563 lines
17 KiB
C
563 lines
17 KiB
C
|
/* The file system maintains a buffer cache to reduce the number of disk
|
||
|
* accesses needed. Whenever a read or write to the disk is done, a check is
|
||
|
* first made to see if the block is in the cache. This file manages the
|
||
|
* cache.
|
||
|
*
|
||
|
* The entry points into this file are:
|
||
|
* get_block: request to fetch a block for reading or writing from cache
|
||
|
* put_block: return a block previously requested with get_block
|
||
|
* invalidate: remove all the cache blocks on some device
|
||
|
*
|
||
|
* Private functions:
|
||
|
* rw_block: read or write a block from the disk itself
|
||
|
*
|
||
|
* Created (MFS based):
|
||
|
* February 2010 (Evgeniy Ivanov)
|
||
|
*/
|
||
|
|
||
|
#include "fs.h"
|
||
|
#include <minix/u64.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <assert.h>
|
||
|
#include "buf.h"
|
||
|
#include "super.h"
|
||
|
#include "inode.h"
|
||
|
|
||
|
FORWARD _PROTOTYPE( void rm_lru, (struct buf *bp) );
|
||
|
FORWARD _PROTOTYPE( void rw_block, (struct buf *, int) );
|
||
|
|
||
|
PRIVATE int vmcache_avail = -1; /* 0 if not available, >0 if available. */
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* get_block *
|
||
|
*===========================================================================*/
|
||
|
PUBLIC struct buf *get_block(
|
||
|
register dev_t dev, /* on which device is the block? */
|
||
|
register block_t block, /* which block is wanted? */
|
||
|
int only_search /* if NO_READ, don't read, else act normal */
|
||
|
)
|
||
|
{
|
||
|
/* Check to see if the requested block is in the block cache. If so, return
|
||
|
* a pointer to it. If not, evict some other block and fetch it (unless
|
||
|
* 'only_search' is 1). All the blocks in the cache that are not in use
|
||
|
* are linked together in a chain, with 'front' pointing to the least recently
|
||
|
* used block and 'rear' to the most recently used block. If 'only_search' is
|
||
|
* 1, the block being requested will be overwritten in its entirety, so it is
|
||
|
* only necessary to see if it is in the cache; if it is not, any free buffer
|
||
|
* will do. It is not necessary to actually read the block in from disk.
|
||
|
* If 'only_search' is PREFETCH, the block need not be read from the disk,
|
||
|
* and the device is not to be marked on the block, so callers can tell if
|
||
|
* the block returned is valid.
|
||
|
* In addition to the LRU chain, there is also a hash chain to link together
|
||
|
* blocks whose block numbers end with the same bit strings, for fast lookup.
|
||
|
*/
|
||
|
|
||
|
int b;
|
||
|
static struct buf *bp, *prev_ptr;
|
||
|
u64_t yieldid = VM_BLOCKID_NONE, getid = make64(dev, block);
|
||
|
int vmcache = 0;
|
||
|
|
||
|
assert(buf_hash);
|
||
|
assert(buf);
|
||
|
assert(nr_bufs > 0);
|
||
|
|
||
|
if(vmcache_avail < 0) {
|
||
|
/* Test once for the availability of the vm yield block feature. */
|
||
|
if(vm_forgetblock(VM_BLOCKID_NONE) == ENOSYS) {
|
||
|
vmcache_avail = 0;
|
||
|
} else {
|
||
|
vmcache_avail = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* use vmcache if it's available, and allowed, and we're not doing
|
||
|
* i/o on a ram disk device.
|
||
|
*/
|
||
|
if(vmcache_avail && may_use_vmcache && major(dev) != MEMORY_MAJOR)
|
||
|
vmcache = 1;
|
||
|
|
||
|
ASSERT(fs_block_size > 0);
|
||
|
|
||
|
/* Search the hash chain for (dev, block). Do_read() can use
|
||
|
* get_block(NO_DEV ...) to get an unnamed block to fill with zeros when
|
||
|
* someone wants to read from a hole in a file, in which case this search
|
||
|
* is skipped
|
||
|
*/
|
||
|
if (dev != NO_DEV) {
|
||
|
b = BUFHASH(block);
|
||
|
bp = buf_hash[b];
|
||
|
while (bp != NULL) {
|
||
|
if (bp->b_blocknr == block && bp->b_dev == dev) {
|
||
|
/* Block needed has been found. */
|
||
|
if (bp->b_count == 0) rm_lru(bp);
|
||
|
bp->b_count++; /* record that block is in use */
|
||
|
ASSERT(bp->b_bytes == fs_block_size);
|
||
|
ASSERT(bp->b_dev == dev);
|
||
|
ASSERT(bp->b_dev != NO_DEV);
|
||
|
ASSERT(bp->bp);
|
||
|
return(bp);
|
||
|
} else {
|
||
|
/* This block is not the one sought. */
|
||
|
bp = bp->b_hash; /* move to next block on hash chain */
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Desired block is not on available chain. Take oldest block ('front'). */
|
||
|
if ((bp = front) == NULL) panic("all buffers in use", nr_bufs);
|
||
|
|
||
|
if(bp->b_bytes < fs_block_size) {
|
||
|
ASSERT(!bp->bp);
|
||
|
ASSERT(bp->b_bytes == 0);
|
||
|
if(!(bp->bp = alloc_contig( (size_t) fs_block_size, 0, NULL))) {
|
||
|
ext2_debug("ext2: couldn't allocate a new block.\n");
|
||
|
for(bp = front;
|
||
|
bp && bp->b_bytes < fs_block_size; bp = bp->b_next)
|
||
|
;
|
||
|
if(!bp) {
|
||
|
panic("no buffer available");
|
||
|
}
|
||
|
} else {
|
||
|
bp->b_bytes = fs_block_size;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ASSERT(bp);
|
||
|
ASSERT(bp->bp);
|
||
|
ASSERT(bp->b_bytes == fs_block_size);
|
||
|
ASSERT(bp->b_count == 0);
|
||
|
|
||
|
rm_lru(bp);
|
||
|
|
||
|
/* Remove the block that was just taken from its hash chain. */
|
||
|
b = BUFHASH(bp->b_blocknr);
|
||
|
prev_ptr = buf_hash[b];
|
||
|
if (prev_ptr == bp) {
|
||
|
buf_hash[b] = bp->b_hash;
|
||
|
} else {
|
||
|
/* The block just taken is not on the front of its hash chain. */
|
||
|
while (prev_ptr->b_hash != NULL)
|
||
|
if (prev_ptr->b_hash == bp) {
|
||
|
prev_ptr->b_hash = bp->b_hash; /* found it */
|
||
|
break;
|
||
|
} else {
|
||
|
prev_ptr = prev_ptr->b_hash; /* keep looking */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If the block taken is dirty, make it clean by writing it to the disk.
