size;
int sendq_head;
dpeth_t *dep;
port = mp->DL_PORT;
count = mp->DL_COUNT;
if (port < 0 || port >= DE_PORT_NR)
panic("", "dp8390: illegal port", port);
dep= &de_table[port];
dep->de_client= mp->DL_PROC;
if (dep->de_mode == DEM_SINK)
{
assert(!from_int);
dep->de_flags |= DEF_PACK_SEND;
reply(dep, OK, FALSE);
return;
}
assert(dep->de_mode == DEM_ENABLED);
assert(dep->de_flags & DEF_ENABLED);
if (dep->de_flags & DEF_SEND_AVAIL)
panic("", "dp8390: send already in progress", NO_NUM);
sendq_head= dep->de_sendq_head;
if (dep->de_sendq[sendq_head].sq_filled)
{
if (from_int)
panic("", "dp8390: should not be sending\n", NO_NUM);
dep->de_sendmsg= *mp;
dep->de_flags |= DEF_SEND_AVAIL;
reply(dep, OK, FALSE);
return;
}
assert(!(dep->de_flags & DEF_PACK_SEND));
if (vectored)
{
get_userdata(mp->DL_PROC, (vir_bytes) mp->DL_ADDR,
(count > IOVEC_NR ? IOVEC_NR : count) *
sizeof(iovec_t), dep->de_write_iovec.iod_iovec);
dep->de_write_iovec.iod_iovec_s = count;
dep->de_write_iovec.iod_proc_nr = mp->DL_PROC;
dep->de_write_iovec.iod_iovec_addr = (vir_bytes) mp->DL_ADDR;
dep->de_tmp_iovec = dep->de_write_iovec;
size = calc_iovec_size(&dep->de_tmp_iovec);
}
else
{
dep->de_write_iovec.iod_iovec[0].iov_addr =
(vir_bytes) mp->DL_ADDR;
dep->de_write_iovec.iod_iovec[0].iov_size =
mp->DL_COUNT;
dep->de_write_iovec.iod_iovec_s = 1;
dep->de_write_iovec.iod_proc_nr = mp->DL_PROC;
dep->de_write_iovec.iod_iovec_addr = 0;
size= mp->DL_COUNT;
}
if (size < ETH_MIN_PACK_SIZE || size > ETH_MAX_PACK_SIZE_TAGGED)
{
panic("", "dp8390: invalid packet size", size);
}
(dep->de_user2nicf)(dep, &dep->de_write_iovec, 0,
dep->de_sendq[sendq_head].sq_sendpage * DP_PAGESIZE,
size);
dep->de_sendq[sendq_head].sq_filled= TRUE;
if (dep->de_sendq_tail == sendq_head)
{
outb_reg0(dep, DP_TPSR, dep->de_sendq[sendq_head].sq_sendpage);
outb_reg0(dep, DP_TBCR1, size >> 8);
outb_reg0(dep, DP_TBCR0, size & 0xff);
outb_reg0(dep, DP_CR, CR_TXP | CR_EXTRA);/* there it goes.. */
}
else
dep->de_sendq[sendq_head].sq_size= size;
if (++sendq_head == dep->de_sendq_nr)
sendq_head= 0;
assert(sendq_head < SENDQ_NR);
dep->de_sendq_head= sendq_head;
dep->de_flags |= DEF_PACK_SEND;
/* If the interrupt handler called, don't send a reply. The reply
* will be sent after all interrupts are handled.
*/
if (from_int)
return;
reply(dep, OK, FALSE);
assert(dep->de_mode == DEM_ENABLED);
assert(dep->de_flags & DEF_ENABLED);
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* do_vwrite_s *
*===========================================================================*/
static void do_vwrite_s(mp, from_int)
message *mp;
int from_int;
{
int port, count, size;
int sendq_head;
dpeth_t *dep;
port = mp->DL_PORT;
count = mp->DL_COUNT;
if (port < 0 || port >= DE_PORT_NR)
panic("", "dp8390: illegal port", port);
dep= &de_table[port];
dep->de_client= mp->DL_PROC;
if (dep->de_mode == DEM_SINK)
{
assert(!from_int);
dep->de_flags |= DEF_PACK_SEND;
reply(dep, OK, FALSE);
return;
}
assert(dep->de_mode == DEM_ENABLED);
assert(dep->de_flags & DEF_ENABLED);
if (dep->de_flags & DEF_SEND_AVAIL)
panic("", "dp8390: send already in progress", NO_NUM);
sendq_head= dep->de_sendq_head;
if (dep->de_sendq[sendq_head].sq_filled)
{
if (from_int)
panic("", "dp8390: should not be sending\n", NO_NUM);
dep->de_sendmsg= *mp;
dep->de_flags |= DEF_SEND_AVAIL;
reply(dep, OK, FALSE);
return;
}
assert(!(dep->de_flags & DEF_PACK_SEND));
get_userdata_s(mp->DL_PROC, mp->DL_GRANT, 0,
(count > IOVEC_NR ? IOVEC_NR : count) *
sizeof(dep->de_write_iovec_s.iod_iovec[0]),
dep->de_write_iovec_s.iod_iovec);
dep->de_write_iovec_s.iod_iovec_s = count;
dep->de_write_iovec_s.iod_proc_nr = mp->DL_PROC;
dep->de_write_iovec_s.iod_grant = mp->DL_GRANT;
dep->de_write_iovec_s.iod_iovec_offset = 0;
dep->de_tmp_iovec_s = dep->de_write_iovec_s;
size = calc_iovec_size_s(&dep->de_tmp_iovec_s);
if (size < ETH_MIN_PACK_SIZE || size > ETH_MAX_PACK_SIZE_TAGGED)
{
panic("", "dp8390: invalid packet size", size);
}
(dep->de_user2nicf_s)(dep, &dep->de_write_iovec_s, 0,
dep->de_sendq[sendq_head].sq_sendpage * DP_PAGESIZE,
size);
dep->de_sendq[sendq_head].sq_filled= TRUE;
if (dep->de_sendq_tail == sendq_head)
{
outb_reg0(dep, DP_TPSR, dep->de_sendq[sendq_head].sq_sendpage);
outb_reg0(dep, DP_TBCR1, size >> 8);
outb_reg0(dep, DP_TBCR0, size & 0xff);
outb_reg0(dep, DP_CR, CR_TXP | CR_EXTRA);/* there it goes.. */
}
else
dep->de_sendq[sendq_head].sq_size= size;
if (++sendq_head == dep->de_sendq_nr)
sendq_head= 0;
assert(sendq_head < SENDQ_NR);
dep->de_sendq_head= sendq_head;
dep->de_flags |= DEF_PACK_SEND;
/* If the interrupt handler called, don't send a reply. The reply
* will be sent after all interrupts are handled.
*/
if (from_int)
return;
reply(dep, OK, FALSE);
assert(dep->de_mode == DEM_ENABLED);
assert(dep->de_flags & DEF_ENABLED);
}
/*===========================================================================*
* do_vread *
*===========================================================================*/
static void do_vread(mp, vectored)
message *mp;
int vectored;
{
int port, count;
int size;
dpeth_t *dep;
port = mp->DL_PORT;
count = mp->DL_COUNT;
if (port < 0 || port >= DE_PORT_NR)
panic("", "dp8390: illegal port", port);
dep= &de_table[port];
dep->de_client= mp->DL_PROC;
if (dep->de_mode == DEM_SINK)
{
reply(dep, OK, FALSE);
return;
}
assert(dep->de_mode == DEM_ENABLED);
assert(dep->de_flags & DEF_ENABLED);
if(dep->de_flags & DEF_READING)
panic("", "dp8390: read already in progress", NO_NUM);
2006-07-10 14:43:38 +02:00
dep->de_safecopy_read= 0;
if (vectored)
{
get_userdata(mp->DL_PROC, (vir_bytes) mp->DL_ADDR,
(count > IOVEC_NR ? IOVEC_NR : count) *
sizeof(iovec_t), dep->de_read_iovec.iod_iovec);
dep->de_read_iovec.iod_iovec_s = count;
dep->de_read_iovec.iod_proc_nr = mp->DL_PROC;
dep->de_read_iovec.iod_iovec_addr = (vir_bytes) mp->DL_ADDR;
dep->de_tmp_iovec = dep->de_read_iovec;
size= calc_iovec_size(&dep->de_tmp_iovec);
}
else
{
dep->de_read_iovec.iod_iovec[0].iov_addr =
(vir_bytes) mp->DL_ADDR;
dep->de_read_iovec.iod_iovec[0].iov_size =
mp->DL_COUNT;
dep->de_read_iovec.iod_iovec_s = 1;
dep->de_read_iovec.iod_proc_nr = mp->DL_PROC;
dep->de_read_iovec.iod_iovec_addr = 0;
size= count;
}
if (size < ETH_MAX_PACK_SIZE_TAGGED)
panic("", "dp8390: wrong packet size", size);
dep->de_flags |= DEF_READING;
dp_recv(dep);
if ((dep->de_flags & (DEF_READING|DEF_STOPPED)) ==
(DEF_READING|DEF_STOPPED))
{
/* The chip is stopped, and all arrived packets are
* delivered.
