minix/test/test72.c

313 lines
5.6 KiB
C
Raw Normal View History

/* Test 72 - libminixfs unit test.
*
* Exercise the caching functionality of libminixfs in isolation.
*/
#include <minix/libminixfs.h>
#include <minix/sysutil.h>
#include <minix/syslib.h>
#include <minix/vm.h>
#include <minix/bdev.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/ioc_memory.h>
#include <stdio.h>
#include <stdarg.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <math.h>
int max_error = 0;
#include "common.h"
#include "testcache.h"
#define MYMAJOR 40 /* doesn't really matter, shouldn't be NO_DEV though */
#define MYDEV makedev(MYMAJOR, 1)
static int curblocksize = -1;
static char *writtenblocks[MAXBLOCKS];
/* Some functions used by testcache.c */
int
dowriteblock(int b, int blocksize, u32_t seed, char *data)
{
struct buf *bp;
assert(blocksize == curblocksize);
if(!(bp = lmfs_get_block(MYDEV, b, NORMAL))) {
e(30);
return 0;
}
memcpy(bp->data, data, blocksize);
lmfs_markdirty(bp);
lmfs_put_block(bp, FULL_DATA_BLOCK);
return blocksize;
}
int
readblock(int b, int blocksize, u32_t seed, char *data)
{
struct buf *bp;
assert(blocksize == curblocksize);
if(!(bp = lmfs_get_block(MYDEV, b, NORMAL))) {
e(30);
return 0;
}
memcpy(data, bp->data, blocksize);
lmfs_put_block(bp, FULL_DATA_BLOCK);
return blocksize;
}
void testend(void)
{
int i;
for(i = 0; i < MAXBLOCKS; i++) {
if(writtenblocks[i]) {
free(writtenblocks[i]);
writtenblocks[i] = NULL;
}
}
}
/* Fake some libminixfs client functions */
int
fs_sync(void)
{
return 0;
}
void
fs_blockstats(u64_t *total, u64_t *free, u64_t *used)
{
*total = *free = *used = 0;
}
static void allocate(int b)
{
assert(curblocksize > 0);
assert(!writtenblocks[b]);
if(!(writtenblocks[b] = calloc(1, curblocksize))) {
fprintf(stderr, "out of memory allocating block %d\n", b);
exit(1);
}
}
/* Fake some libblockdriver functions */
ssize_t
bdev_gather(dev_t dev, u64_t pos, iovec_t *vec, int count, int flags)
{
int i;
ssize_t tot = 0;
assert(dev == MYDEV);
assert(curblocksize > 0);
assert(!(pos % curblocksize));
for(i = 0; i < count; i++) {
int subpages, block, block_off;
char *data = (char *) vec[i].iov_addr;
assert(!(pos % curblocksize));
block = pos / curblocksize;
block_off = pos % curblocksize;
assert(!(vec[i].iov_size % PAGE_SIZE));
subpages = vec[i].iov_size / PAGE_SIZE;
while(subpages > 0) {
assert(block >= 0);
assert(block < MAXBLOCKS);
assert(block_off >= 0);
assert(block_off < curblocksize);
if(!writtenblocks[block]) {
allocate(block);
}
memcpy(data, writtenblocks[block] + block_off,
PAGE_SIZE);
block++;
subpages--;
data += PAGE_SIZE;
tot += PAGE_SIZE;
block_off += PAGE_SIZE;
}
}
return tot;
}
ssize_t
bdev_scatter(dev_t dev, u64_t pos, iovec_t *vec, int count, int flags)
{
int i, block;
ssize_t tot = 0;
assert(dev == MYDEV);
assert(curblocksize > 0);
assert(!(pos % curblocksize));
block = pos / curblocksize;
for(i = 0; i < count; i++) {
int subblocks;
char *data = (char *) vec[i].iov_addr;
assert(vec[i].iov_size > 0);
assert(!(vec[i].iov_size % PAGE_SIZE));
subblocks = vec[i].iov_size / curblocksize;
while(subblocks > 0) {
assert(block >= 0);
assert(block < MAXBLOCKS);
if(!writtenblocks[block]) {
allocate(block);
}
memcpy(writtenblocks[block], data, curblocksize);
block++;
subblocks--;
data += curblocksize;
tot += curblocksize;
}
}
return tot;
}
ssize_t
bdev_read(dev_t dev, u64_t pos, char *data, size_t count, int flags)
{
int block;
ssize_t tot = 0;
int subblocks;
assert(dev == MYDEV);
assert(curblocksize > 0);
assert(!(pos % curblocksize));
assert(count > 0);
assert(!(count % curblocksize));
block = pos / curblocksize;
subblocks = count / curblocksize;
while(subblocks > 0) {
assert(block >= 0);
assert(block < MAXBLOCKS);
if(!writtenblocks[block]) {
allocate(block);
}
memcpy(data, writtenblocks[block], curblocksize);
block++;
subblocks--;
data += curblocksize;
tot += curblocksize;
}
return tot;
}
/* Fake some libsys functions */
__dead void
panic(const char *fmt, ...)
{
va_list va;
va_start(va, fmt);
vfprintf(stderr, fmt, va);
va_end(va);
exit(1);
}
int
vm_info_stats(struct vm_stats_info *vsi)
{
return ENOSYS;
}
void
util_stacktrace(void)
{
fprintf(stderr, "fake stacktrace\n");
}
void *alloc_contig(size_t len, int flags, phys_bytes *phys)
{
return malloc(len);
}
int free_contig(void *addr, size_t len)
{
free(addr);
return 0;
}
u32_t sqrt_approx(u32_t v)
{
return (u32_t) sqrt(v);
}
int vm_set_cacheblock(void *block, dev_t dev, off_t dev_offset,
ino_t ino, off_t ino_offset, u32_t *flags, int blocksize)
{
return ENOSYS;
}
void *vm_map_cacheblock(dev_t dev, off_t dev_offset,
ino_t ino, off_t ino_offset, u32_t *flags, int blocksize)
{
return MAP_FAILED;
}
int vm_clear_cache(dev_t dev)
{
return 0;
}
int
main(int argc, char *argv[])
{
int wss, cs, n = 0, p;
#define ITER 3
#define BLOCKS 200
start(72);
lmfs_setquiet(1);
/* Can the cache handle differently sized blocks? */
for(p = 1; p <= 3; p++) {
curblocksize = PAGE_SIZE*p;
lmfs_set_blocksize(curblocksize, MYMAJOR);
lmfs_buf_pool(BLOCKS);
if(dotest(curblocksize, BLOCKS, ITER)) e(n);
n++;
}
/* Can the cache handle various combinations of the working set
* being larger and smaller than the cache?
*/
for(wss = 2; wss <= 3; wss++) {
int wsblocks = 10*wss*wss*wss*wss*wss;
for(cs = wsblocks/4; cs <= wsblocks*3; cs *= 1.5) {
curblocksize = PAGE_SIZE;
lmfs_set_blocksize(curblocksize, MYMAJOR);
lmfs_buf_pool(cs);
if(dotest(curblocksize, wsblocks, ITER)) e(n);
n++;
}
}
quit();
return 0;
}