minix/lib/libm/arch/vax/n_atan2.S

229 lines
6.7 KiB
ArmAsm
Raw Normal View History

/* $NetBSD: n_atan2.S,v 1.8 2008/03/20 18:49:39 mhitch Exp $ */
/*
* Copyright (c) 1985, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)atan2.s 8.1 (Berkeley) 6/4/93
*/
#include <machine/asm.h>
/*
* ATAN2(Y,X)
* RETURN ARG (X+iY)
* VAX D FORMAT (56 BITS PRECISION)
* CODED IN VAX ASSEMBLY LANGUAGE BY K.C. NG, 4/16/85;
*
*
* Method :
* 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
* 2. Reduce x to positive by (if x and y are unexceptional):
* ARG (x+iy) = arctan(y/x) ... if x > 0,
* ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
* 3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
* is further reduced to one of the following intervals and the
* arctangent of y/x is evaluated by the corresponding formula:
*
* [0,7/16] atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
* [7/16,11/16] atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
* [11/16.19/16] atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
* [19/16,39/16] atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
* [39/16,INF] atan(y/x) = atan(INF) + atan( -x/y )
*
* Special cases:
* Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
*
* ARG( NAN , (anything) ) is NaN;
* ARG( (anything), NaN ) is NaN;
* ARG(+(anything but NaN), +-0) is +-0 ;
* ARG(-(anything but NaN), +-0) is +-PI ;
* ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
* ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
* ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
* ARG( +INF,+-INF ) is +-PI/4 ;
* ARG( -INF,+-INF ) is +-3PI/4;
* ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
*
* Accuracy:
* atan2(y,x) returns the exact ARG(x+iy) nearly rounded.
*/
#ifdef WEAK_ALIAS
WEAK_ALIAS(atan2f, _atan2f)
#endif
ENTRY(_atan2f, 0)
cvtfd 4(%ap),-(%sp)
calls $2,_C_LABEL(_atan2)
cvtdf %r0,%r0
ret
#ifdef WEAK_ALIAS
WEAK_ALIAS(atan2, _atan2)
#endif
ENTRY(_atan2, 0x0fc0)
movq 4(%ap),%r2 # %r2 = y
movq 12(%ap),%r4 # %r4 = x
bicw3 $0x7f,%r2,%r0
bicw3 $0x7f,%r4,%r1
cmpw %r0,$0x8000 # y is the reserved operand
jeql resop
cmpw %r1,$0x8000 # x is the reserved operand
jeql resop
subl2 $8,%sp
bicw3 $0x7fff,%r2,-4(%fp) # copy y sign bit to -4(%fp)
bicw3 $0x7fff,%r4,-8(%fp) # copy x sign bit to -8(%fp)
cmpd %r4,$0x4080 # x = 1.0 ?
bneq xnot1
movq %r2,%r0
bicw2 $0x8000,%r0 # t = |y|
movq %r0,%r2 # y = |y|
jbr begin
xnot1:
bicw3 $0x807f,%r2,%r11 # yexp
jeql yeq0 # if y=0 goto yeq0
bicw3 $0x807f,%r4,%r10 # xexp
jeql pio2 # if x=0 goto pio2
subw2 %r10,%r11 # k = yexp - xexp
cmpw %r11,$0x2000 # k >= 64 (exp) ?