*/
dp_reset(dep);
}
reply(dep, OK, FALSE);
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* do_vread_s *
*===========================================================================*/
static void do_vread_s(mp)
message *mp;
{
int port, count;
int size;
dpeth_t *dep;
port = mp->DL_PORT;
count = mp->DL_COUNT;
if (port < 0 || port >= DE_PORT_NR)
panic("", "dp8390: illegal port", port);
dep= &de_table[port];
dep->de_client= mp->DL_PROC;
if (dep->de_mode == DEM_SINK)
{
reply(dep, OK, FALSE);
return;
}
assert(dep->de_mode == DEM_ENABLED);
assert(dep->de_flags & DEF_ENABLED);
dep->de_safecopy_read= 1;
if(dep->de_flags & DEF_READING)
panic("", "dp8390: read already in progress", NO_NUM);
get_userdata_s(mp->DL_PROC, mp->DL_GRANT, 0,
(count > IOVEC_NR ? IOVEC_NR : count) *
sizeof(dep->de_read_iovec_s.iod_iovec[0]),
dep->de_read_iovec_s.iod_iovec);
dep->de_read_iovec_s.iod_iovec_s = count;
dep->de_read_iovec_s.iod_proc_nr = mp->DL_PROC;
dep->de_read_iovec_s.iod_grant = mp->DL_GRANT;
dep->de_read_iovec_s.iod_iovec_offset = 0;
dep->de_tmp_iovec_s = dep->de_read_iovec_s;
size= calc_iovec_size_s(&dep->de_tmp_iovec_s);
if (size < ETH_MAX_PACK_SIZE_TAGGED)
panic("", "dp8390: wrong packet size", size);
dep->de_flags |= DEF_READING;
dp_recv(dep);
if ((dep->de_flags & (DEF_READING|DEF_STOPPED)) ==
(DEF_READING|DEF_STOPPED))
{
/* The chip is stopped, and all arrived packets are
* delivered.
*/
dp_reset(dep);
}
reply(dep, OK, FALSE);
}
/*===========================================================================*
* do_init *
*===========================================================================*/
static void do_init(mp)
message *mp;
{
int port;
dpeth_t *dep;
message reply_mess;
#if ENABLE_PCI
pci_conf(); /* Configure PCI devices. */
#endif
port = mp->DL_PORT;
if (port < 0 || port >= DE_PORT_NR)
{
2006-07-10 14:43:38 +02:00
reply_mess.m_type= DL_CONF_REPLY;
reply_mess.m3_i1= ENXIO;
mess_reply(mp, &reply_mess);
return;
}
dep= &de_table[port];
if (dep->de_mode == DEM_DISABLED)
{
/* This is the default, try to (re)locate the device. */
conf_hw(dep);
if (dep->de_mode == DEM_DISABLED)
{
/* Probe failed, or the device is configured off. */
2006-07-10 14:43:38 +02:00
reply_mess.m_type= DL_CONF_REPLY;
reply_mess.m3_i1= ENXIO;
mess_reply(mp, &reply_mess);
return;
}
if (dep->de_mode == DEM_ENABLED)
dp_init(dep);
}
if (dep->de_mode == DEM_SINK)
{
strncpy((char *) dep->de_address.ea_addr, "ZDP", 6);
dep->de_address.ea_addr[5] = port;
dp_confaddr(dep);
2006-07-10 14:43:38 +02:00
reply_mess.m_type = DL_CONF_REPLY;
reply_mess.m3_i1 = mp->DL_PORT;
reply_mess.m3_i2 = DE_PORT_NR;
*(ether_addr_t *) reply_mess.m3_ca1 = dep->de_address;
mess_reply(mp, &reply_mess);
return;
}
assert(dep->de_mode == DEM_ENABLED);
assert(dep->de_flags & DEF_ENABLED);
dep->de_flags &= ~(DEF_PROMISC | DEF_MULTI | DEF_BROAD);
if (mp->DL_MODE & DL_PROMISC_REQ)
dep->de_flags |= DEF_PROMISC | DEF_MULTI | DEF_BROAD;
if (mp->DL_MODE & DL_MULTI_REQ)
dep->de_flags |= DEF_MULTI;
if (mp->DL_MODE & DL_BROAD_REQ)
dep->de_flags |= DEF_BROAD;
dep->de_client = mp->m_source;
dp_reinit(dep);
2006-07-10 14:43:38 +02:00
reply_mess.m_type = DL_CONF_REPLY;
reply_mess.m3_i1 = mp->DL_PORT;
reply_mess.m3_i2 = DE_PORT_NR;
*(ether_addr_t *) reply_mess.m3_ca1 = dep->de_address;
mess_reply(mp, &reply_mess);
}
/*===========================================================================*
* do_int *
*===========================================================================*/
static void do_int(dep)
dpeth_t *dep;
{
if (dep->de_flags & (DEF_PACK_SEND | DEF_PACK_RECV))
reply(dep, OK, TRUE);
}
/*===========================================================================*
* do_getstat *
*===========================================================================*/
static void do_getstat(mp)
message *mp;
{
int port, r;
dpeth_t *dep;
port = mp->DL_PORT;
if (port < 0 || port >= DE_PORT_NR)
panic("", "dp8390: illegal port", port);
dep= &de_table[port];
dep->de_client= mp->DL_PROC;
if (dep->de_mode == DEM_SINK)
{
put_userdata(mp->DL_PROC, (vir_bytes) mp->DL_ADDR,
(vir_bytes) sizeof(dep->de_stat), &dep->de_stat);
mp->m_type= DL_STAT_REPLY;
mp->DL_PORT= port;
mp->DL_STAT= OK;
r= send(mp->m_source, mp);
if (r != OK)
panic(__FILE__, "do_getstat: send failed: %d\n", r);
return;
}
assert(dep->de_mode == DEM_ENABLED);
assert(dep->de_flags & DEF_ENABLED);
dep->de_stat.ets_CRCerr += inb_reg0(dep, DP_CNTR0);
dep->de_stat.ets_frameAll += inb_reg0(dep, DP_CNTR1);
dep->de_stat.ets_missedP += inb_reg0(dep, DP_CNTR2);
put_userdata(mp->DL_PROC, (vir_bytes) mp->DL_ADDR,
(vir_bytes) sizeof(dep->de_stat), &dep->de_stat);
mp->m_type= DL_STAT_REPLY;
mp->DL_PORT= port;
mp->DL_STAT= OK;
r= send(mp->m_source, mp);
if (r != OK)
panic(__FILE__, "do_getstat: send failed: %d\n", r);
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* do_getstat_s *
*===========================================================================*/
static void do_getstat_s(mp)
message *mp;
{
int port, r;
2006-07-10 14:43:38 +02:00
dpeth_t *dep;
port = mp->DL_PORT;
if (port < 0 || port >= DE_PORT_NR)
panic("", "dp8390: illegal port", port);
dep= &de_table[port];
dep->de_client= mp->DL_PROC;
if (dep->de_mode == DEM_SINK)
{
put_userdata(mp->DL_PROC, (vir_bytes) mp->DL_ADDR,
(vir_bytes) sizeof(dep->de_stat), &dep->de_stat);
mp->m_type= DL_STAT_REPLY;
mp->DL_PORT= port;
mp->DL_STAT= OK;
r= send(mp->m_source, mp);
if (r != OK)
panic(__FILE__, "do_getstat: send failed: %d\n", r);
2006-07-10 14:43:38 +02:00
return;
}
assert(dep->de_mode == DEM_ENABLED);
assert(dep->de_flags & DEF_ENABLED);
dep->de_stat.ets_CRCerr += inb_reg0(dep, DP_CNTR0);
dep->de_stat.ets_frameAll += inb_reg0(dep, DP_CNTR1);
dep->de_stat.ets_missedP += inb_reg0(dep, DP_CNTR2);
put_userdata_s(mp->DL_PROC, mp->DL_GRANT,
sizeof(dep->de_stat), &dep->de_stat);
mp->m_type= DL_STAT_REPLY;
mp->DL_PORT= port;
mp->DL_STAT= OK;
r= send(mp->m_source, mp);
if (r != OK)
panic(__FILE__, "do_getstat: send failed: %d\n", r);
2006-07-10 14:43:38 +02:00
}
2005-10-21 19:09:08 +02:00
/*===========================================================================*
* do_getname *
*===========================================================================*/
static void do_getname(mp)
message *mp;
{
int r;
strncpy(mp->DL_NAME, progname, sizeof(mp->DL_NAME));
mp->DL_NAME[sizeof(mp->DL_NAME)-1]= '\0';
mp->m_type= DL_NAME_REPLY;
r= send(mp->m_source, mp);
if (r != OK)
panic("dp8390", "do_getname: send failed: %d\n", r);
}
/*===========================================================================*
* do_stop *
*===========================================================================*/
static void do_stop(mp)
message *mp;
{
int port;
dpeth_t *dep;
port = mp->DL_PORT;
if (port < 0 || port >= DE_PORT_NR)
panic("", "dp8390: illegal port", port);
dep= &de_table[port];
if (dep->de_mode == DEM_SINK)
return;
assert(dep->de_mode == DEM_ENABLED);
if (!(dep->de_flags & DEF_ENABLED))
return;
outb_reg0(dep, DP_CR, CR_STP | CR_DM_ABORT);
(dep->de_stopf)(dep);
dep->de_flags= DEF_EMPTY;
}
/*===========================================================================*
* dp_init *
*===========================================================================*/
static void dp_init(dep)
dpeth_t *dep;
{
int dp_rcr_reg;
int i, r;
/* General initialization */
dep->de_flags = DEF_EMPTY;
(*dep->de_initf)(dep);
dp_confaddr(dep);
if (debug)
{
printf("%s: Ethernet address ", dep->de_name);
for (i= 0; i < 6; i++)
printf("%x%c", dep->de_address.ea_addr[i],
i < 5 ? ':' : '\n');
}
2006-07-10 14:43:38 +02:00
/* Map buffer */
map_hw_buffer(dep);
/* Initialization of the dp8390 following the mandatory procedure
* in reference manual ("DP8390D/NS32490D NIC Network Interface
* Controller", National Semiconductor, July 1995, Page 29).
*/
/* Step 1: */
outb_reg0(dep, DP_CR, CR_PS_P0 | CR_STP | CR_DM_ABORT);
/* Step 2: */
if (dep->de_16bit)
outb_reg0(dep, DP_DCR, DCR_WORDWIDE | DCR_8BYTES | DCR_BMS);
else
outb_reg0(dep, DP_DCR, DCR_BYTEWIDE | DCR_8BYTES | DCR_BMS);
/* Step 3: */
outb_reg0(dep, DP_RBCR0, 0);
outb_reg0(dep, DP_RBCR1, 0);
/* Step 4: */
dp_rcr_reg = 0;
if (dep->de_flags & DEF_PROMISC)
dp_rcr_reg |= RCR_AB | RCR_PRO | RCR_AM;
if (dep->de_flags & DEF_BROAD)
dp_rcr_reg |= RCR_AB;
if (dep->de_flags & DEF_MULTI)
dp_rcr_reg |= RCR_AM;
outb_reg0(dep, DP_RCR, dp_rcr_reg);
/* Step 5: */
outb_reg0(dep, DP_TCR, TCR_INTERNAL);
/* Step 6: */
outb_reg0(dep, DP_BNRY, dep->de_startpage);
outb_reg0(dep, DP_PSTART, dep->de_startpage);
outb_reg0(dep, DP_PSTOP, dep->de_stoppage);
/* Step 7: */
outb_reg0(dep, DP_ISR, 0xFF);
/* Step 8: */
outb_reg0(dep, DP_IMR, IMR_PRXE | IMR_PTXE | IMR_RXEE | IMR_TXEE |
IMR_OVWE | IMR_CNTE);
/* Step 9: */
outb_reg0(dep, DP_CR, CR_PS_P1 | CR_DM_ABORT | CR_STP);
outb_reg1(dep, DP_PAR0, dep->de_address.ea_addr[0]);
outb_reg1(dep, DP_PAR1, dep->de_address.ea_addr[1]);
outb_reg1(dep, DP_PAR2, dep->de_address.ea_addr[2]);
outb_reg1(dep, DP_PAR3, dep->de_address.ea_addr[3]);
outb_reg1(dep, DP_PAR4, dep->de_address.ea_addr[4]);
outb_reg1(dep, DP_PAR5, dep->de_address.ea_addr[5]);
outb_reg1(dep, DP_MAR0, 0xff);
outb_reg1(dep, DP_MAR1, 0xff);
outb_reg1(dep, DP_MAR2, 0xff);
outb_reg1(dep, DP_MAR3, 0xff);
outb_reg1(dep, DP_MAR4, 0xff);
outb_reg1(dep, DP_MAR5, 0xff);
outb_reg1(dep, DP_MAR6, 0xff);
outb_reg1(dep, DP_MAR7, 0xff);
outb_reg1(dep, DP_CURR, dep->de_startpage + 1);
/* Step 10: */
outb_reg0(dep, DP_CR, CR_DM_ABORT | CR_STA);
/* Step 11: */
outb_reg0(dep, DP_TCR, TCR_NORMAL);
inb_reg0(dep, DP_CNTR0); /* reset counters by reading */
inb_reg0(dep, DP_CNTR1);
inb_reg0(dep, DP_CNTR2);
/* Finish the initialization. */
dep->de_flags |= DEF_ENABLED;
for (i= 0; i<dep->de_sendq_nr; i++)
dep->de_sendq[i].sq_filled= 0;
dep->de_sendq_head= 0;
dep->de_sendq_tail= 0;
if (!dep->de_prog_IO)
{
dep->de_user2nicf= dp_user2nic;
2006-07-10 14:43:38 +02:00
dep->de_user2nicf_s= dp_user2nic_s;
dep->de_nic2userf= dp_nic2user;
2006-07-10 14:43:38 +02:00
dep->de_nic2userf_s= dp_nic2user_s;
dep->de_getblockf= dp_getblock;
}
else if (dep->de_16bit)
{
dep->de_user2nicf= dp_pio16_user2nic;
2006-07-10 14:43:38 +02:00
dep->de_user2nicf_s= dp_pio16_user2nic_s;
dep->de_nic2userf= dp_pio16_nic2user;
2006-07-10 14:43:38 +02:00
dep->de_nic2userf_s= dp_pio16_nic2user_s;
dep->de_getblockf= dp_pio16_getblock;
}
else
{
dep->de_user2nicf= dp_pio8_user2nic;
2006-07-10 14:43:38 +02:00
dep->de_user2nicf_s= dp_pio8_user2nic_s;
dep->de_nic2userf= dp_pio8_nic2user;
2006-07-10 14:43:38 +02:00
dep->de_nic2userf_s= dp_pio8_nic2user_s;
dep->de_getblockf= dp_pio8_getblock;
}
/* Set the interrupt handler and policy. Do not automatically
* reenable interrupts. Return the IRQ line number on interrupts.
*/
dep->de_hook = dep->de_irq;
r= sys_irqsetpolicy(dep->de_irq, 0, &dep->de_hook);
if (r != OK)
panic("DP8390", "sys_irqsetpolicy failed", r);
r= sys_irqenable(&dep->de_hook);
if (r != OK)
{
panic("DP8390", "unable enable interrupts", r);
}
}
/*===========================================================================*
* dp_confaddr *
*===========================================================================*/
static void dp_confaddr(dep)
dpeth_t *dep;
{
int i;
char eakey[16];
static char eafmt[]= "x:x:x:x:x:x";
long v;
/* User defined ethernet address? */
strcpy(eakey, dp_conf[dep-de_table].dpc_envvar);
strcat(eakey, "_EA");
for (i= 0; i < 6; i++)
{
v= dep->de_address.ea_addr[i];
if (env_parse(eakey, eafmt, i, &v, 0x00L, 0xFFL) != EP_SET)
{
break;
}
dep->de_address.ea_addr[i]= v;
}
if (i != 0 && i != 6) env_panic(eakey); /* It's all or nothing */
}
/*===========================================================================*
* dp_reinit *
*===========================================================================*/
static void dp_reinit(dep)
dpeth_t *dep;
{
int dp_rcr_reg;
outb_reg0(dep, DP_CR, CR_PS_P0 | CR_EXTRA);
dp_rcr_reg = 0;
if (dep->de_flags & DEF_PROMISC)
dp_rcr_reg |= RCR_AB | RCR_PRO | RCR_AM;
if (dep->de_flags & DEF_BROAD)
dp_rcr_reg |= RCR_AB;
if (dep->de_flags & DEF_MULTI)
dp_rcr_reg |= RCR_AM;
outb_reg0(dep, DP_RCR, dp_rcr_reg);
}
/*===========================================================================*
* dp_reset *
*===========================================================================*/
static void dp_reset(dep)
dpeth_t *dep;
{
int i;
/* Stop chip */
outb_reg0(dep, DP_CR, CR_STP | CR_DM_ABORT);
outb_reg0(dep, DP_RBCR0, 0);
outb_reg0(dep, DP_RBCR1, 0);
for (i= 0; i < 0x1000 && ((inb_reg0(dep, DP_ISR) & ISR_RST) == 0); i++)
; /* Do nothing */
outb_reg0(dep, DP_TCR, TCR_1EXTERNAL|TCR_OFST);
outb_reg0(dep, DP_CR, CR_STA|CR_DM_ABORT);
outb_reg0(dep, DP_TCR, TCR_NORMAL);
/* Acknowledge the ISR_RDC (remote dma) interrupt. */
for (i= 0; i < 0x1000 && ((inb_reg0(dep, DP_ISR) & ISR_RDC) == 0); i++)
; /* Do nothing */
outb_reg0(dep, DP_ISR, inb_reg0(dep, DP_ISR) & ~ISR_RDC);
/* Reset the transmit ring. If we were transmitting a packet, we
* pretend that the packet is processed. Higher layers will
* retransmit if the packet wasn't actually sent.