jgeq pio2 # atan2 = +-pi/2
divd3 %r4,%r2,%r0 # t = y/x never overflow
bicw2 $0x8000,%r0 # t > 0
bicw2 $0xff80,%r2 # clear the exponent of y
bicw2 $0xff80,%r4 # clear the exponent of x
bisw2 $0x4080,%r2 # normalize y to [1,2)
bisw2 $0x4080,%r4 # normalize x to [1,2)
subw2 %r11,%r4 # scale x so that yexp-xexp=k
begin:
cmpw %r0,$0x411c # t : 39/16
jgeq L50
addl3 $0x180,%r0,%r10 # 8*t
cvtrfl %r10,%r10 # [8*t] rounded to int
ashl $-1,%r10,%r10 # [8*t]/2
casel %r10,$0,$4
L1:
.word L20-L1
.word L20-L1
.word L30-L1
.word L40-L1
.word L40-L1
L10:
movq $0xb4d9940f985e407b,%r6 # Hi=.98279372324732906796d0
movq $0x21b1879a3bc2a2fc,%r8 # Lo=-.17092002525602665777d-17
subd3 %r4,%r2,%r0 # y-x
addw2 $0x80,%r0 # 2(y-x)
subd2 %r4,%r0 # 2(y-x)-x
addw2 $0x80,%r4 # 2x
movq %r2,%r10
addw2 $0x80,%r10 # 2y
addd2 %r10,%r2 # 3y
addd2 %r4,%r2 # 3y+2x
divd2 %r2,%r0 # (2y-3x)/(2x+3y)
jbr L60
L20:
cmpw %r0,$0x3280 # t : 2**(-28)
jlss L80
clrq %r6 # Hi=%r6=0, Lo=%r8=0
clrq %r8
jbr L60
L30:
movq $0xda7b2b0d63383fed,%r6 # Hi=.46364760900080611433d0
movq $0xf0ea17b2bf912295,%r8 # Lo=.10147340032515978826d-17
movq %r2,%r0
addw2 $0x80,%r0 # 2y
subd2 %r4,%r0 # 2y-x
addw2 $0x80,%r4 # 2x
addd2 %r2,%r4 # 2x+y
divd2 %r4,%r0 # (2y-x)/(2x+y)
jbr L60
L50:
movq $0x68c2a2210fda40c9,%r6 # Hi=1.5707963267948966135d1
movq $0x06e0145c26332326,%r8 # Lo=.22517417741562176079d-17
cmpw %r0,$0x5100 # y : 2**57
bgeq L90
divd3 %r2,%r4,%r0
bisw2 $0x8000,%r0 # -x/y
jbr L60
L40:
movq $0x68c2a2210fda4049,%r6 # Hi=.78539816339744830676d0
movq $0x06e0145c263322a6,%r8 # Lo=.11258708870781088040d-17
subd3 %r4,%r2,%r0 # y-x
addd2 %r4,%r2 # y+x
divd2 %r2,%r0 # (y-x)/(y+x)
L60:
movq %r0,%r10
muld2 %r0,%r0
polyd %r0,$12,ptable
muld2 %r10,%r0
subd2 %r0,%r8
addd3 %r8,%r10,%r0
addd2 %r6,%r0
L80:
movw -8(%fp),%r2
bneq pim
bisw2 -4(%fp),%r0 # return sign(y)*%r0
ret
L90: # x >= 2**25
movq %r6,%r0
jbr L80
pim:
subd3 %r0,$0x68c2a2210fda4149,%r0 # pi-t
bisw2 -4(%fp),%r0
ret
yeq0:
movw -8(%fp),%r2
beql zero # if sign(x)=1 return pi
movq $0x68c2a2210fda4149,%r0 # pi=3.1415926535897932270d1
ret
zero:
clrq %r0 # return 0
ret
pio2:
movq $0x68c2a2210fda40c9,%r0 # pi/2=1.5707963267948966135d1
bisw2 -4(%fp),%r0 # return sign(y)*pi/2
ret
resop:
movq $0x8000,%r0 # propagate the reserved operand
ret
_ALIGN_TEXT
ptable:
.quad 0xb50f5ce96e7abd60
.quad 0x51e44a42c1073e02
.quad 0x3487e3289643be35
.quad 0xdb62066dffba3e54
.quad 0xcf8e2d5199abbe70
.quad 0x26f39cb884883e88
.quad 0x135117d18998be9d
.quad 0x602ce9742e883eba
.quad 0xa35ad0be8e38bee3
.quad 0xffac922249243f12
.quad 0x7f14ccccccccbf4c
.quad 0xaa8faaaaaaaa3faa
.quad 0x0000000000000000