*/
dep->de_sendq_head= dep->de_sendq_tail= 0;
for (i= 0; i<dep->de_sendq_nr; i++)
dep->de_sendq[i].sq_filled= 0;
dp_send(dep);
dep->de_flags &= ~DEF_STOPPED;
}
/*===========================================================================*
* dp_check_ints *
*===========================================================================*/
static void dp_check_ints(dep)
dpeth_t *dep;
{
int isr, tsr;
int size, sendq_tail;
if (!(dep->de_flags & DEF_ENABLED))
panic("", "dp8390: got premature interrupt", NO_NUM);
for(;;)
{
isr = inb_reg0(dep, DP_ISR);
if (!isr)
break;
outb_reg0(dep, DP_ISR, isr);
if (isr & (ISR_PTX|ISR_TXE))
{
if (isr & ISR_TXE)
{
#if DEBUG
{ printf("%s: got send Error\n", dep->de_name); }
#endif
dep->de_stat.ets_sendErr++;
}
else
{
tsr = inb_reg0(dep, DP_TSR);
if (tsr & TSR_PTX) dep->de_stat.ets_packetT++;
#if 0 /* Reserved in later manuals, should be ignored */
if (!(tsr & TSR_DFR))
{
/* In most (all?) implementations of
* the dp8390, this bit is set
* when the packet is not deferred
*/
dep->de_stat.ets_transDef++;
}
#endif
if (tsr & TSR_COL) dep->de_stat.ets_collision++;
if (tsr & TSR_ABT) dep->de_stat.ets_transAb++;
if (tsr & TSR_CRS) dep->de_stat.ets_carrSense++;
if (tsr & TSR_FU
&& ++dep->de_stat.ets_fifoUnder <= 10)
{
printf("%s: fifo underrun\n",
dep->de_name);
}
if (tsr & TSR_CDH
&& ++dep->de_stat.ets_CDheartbeat <= 10)
{
printf("%s: CD heart beat failure\n",
dep->de_name);
}
if (tsr & TSR_OWC) dep->de_stat.ets_OWC++;
}
sendq_tail= dep->de_sendq_tail;
if (!(dep->de_sendq[sendq_tail].sq_filled))
{
/* Software bug? */
assert(!debug);
/* Or hardware bug? */
printf(
"%s: transmit interrupt, but not sending\n",
dep->de_name);
continue;
}
dep->de_sendq[sendq_tail].sq_filled= 0;
if (++sendq_tail == dep->de_sendq_nr)
sendq_tail= 0;
dep->de_sendq_tail= sendq_tail;
if (dep->de_sendq[sendq_tail].sq_filled)
{
size= dep->de_sendq[sendq_tail].sq_size;
outb_reg0(dep, DP_TPSR,
dep->de_sendq[sendq_tail].sq_sendpage);
outb_reg0(dep, DP_TBCR1, size >> 8);
outb_reg0(dep, DP_TBCR0, size & 0xff);
outb_reg0(dep, DP_CR, CR_TXP | CR_EXTRA);
}
if (dep->de_flags & DEF_SEND_AVAIL)
dp_send(dep);
}
if (isr & ISR_PRX)
{
/* Only call dp_recv if there is a read request */
if (dep->de_flags & DEF_READING)
dp_recv(dep);
}
if (isr & ISR_RXE) dep->de_stat.ets_recvErr++;
if (isr & ISR_CNT)
{
dep->de_stat.ets_CRCerr += inb_reg0(dep, DP_CNTR0);
dep->de_stat.ets_frameAll += inb_reg0(dep, DP_CNTR1);
dep->de_stat.ets_missedP += inb_reg0(dep, DP_CNTR2);
}
if (isr & ISR_OVW)
{
dep->de_stat.ets_OVW++;
#if 0
{ printW(); printf(
"%s: got overwrite warning\n", dep->de_name); }
#endif
if (dep->de_flags & DEF_READING)
{
printf(
"dp_check_ints: strange: overwrite warning and pending read request\n");
dp_recv(dep);
}
}
if (isr & ISR_RDC)
{
/* Nothing to do */
}
if (isr & ISR_RST)
{
/* this means we got an interrupt but the ethernet
* chip is shutdown. We set the flag DEF_STOPPED,
* and continue processing arrived packets. When the
* receive buffer is empty, we reset the dp8390.
*/
#if 0
{ printW(); printf(
"%s: NIC stopped\n", dep->de_name); }
#endif
dep->de_flags |= DEF_STOPPED;
break;
}
}
if ((dep->de_flags & (DEF_READING|DEF_STOPPED)) ==
(DEF_READING|DEF_STOPPED))
{
/* The chip is stopped, and all arrived packets are
* delivered.
*/
dp_reset(dep);
}
}
/*===========================================================================*
* dp_recv *
*===========================================================================*/
static void dp_recv(dep)
dpeth_t *dep;
{
dp_rcvhdr_t header;
unsigned pageno, curr, next;
vir_bytes length;
int packet_processed, r;
u16_t eth_type;
packet_processed = FALSE;
pageno = inb_reg0(dep, DP_BNRY) + 1;
if (pageno == dep->de_stoppage) pageno = dep->de_startpage;
do
{
outb_reg0(dep, DP_CR, CR_PS_P1 | CR_EXTRA);
curr = inb_reg1(dep, DP_CURR);
outb_reg0(dep, DP_CR, CR_PS_P0 | CR_EXTRA);
if (curr == pageno) break;
(dep->de_getblockf)(dep, pageno, (size_t)0, sizeof(header),
&header);
(dep->de_getblockf)(dep, pageno, sizeof(header) +
2*sizeof(ether_addr_t), sizeof(eth_type), &eth_type);
length = (header.dr_rbcl | (header.dr_rbch << 8)) -
sizeof(dp_rcvhdr_t);
next = header.dr_next;
if (length < ETH_MIN_PACK_SIZE ||
length > ETH_MAX_PACK_SIZE_TAGGED)
{
printf("%s: packet with strange length arrived: %d\n",
dep->de_name, (int) length);
next= curr;
}
else if (next < dep->de_startpage || next >= dep->de_stoppage)
{
printf("%s: strange next page\n", dep->de_name);
next= curr;
}
else if (eth_type == eth_ign_proto)
{
/* Hack: ignore packets of a given protocol, useful
* if you share a net with 80 computers sending
* Amoeba FLIP broadcasts. (Protocol 0x8146.)
*/
static int first= 1;
if (first)
{
first= 0;
printf("%s: dropping proto 0x%04x packets\n",
dep->de_name,
ntohs(eth_ign_proto));
}
dep->de_stat.ets_packetR++;
}
else if (header.dr_status & RSR_FO)
{
/* This is very serious, so we issue a warning and
* reset the buffers */
printf("%s: fifo overrun, resetting receive buffer\n",
dep->de_name);
dep->de_stat.ets_fifoOver++;
next = curr;
}
else if ((header.dr_status & RSR_PRX) &&
(dep->de_flags & DEF_ENABLED))
{
2006-07-10 14:43:38 +02:00
if (dep->de_safecopy_read)
r = dp_pkt2user_s(dep, pageno, length);
else
r = dp_pkt2user(dep, pageno, length);
if (r != OK)
return;
packet_processed = TRUE;
dep->de_stat.ets_packetR++;
}
if (next == dep->de_startpage)
outb_reg0(dep, DP_BNRY, dep->de_stoppage - 1);
else
outb_reg0(dep, DP_BNRY, next - 1);
pageno = next;
}
while (!packet_processed);
}
/*===========================================================================*
* dp_send *
*===========================================================================*/
static void dp_send(dep)
dpeth_t *dep;
{
if (!(dep->de_flags & DEF_SEND_AVAIL))
return;
dep->de_flags &= ~DEF_SEND_AVAIL;
switch(dep->de_sendmsg.m_type)
{
case DL_WRITE: do_vwrite(&dep->de_sendmsg, TRUE, FALSE); break;
case DL_WRITEV: do_vwrite(&dep->de_sendmsg, TRUE, TRUE); break;
2006-07-10 14:43:38 +02:00
case DL_WRITEV_S: do_vwrite_s(&dep->de_sendmsg, TRUE); break;
default:
2006-07-10 14:43:38 +02:00
panic("", "dp8390: wrong type", dep->de_sendmsg.m_type);
break;
}
}
/*===========================================================================*
* dp_getblock *
*===========================================================================*/
static void dp_getblock(dep, page, offset, size, dst)
dpeth_t *dep;
int page;
size_t offset;
size_t size;
void *dst;
{
offset = page * DP_PAGESIZE + offset;
2006-07-10 14:43:38 +02:00
memcpy(dst, dep->de_locmem + offset, size);
}
/*===========================================================================*
* dp_pio8_getblock *
*===========================================================================*/
static void dp_pio8_getblock(dep, page, offset, size, dst)
dpeth_t *dep;
int page;
size_t offset;
size_t size;
void *dst;
{
offset = page * DP_PAGESIZE + offset;
outb_reg0(dep, DP_RBCR0, size & 0xFF);
outb_reg0(dep, DP_RBCR1, size >> 8);
outb_reg0(dep, DP_RSAR0, offset & 0xFF);
outb_reg0(dep, DP_RSAR1, offset >> 8);
outb_reg0(dep, DP_CR, CR_DM_RR | CR_PS_P0 | CR_STA);
insb(dep->de_data_port, dst, size);
}
/*===========================================================================*
* dp_pio16_getblock *
*===========================================================================*/
static void dp_pio16_getblock(dep, page, offset, size, dst)
dpeth_t *dep;
int page;
size_t offset;
size_t size;
void *dst;
{
offset = page * DP_PAGESIZE + offset;
outb_reg0(dep, DP_RBCR0, size & 0xFF);
outb_reg0(dep, DP_RBCR1, size >> 8);
outb_reg0(dep, DP_RSAR0, offset & 0xFF);
outb_reg0(dep, DP_RSAR1, offset >> 8);
outb_reg0(dep, DP_CR, CR_DM_RR | CR_PS_P0 | CR_STA);
assert (!(size & 1));
insw(dep->de_data_port, dst, size);
}
/*===========================================================================*
* dp_pkt2user *
*===========================================================================*/
static int dp_pkt2user(dep, page, length)
dpeth_t *dep;
int page, length;
{
int last, count;
if (!(dep->de_flags & DEF_READING))
return EGENERIC;
last = page + (length - 1) / DP_PAGESIZE;
if (last >= dep->de_stoppage)
{
count = (dep->de_stoppage - page) * DP_PAGESIZE -
sizeof(dp_rcvhdr_t);
/* Save read_iovec since we need it twice. */
dep->de_tmp_iovec = dep->de_read_iovec;
(dep->de_nic2userf)(dep, page * DP_PAGESIZE +
sizeof(dp_rcvhdr_t), &dep->de_tmp_iovec, 0, count);
(dep->de_nic2userf)(dep, dep->de_startpage * DP_PAGESIZE,
&dep->de_read_iovec, count, length - count);
}
else
{
(dep->de_nic2userf)(dep, page * DP_PAGESIZE +
sizeof(dp_rcvhdr_t), &dep->de_read_iovec, 0, length);
}
dep->de_read_s = length;
dep->de_flags |= DEF_PACK_RECV;
dep->de_flags &= ~DEF_READING;
return OK;
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* dp_pkt2user_s *
*===========================================================================*/
static int dp_pkt2user_s(dep, page, length)
dpeth_t *dep;
int page, length;
{
int last, count;
if (!(dep->de_flags & DEF_READING))
return EGENERIC;
last = page + (length - 1) / DP_PAGESIZE;
if (last >= dep->de_stoppage)
{
count = (dep->de_stoppage - page) * DP_PAGESIZE -
sizeof(dp_rcvhdr_t);
/* Save read_iovec since we need it twice. */
dep->de_tmp_iovec_s = dep->de_read_iovec_s;
(dep->de_nic2userf_s)(dep, page * DP_PAGESIZE +
sizeof(dp_rcvhdr_t), &dep->de_tmp_iovec_s, 0, count);
(dep->de_nic2userf_s)(dep, dep->de_startpage * DP_PAGESIZE,
&dep->de_read_iovec_s, count, length - count);
}
else
{
(dep->de_nic2userf_s)(dep, page * DP_PAGESIZE +
sizeof(dp_rcvhdr_t), &dep->de_read_iovec_s, 0, length);
}
dep->de_read_s = length;
dep->de_flags |= DEF_PACK_RECV;
dep->de_flags &= ~DEF_READING;
return OK;
}
/*===========================================================================*
* dp_user2nic *
*===========================================================================*/
static void dp_user2nic(dep, iovp, offset, nic_addr, count)
dpeth_t *dep;
iovec_dat_t *iovp;
vir_bytes offset;
int nic_addr;
vir_bytes count;
{
vir_bytes vir_hw;
int bytes, i, r;
2006-07-10 14:43:38 +02:00
vir_hw = (vir_bytes)dep->de_locmem + nic_addr;
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
dp_next_iovec(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
r= sys_vircopy(iovp->iod_proc_nr, D,
iovp->iod_iovec[i].iov_addr + offset,
2006-07-10 14:43:38 +02:00
SELF, D, vir_hw, bytes);
if (r != OK)
panic("DP8390", "dp_user2nic: sys_vircopy failed", r);
count -= bytes;
vir_hw += bytes;
offset += bytes;
}
assert(count == 0);
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* dp_user2nic_s *
*===========================================================================*/
static void dp_user2nic_s(dep, iovp, offset, nic_addr, count)
dpeth_t *dep;
iovec_dat_s_t *iovp;
vir_bytes offset;
int nic_addr;
vir_bytes count;
{
vir_bytes vir_hw;
2006-07-10 14:43:38 +02:00
int bytes, i, r;
vir_hw = (vir_bytes)dep->de_locmem + nic_addr;
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
dp_next_iovec_s(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
r= sys_safecopyfrom(iovp->iod_proc_nr,
iovp->iod_iovec[i].iov_grant, offset,
vir_hw, bytes, D);
if (r != OK)
{
panic("DP8390",
"dp_user2nic_s: sys_safecopyfrom failed", r);
}
count -= bytes;
vir_hw += bytes;
offset += bytes;
}
assert(count == 0);
}
/*===========================================================================*
* dp_pio8_user2nic *
*===========================================================================*/
static void dp_pio8_user2nic(dep, iovp, offset, nic_addr, count)
dpeth_t *dep;
iovec_dat_t *iovp;
vir_bytes offset;
int nic_addr;
vir_bytes count;
{
int bytes, i;
outb_reg0(dep, DP_ISR, ISR_RDC);
outb_reg0(dep, DP_RBCR0, count & 0xFF);
outb_reg0(dep, DP_RBCR1, count >> 8);
outb_reg0(dep, DP_RSAR0, nic_addr & 0xFF);
outb_reg0(dep, DP_RSAR1, nic_addr >> 8);
outb_reg0(dep, DP_CR, CR_DM_RW | CR_PS_P0 | CR_STA);
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
dp_next_iovec(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
do_vir_outsb(dep->de_data_port, iovp->iod_proc_nr,
iovp->iod_iovec[i].iov_addr + offset, bytes);
count -= bytes;
offset += bytes;
}
assert(count == 0);
for (i= 0; i<100; i++)
{
if (inb_reg0(dep, DP_ISR) & ISR_RDC)
break;
}
if (i == 100)
{
panic("", "dp8390: remote dma failed to complete", NO_NUM);
}
}
/*===========================================================================*
2006-07-10 14:43:38 +02:00
* dp_pio8_user2nic_s *
*===========================================================================*/
2006-07-10 14:43:38 +02:00
static void dp_pio8_user2nic_s(dep, iovp, offset, nic_addr, count)
dpeth_t *dep;
2006-07-10 14:43:38 +02:00
iovec_dat_s_t *iovp;
vir_bytes offset;
int nic_addr;
vir_bytes count;
{
2006-07-10 14:43:38 +02:00
int bytes, i, r;
outb_reg0(dep, DP_ISR, ISR_RDC);
2006-07-10 14:43:38 +02:00
outb_reg0(dep, DP_RBCR0, count & 0xFF);
outb_reg0(dep, DP_RBCR1, count >> 8);
outb_reg0(dep, DP_RSAR0, nic_addr & 0xFF);
outb_reg0(dep, DP_RSAR1, nic_addr >> 8);
outb_reg0(dep, DP_CR, CR_DM_RW | CR_PS_P0 | CR_STA);
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
2006-07-10 14:43:38 +02:00
dp_next_iovec_s(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
2006-07-10 14:43:38 +02:00
r= sys_safe_outsb(dep->de_data_port, iovp->iod_proc_nr,
iovp->iod_iovec[i].iov_grant, offset, bytes);
if (r != OK)
{
2006-07-10 14:43:38 +02:00
panic(__FILE__,
"dp_pio8_user2nic_s: sys_safe_outsb failed",
r);
}
count -= bytes;
offset += bytes;
}
assert(count == 0);
for (i= 0; i<100; i++)
{
if (inb_reg0(dep, DP_ISR) & ISR_RDC)
break;
}
if (i == 100)
{
panic("", "dp8390: remote dma failed to complete", NO_NUM);
}
}
/*===========================================================================*
* dp_pio16_user2nic *
*===========================================================================*/
static void dp_pio16_user2nic(dep, iovp, offset, nic_addr, count)
dpeth_t *dep;
iovec_dat_t *iovp;
vir_bytes offset;
int nic_addr;
vir_bytes count;
{
vir_bytes vir_user;
vir_bytes ecount;
int i, r, bytes, user_proc;
u8_t two_bytes[2];
int odd_byte;
ecount= (count+1) & ~1;
odd_byte= 0;
outb_reg0(dep, DP_ISR, ISR_RDC);
outb_reg0(dep, DP_RBCR0, ecount & 0xFF);
outb_reg0(dep, DP_RBCR1, ecount >> 8);
outb_reg0(dep, DP_RSAR0, nic_addr & 0xFF);
outb_reg0(dep, DP_RSAR1, nic_addr >> 8);
outb_reg0(dep, DP_CR, CR_DM_RW | CR_PS_P0 | CR_STA);
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
dp_next_iovec(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
user_proc= iovp->iod_proc_nr;
vir_user= iovp->iod_iovec[i].iov_addr + offset;
if (odd_byte)
{
r= sys_vircopy(user_proc, D, vir_user,
SELF, D, (vir_bytes)&two_bytes[1], 1);
if (r != OK)
{
panic("DP8390",
"dp_pio16_user2nic: sys_vircopy failed",
r);
}
outw(dep->de_data_port, *(u16_t *)two_bytes);
count--;
offset++;
bytes--;
vir_user++;
odd_byte= 0;
if (!bytes)
continue;
}
ecount= bytes & ~1;
if (ecount != 0)
{
do_vir_outsw(dep->de_data_port, user_proc, vir_user,
ecount);
count -= ecount;
offset += ecount;
bytes -= ecount;
vir_user += ecount;
}
if (bytes)
{
assert(bytes == 1);
r= sys_vircopy(user_proc, D, vir_user,
SELF, D, (vir_bytes)&two_bytes[0], 1);
if (r != OK)
{
panic("DP8390",
"dp_pio16_user2nic: sys_vircopy failed",
r);
}
count--;
offset++;
bytes--;
vir_user++;
odd_byte= 1;
}
}
assert(count == 0);
if (odd_byte)
outw(dep->de_data_port, *(u16_t *)two_bytes);
for (i= 0; i<100; i++)
{
if (inb_reg0(dep, DP_ISR) & ISR_RDC)
break;
}
if (i == 100)
{
panic("", "dp8390: remote dma failed to complete", NO_NUM);
}
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* dp_pio16_user2nic_s *
*===========================================================================*/
static void dp_pio16_user2nic_s(dep, iovp, offset, nic_addr, count)
dpeth_t *dep;
iovec_dat_s_t *iovp;
vir_bytes offset;
int nic_addr;
vir_bytes count;
{
vir_bytes ecount;
cp_grant_id_t gid;
int i, r, bytes, user_proc;
u8_t two_bytes[2];
int odd_byte;
ecount= (count+1) & ~1;
odd_byte= 0;
outb_reg0(dep, DP_ISR, ISR_RDC);
outb_reg0(dep, DP_RBCR0, ecount & 0xFF);
outb_reg0(dep, DP_RBCR1, ecount >> 8);
outb_reg0(dep, DP_RSAR0, nic_addr & 0xFF);
outb_reg0(dep, DP_RSAR1, nic_addr >> 8);
outb_reg0(dep, DP_CR, CR_DM_RW | CR_PS_P0 | CR_STA);
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
dp_next_iovec_s(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
user_proc= iovp->iod_proc_nr;
gid= iovp->iod_iovec[i].iov_grant;
if (odd_byte)
{
r= sys_safecopyfrom(user_proc, gid, offset,
(vir_bytes)&two_bytes[1], 1, D);
if (r != OK)
{
panic("DP8390",
"dp_pio16_user2nic: sys_safecopyfrom failed",
r);
}
outw(dep->de_data_port, *(u16_t *)two_bytes);
count--;
offset++;
bytes--;
odd_byte= 0;
if (!bytes)
continue;
}
ecount= bytes & ~1;
if (ecount != 0)
{
r= sys_safe_outsw(dep->de_data_port, user_proc,
gid, offset, ecount);
if (r != OK)
{
panic("DP8390",
"dp_pio16_user2nic: sys_safe_outsw failed",
r);
}
count -= ecount;
offset += ecount;
bytes -= ecount;
}
if (bytes)
{
assert(bytes == 1);
r= sys_safecopyfrom(user_proc, gid, offset,
(vir_bytes)&two_bytes[0], 1, D);
if (r != OK)
{
panic("DP8390",
"dp_pio16_user2nic: sys_safecopyfrom failed",
r);
}
count--;
offset++;
bytes--;
odd_byte= 1;
}
}
assert(count == 0);
if (odd_byte)
outw(dep->de_data_port, *(u16_t *)two_bytes);
for (i= 0; i<100; i++)
{
if (inb_reg0(dep, DP_ISR) & ISR_RDC)
break;
}
if (i == 100)
{
panic("", "dp8390: remote dma failed to complete", NO_NUM);
}
}
/*===========================================================================*
* dp_nic2user *
*===========================================================================*/
static void dp_nic2user(dep, nic_addr, iovp, offset, count)
dpeth_t *dep;
int nic_addr;
iovec_dat_t *iovp;
vir_bytes offset;
vir_bytes count;
{
int bytes, i, r;
vir_bytes vir_hw = (vir_bytes) (dep->de_locmem + nic_addr);
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
dp_next_iovec(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
2006-07-10 14:43:38 +02:00
r= sys_vircopy(SELF, D, vir_hw,
iovp->iod_proc_nr, D,
iovp->iod_iovec[i].iov_addr + offset, bytes);
if (r != OK)
panic("DP8390", "dp_nic2user: sys_vircopy failed", r);
count -= bytes;
vir_hw += bytes;
offset += bytes;
}
assert(count == 0);
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* dp_nic2user_s *
*===========================================================================*/
static void dp_nic2user_s(dep, nic_addr, iovp, offset, count)
dpeth_t *dep;
int nic_addr;
iovec_dat_s_t *iovp;
vir_bytes offset;
vir_bytes count;
{
vir_bytes vir_hw;
2006-07-10 14:43:38 +02:00
int bytes, i, r;
vir_hw = (vir_bytes)dep->de_locmem + nic_addr;
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
dp_next_iovec_s(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
r= sys_safecopyto(iovp->iod_proc_nr,
iovp->iod_iovec[i].iov_grant, offset,
vir_hw, bytes, D);
if (r != OK)
panic("DP8390",
"dp_nic2user_s: sys_safecopyto failed", r);
count -= bytes;
vir_hw += bytes;
offset += bytes;
}
assert(count == 0);
}
/*===========================================================================*
* dp_pio8_nic2user *
*===========================================================================*/
static void dp_pio8_nic2user(dep, nic_addr, iovp, offset, count)
dpeth_t *dep;
int nic_addr;
iovec_dat_t *iovp;
vir_bytes offset;
vir_bytes count;
{
int bytes, i;
outb_reg0(dep, DP_RBCR0, count & 0xFF);
outb_reg0(dep, DP_RBCR1, count >> 8);
outb_reg0(dep, DP_RSAR0, nic_addr & 0xFF);
outb_reg0(dep, DP_RSAR1, nic_addr >> 8);
outb_reg0(dep, DP_CR, CR_DM_RR | CR_PS_P0 | CR_STA);
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
dp_next_iovec(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
do_vir_insb(dep->de_data_port, iovp->iod_proc_nr,
iovp->iod_iovec[i].iov_addr + offset, bytes);
count -= bytes;
offset += bytes;
}
assert(count == 0);
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* dp_pio8_nic2user_s *
*===========================================================================*/
static void dp_pio8_nic2user_s(dep, nic_addr, iovp, offset, count)
dpeth_t *dep;
int nic_addr;
iovec_dat_s_t *iovp;
vir_bytes offset;
vir_bytes count;
{
int bytes, i, r;
outb_reg0(dep, DP_RBCR0, count & 0xFF);
outb_reg0(dep, DP_RBCR1, count >> 8);
outb_reg0(dep, DP_RSAR0, nic_addr & 0xFF);
outb_reg0(dep, DP_RSAR1, nic_addr >> 8);
outb_reg0(dep, DP_CR, CR_DM_RR | CR_PS_P0 | CR_STA);
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
dp_next_iovec_s(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
r= sys_safe_insb(dep->de_data_port, iovp->iod_proc_nr,
iovp->iod_iovec[i].iov_grant, offset, bytes);
if (r != OK)
{
panic(__FILE__,
"dp_pio8_nic2user_s: sys_safe_insb failed", r);
}
count -= bytes;
offset += bytes;
}
assert(count == 0);
}
/*===========================================================================*
* dp_pio16_nic2user *
*===========================================================================*/
static void dp_pio16_nic2user(dep, nic_addr, iovp, offset, count)
dpeth_t *dep;
int nic_addr;
iovec_dat_t *iovp;
vir_bytes offset;
vir_bytes count;
{
vir_bytes vir_user;
vir_bytes ecount;
int i, r, bytes, user_proc;
u8_t two_bytes[2];
int odd_byte;
ecount= (count+1) & ~1;
odd_byte= 0;
outb_reg0(dep, DP_RBCR0, ecount & 0xFF);
outb_reg0(dep, DP_RBCR1, ecount >> 8);
outb_reg0(dep, DP_RSAR0, nic_addr & 0xFF);
outb_reg0(dep, DP_RSAR1, nic_addr >> 8);
outb_reg0(dep, DP_CR, CR_DM_RR | CR_PS_P0 | CR_STA);
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
dp_next_iovec(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
user_proc= iovp->iod_proc_nr;
vir_user= iovp->iod_iovec[i].iov_addr + offset;
if (odd_byte)
{
r= sys_vircopy(SELF, D, (vir_bytes)&two_bytes[1],
user_proc, D, vir_user, 1);
if (r != OK)
{
panic("DP8390",
"dp_pio16_nic2user: sys_vircopy failed",
r);
}
count--;
offset++;
bytes--;
vir_user++;
odd_byte= 0;
if (!bytes)
continue;
}
ecount= bytes & ~1;
if (ecount != 0)
{
do_vir_insw(dep->de_data_port, user_proc, vir_user,
ecount);
count -= ecount;
offset += ecount;
bytes -= ecount;
vir_user += ecount;
}
if (bytes)
{
assert(bytes == 1);
*(u16_t *)two_bytes= inw(dep->de_data_port);
r= sys_vircopy(SELF, D, (vir_bytes)&two_bytes[0],
user_proc, D, vir_user, 1);
if (r != OK)
{
panic("DP8390",
"dp_pio16_nic2user: sys_vircopy failed",
r);
}
count--;
offset++;
bytes--;
vir_user++;
odd_byte= 1;
}
}
assert(count == 0);
}
/*===========================================================================*
2006-07-10 14:43:38 +02:00
* dp_pio16_nic2user_s *
*===========================================================================*/
static void dp_pio16_nic2user_s(dep, nic_addr, iovp, offset, count)
dpeth_t *dep;
int nic_addr;
iovec_dat_s_t *iovp;
vir_bytes offset;
vir_bytes count;
{
vir_bytes ecount;
cp_grant_id_t gid;
int i, r, bytes, user_proc;
u8_t two_bytes[2];
int odd_byte;
ecount= (count+1) & ~1;
odd_byte= 0;
outb_reg0(dep, DP_RBCR0, ecount & 0xFF);
outb_reg0(dep, DP_RBCR1, ecount >> 8);
outb_reg0(dep, DP_RSAR0, nic_addr & 0xFF);
outb_reg0(dep, DP_RSAR1, nic_addr >> 8);
outb_reg0(dep, DP_CR, CR_DM_RR | CR_PS_P0 | CR_STA);
i= 0;
while (count > 0)
{
if (i >= IOVEC_NR)
{
dp_next_iovec_s(iovp);
i= 0;
continue;
}
assert(i < iovp->iod_iovec_s);
if (offset >= iovp->iod_iovec[i].iov_size)
{
offset -= iovp->iod_iovec[i].iov_size;
i++;
continue;
}
bytes = iovp->iod_iovec[i].iov_size - offset;
if (bytes > count)
bytes = count;
user_proc= iovp->iod_proc_nr;
gid= iovp->iod_iovec[i].iov_grant;
if (odd_byte)
{
r= sys_safecopyto(user_proc, gid, offset,
(vir_bytes)&two_bytes[1], 1, D);
if (r != OK)
{
panic("DP8390",
"dp_pio16_nic2user: sys_safecopyto failed",
r);
}
count--;
offset++;
bytes--;
odd_byte= 0;
if (!bytes)
continue;
}
ecount= bytes & ~1;
if (ecount != 0)
{
r= sys_safe_insw(dep->de_data_port, user_proc, gid,
offset, ecount);
if (r != OK)
{
panic("DP8390",
"dp_pio16_nic2user: sys_safe_insw failed",
r);
}
count -= ecount;
offset += ecount;
bytes -= ecount;
}
if (bytes)
{
assert(bytes == 1);
*(u16_t *)two_bytes= inw(dep->de_data_port);
r= sys_safecopyto(user_proc, gid, offset,
(vir_bytes)&two_bytes[0], 1, D);
if (r != OK)
{
panic("DP8390",
"dp_pio16_nic2user: sys_safecopyto failed",
r);
}
count--;
offset++;
bytes--;
odd_byte= 1;
}
}
assert(count == 0);
}
/*===========================================================================*
* dp_next_iovec *
*===========================================================================*/
static void dp_next_iovec(iovp)
iovec_dat_t *iovp;
{
assert(iovp->iod_iovec_s > IOVEC_NR);
iovp->iod_iovec_s -= IOVEC_NR;
iovp->iod_iovec_addr += IOVEC_NR * sizeof(iovec_t);
get_userdata(iovp->iod_proc_nr, iovp->iod_iovec_addr,
(iovp->iod_iovec_s > IOVEC_NR ? IOVEC_NR : iovp->iod_iovec_s) *
sizeof(iovec_t), iovp->iod_iovec);
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* dp_next_iovec_s *
*===========================================================================*/
static void dp_next_iovec_s(iovp)
iovec_dat_s_t *iovp;
{
assert(iovp->iod_iovec_s > IOVEC_NR);
iovp->iod_iovec_s -= IOVEC_NR;
iovp->iod_iovec_offset += IOVEC_NR * sizeof(iovec_t);
get_userdata_s(iovp->iod_proc_nr, iovp->iod_grant,
iovp->iod_iovec_offset,
(iovp->iod_iovec_s > IOVEC_NR ? IOVEC_NR : iovp->iod_iovec_s) *
sizeof(iovp->iod_iovec[0]), iovp->iod_iovec);
}
/*===========================================================================*
* conf_hw *
*===========================================================================*/
static void conf_hw(dep)
dpeth_t *dep;
{
static eth_stat_t empty_stat = {0, 0, 0, 0, 0, 0 /* ,... */ };
int ifnr;
dp_conf_t *dcp;
dep->de_mode= DEM_DISABLED; /* Superfluous */
ifnr= dep-de_table;
dcp= &dp_conf[ifnr];
update_conf(dep, dcp);
if (dep->de_mode != DEM_ENABLED)
return;
if (!wdeth_probe(dep) && !ne_probe(dep) && !el2_probe(dep))
{
printf("%s: No ethernet card found at 0x%x\n",
dep->de_name, dep->de_base_port);
dep->de_mode= DEM_DISABLED;
return;
}
/* XXX */ if (dep->de_linmem == 0) dep->de_linmem= 0xFFFF0000;
dep->de_flags = DEF_EMPTY;
dep->de_stat = empty_stat;
}
/*===========================================================================*
* update_conf *
*===========================================================================*/
static void update_conf(dep, dcp)
dpeth_t *dep;
dp_conf_t *dcp;
{
long v;
static char dpc_fmt[] = "x:d:x:x";
#if ENABLE_PCI
if (dep->de_pci)
{
if (dep->de_pci == 1)
{
/* PCI device is present */
dep->de_mode= DEM_ENABLED;
}
return; /* Already configured */
}
#endif
/* Get the default settings and modify them from the environment. */
dep->de_mode= DEM_SINK;
v= dcp->dpc_port;
switch (env_parse(dcp->dpc_envvar, dpc_fmt, 0, &v, 0x0000L, 0xFFFFL)) {
case EP_OFF:
dep->de_mode= DEM_DISABLED;
break;
case EP_ON:
case EP_SET:
dep->de_mode= DEM_ENABLED; /* Might become disabled if
* all probes fail */
break;
}
dep->de_base_port= v;
v= dcp->dpc_irq | DEI_DEFAULT;
(void) env_parse(dcp->dpc_envvar, dpc_fmt, 1, &v, 0L,
(long) NR_IRQ_VECTORS - 1);
dep->de_irq= v;
v= dcp->dpc_mem;
(void) env_parse(dcp->dpc_envvar, dpc_fmt, 2, &v, 0L, 0xFFFFFL);
dep->de_linmem= v;
v= 0;
(void) env_parse(dcp->dpc_envvar, dpc_fmt, 3, &v, 0x2000L, 0x8000L);
dep->de_ramsize= v;
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* map_hw_buffer *
*===========================================================================*/
static void map_hw_buffer(dep)
dpeth_t *dep;
{
int r;
size_t o, size;
char *buf, *abuf;
if (dep->de_prog_IO)
{
#if 0
printf(
"map_hw_buffer: programmed I/O, no need to map buffer\n");
#endif
dep->de_locmem = (char *)-dep->de_ramsize; /* trap errors */
return;
}
size = dep->de_ramsize + I386_PAGE_SIZE; /* Add I386_PAGE_SIZE for
2006-07-10 14:43:38 +02:00
* alignment
*/
buf= malloc(size);
if (buf == NULL)
panic(__FILE__, "map_hw_buffer: cannot malloc size", size);
o= I386_PAGE_SIZE - ((vir_bytes)buf % I386_PAGE_SIZE);
2006-07-10 14:43:38 +02:00
abuf= buf + o;
printf("buf at 0x%x, abuf at 0x%x\n", buf, abuf);
#if 0
2006-07-10 14:43:38 +02:00
r= sys_vm_map(SELF, 1 /* map */, (vir_bytes)abuf,
dep->de_ramsize, (phys_bytes)dep->de_linmem);
#else
r = ENOSYS;
#endif
2006-07-10 14:43:38 +02:00
if (r != OK)
panic(__FILE__, "map_hw_buffer: sys_vm_map failed", r);
dep->de_locmem = abuf;
}
/*===========================================================================*
* calc_iovec_size *
*===========================================================================*/
static int calc_iovec_size(iovp)
iovec_dat_t *iovp;
{
/* Calculate the size of a request. Note that the iovec_dat
* structure will be unusable after calc_iovec_size.
*/
int size;
int i;
size= 0;
i= 0;
while (i < iovp->iod_iovec_s)
{
if (i >= IOVEC_NR)
{
dp_next_iovec(iovp);
i= 0;
continue;
}
size += iovp->iod_iovec[i].iov_size;
i++;
}
return size;
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* calc_iovec_size_s *
*===========================================================================*/
static int calc_iovec_size_s(iovp)
iovec_dat_s_t *iovp;
{
/* Calculate the size of a request. Note that the iovec_dat
* structure will be unusable after calc_iovec_size_s.
*/
int size;
int i;
size= 0;
i= 0;
while (i < iovp->iod_iovec_s)
{
if (i >= IOVEC_NR)
{
dp_next_iovec_s(iovp);
i= 0;
continue;
}
size += iovp->iod_iovec[i].iov_size;
i++;
}
return size;
}
/*===========================================================================*
* reply *
*===========================================================================*/
static void reply(dep, err, may_block)
dpeth_t *dep;
int err;
int may_block;
{
message reply;
int status;
int r;
status = 0;
if (dep->de_flags & DEF_PACK_SEND)
status |= DL_PACK_SEND;
if (dep->de_flags & DEF_PACK_RECV)
status |= DL_PACK_RECV;
reply.m_type = DL_TASK_REPLY;
reply.DL_PORT = dep - de_table;
reply.DL_PROC = dep->de_client;
reply.DL_STAT = status | ((u32_t) err << 16);
reply.DL_COUNT = dep->de_read_s;
reply.DL_CLCK = 0; /* Don't know */
r= send(dep->de_client, &reply);
if (r == ELOCKED && may_block)
{
2005-08-05 14:55:35 +02:00
#if 0
printf("send locked\n");
2005-08-05 14:55:35 +02:00
#endif
return;
}
if (r < 0)
panic("", "dp8390: send failed:", r);
dep->de_read_s = 0;
dep->de_flags &= ~(DEF_PACK_SEND | DEF_PACK_RECV);
}
/*===========================================================================*
* mess_reply *
*===========================================================================*/
static void mess_reply(req, reply_mess)
message *req;
message *reply_mess;
{
if (send(req->m_source, reply_mess) != OK)
panic("", "dp8390: unable to mess_reply", NO_NUM);
}
/*===========================================================================*
* get_userdata *
*===========================================================================*/
static void get_userdata(user_proc, user_addr, count, loc_addr)
int user_proc;
vir_bytes user_addr;
vir_bytes count;
void *loc_addr;
{
int r;
r= sys_vircopy(user_proc, D, user_addr,
SELF, D, (vir_bytes)loc_addr, count);
if (r != OK)
panic("DP8390", "get_userdata: sys_vircopy failed", r);
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* get_userdata_s *
*===========================================================================*/
static void get_userdata_s(user_proc, grant, offset, count, loc_addr)
int user_proc;
cp_grant_id_t grant;
vir_bytes offset;
vir_bytes count;
void *loc_addr;
{
int r;
r= sys_safecopyfrom(user_proc, grant, offset,
(vir_bytes)loc_addr, count, D);
if (r != OK)
panic("DP8390", "get_userdata: sys_safecopyfrom failed", r);
}
/*===========================================================================*
* put_userdata *
*===========================================================================*/
static void put_userdata(user_proc, user_addr, count, loc_addr)
int user_proc;
vir_bytes user_addr;
vir_bytes count;
void *loc_addr;
{
int r;
r= sys_vircopy(SELF, D, (vir_bytes)loc_addr,
user_proc, D, user_addr, count);
if (r != OK)
panic("DP8390", "put_userdata: sys_vircopy failed", r);
}
2006-07-10 14:43:38 +02:00
/*===========================================================================*
* put_userdata_s *
*===========================================================================*/
static void put_userdata_s(user_proc, grant, count, loc_addr)
int user_proc;
cp_grant_id_t grant;
size_t count;
void *loc_addr;
{
int r;
r= sys_safecopyto(user_proc, grant, 0, (vir_bytes)loc_addr,
count, D);
if (r != OK)
panic("DP8390", "put_userdata: sys_safecopyto failed", r);
}
u8_t inb(port_t port)
{
int r;
2005-10-21 19:09:08 +02:00
u32_t value;
r= sys_inb(port, &value);
if (r != OK)
{
printf("inb failed for port 0x%x\n", port);
panic("DP8390","sys_inb failed", r);
}
return value;
}
u16_t inw(port_t port)
{
int r;
2006-03-25 00:08:19 +01:00
unsigned long value;
r= sys_inw(port, &value);
if (r != OK)
panic("DP8390", "sys_inw failed", r);
2006-03-25 00:08:19 +01:00
return (u16_t) value;
}
void outb(port_t port, u8_t value)
{
int r;
r= sys_outb(port, value);
if (r != OK)
panic("DP8390", "sys_outb failed", r);
}
void outw(port_t port, u16_t value)
{
int r;
r= sys_outw(port, value);
if (r != OK)
panic("DP8390", "sys_outw failed", r);
}
static void insb(port_t port, void *buf, size_t size)
{
do_vir_insb(port, SELF, (vir_bytes)buf, size);
}
static void insw(port_t port, void *buf, size_t size)
{
do_vir_insw(port, SELF, (vir_bytes)buf, size);
}
static void do_vir_insb(port_t port, int proc, vir_bytes buf, size_t size)
{
int r;
2006-06-20 11:48:26 +02:00
r= sys_insb(port, proc, (void *) buf, size);
if (r != OK)
panic("DP8390", "sys_sdevio failed", r);
}
static void do_vir_insw(port_t port, int proc, vir_bytes buf, size_t size)
{
int r;
2006-06-20 11:48:26 +02:00
r= sys_insw(port, proc, (void *) buf, size);
if (r != OK)
panic("DP8390", "sys_sdevio failed", r);
}
static void do_vir_outsb(port_t port, int proc, vir_bytes buf, size_t size)
{
int r;
2006-06-20 11:48:26 +02:00
r= sys_outsb(port, proc, (void *) buf, size);
if (r != OK)
panic("DP8390", "sys_sdevio failed", r);
}
static void do_vir_outsw(port_t port, int proc, vir_bytes buf, size_t size)
{
int r;
2006-06-20 11:48:26 +02:00
r= sys_outsw(port, proc, (void *) buf, size);
if (r != OK)
panic("DP8390", "sys_sdevio failed", r);
}
/*
* $PchId: dp8390.c,v 1.25 2005/02/10 17:32:07 philip Exp $
*/