|
||
|
* Avoid hysteresis by flushing all other dirty blocks for the same device.
|
||
|
*/
|
||
|
if (bp->b_dev != NO_DEV) {
|
||
|
if (bp->b_dirt == DIRTY) flushall(bp->b_dev);
|
||
|
|
||
|
/* Are we throwing out a block that contained something?
|
||
|
* Give it to VM for the second-layer cache.
|
||
|
*/
|
||
|
yieldid = make64(bp->b_dev, bp->b_blocknr);
|
||
|
assert(bp->b_bytes == fs_block_size);
|
||
|
bp->b_dev = NO_DEV;
|
||
|
}
|
||
|
|
||
|
/* Fill in block's parameters and add it to the hash chain where it goes. */
|
||
|
bp->b_dev = dev; /* fill in device number */
|
||
|
bp->b_blocknr = block; /* fill in block number */
|
||
|
bp->b_count++; /* record that block is being used */
|
||
|
b = BUFHASH(bp->b_blocknr);
|
||
|
bp->b_hash = buf_hash[b];
|
||
|
|
||
|
buf_hash[b] = bp; /* add to hash list */
|
||
|
|
||
|
if(dev == NO_DEV) {
|
||
|
if(vmcache && cmp64(yieldid, VM_BLOCKID_NONE) != 0) {
|
||
|
vm_yield_block_get_block(yieldid, VM_BLOCKID_NONE,
|
||
|
bp->bp, fs_block_size);
|
||
|
}
|
||
|
return(bp); /* If the caller wanted a NO_DEV block, work is done. */
|
||
|
}
|
||
|
|
||
|
/* Go get the requested block unless searching or prefetching. */
|
||
|
if(only_search == PREFETCH || only_search == NORMAL) {
|
||
|
/* Block is not found in our cache, but we do want it
|
||
|
* if it's in the vm cache.
|
||
|
*/
|
||
|
if(vmcache) {
|
||
|
/* If we can satisfy the PREFETCH or NORMAL request
|
||
|
* from the vm cache, work is done.
|
||
|
*/
|
||
|
if(vm_yield_block_get_block(yieldid, getid,
|
||
|
bp->bp, fs_block_size) == OK) {
|
||
|
return bp;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(only_search == PREFETCH) {
|
||
|
/* PREFETCH: don't do i/o. */
|
||
|
bp->b_dev = NO_DEV;
|
||
|
} else if (only_search == NORMAL) {
|
||
|
rw_block(bp, READING);
|
||
|
} else if(only_search == NO_READ) {
|
||
|
/* we want this block, but its contents
|
||
|
* will be overwritten. VM has to forget
|
||
|
* about it.
|
||
|
*/
|
||
|
if(vmcache) {
|
||
|
vm_forgetblock(getid);
|
||
|
}
|
||
|
} else
|
||
|
panic("unexpected only_search value: %d", only_search);
|
||
|
|
||
|
assert(bp->bp);
|
||
|
|
||
|
return(bp); /* return the newly acquired block */
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* put_block *
|
||
|
*===========================================================================*/
|
||
|
PUBLIC void put_block(
|
||
|
register struct buf *bp, /* pointer to the buffer to be released */
|
||
|
int block_type /* INODE_BLOCK, DIRECTORY_BLOCK, or whatever */
|
||
|
)
|
||
|
{
|
||
|
/* Return a block to the list of available blocks. Depending on 'block_type'
|
||
|
* it may be put on the front or rear of the LRU chain. Blocks that are
|
||
|
* expected to be needed again shortly (e.g., partially full data blocks)
|
||
|
* go on the rear; blocks that are unlikely to be needed again shortly
|
||
|
* (e.g., full data blocks) go on the front. Blocks whose loss can hurt
|
||
|
* the integrity of the file system (e.g., inode blocks) are written to
|
||
|
* disk immediately if they are dirty.
|
||
|
*/
|
||
|
if (bp == NULL) return; /* it is easier to check here than in caller */
|
||
|
|
||
|
bp->b_count--; /* there is one use fewer now */
|
||
|
if (bp->b_count != 0) return; /* block is still in use */
|
||
|
|
||
|
bufs_in_use--; /* one fewer block buffers in use */
|
||
|
|
||
|
/* Put this block back on the LRU chain. If the ONE_SHOT bit is set in
|
||
|
* 'block_type', the block is not likely to be needed again shortly, so put
|
||
|
* it on the front of the LRU chain where it will be the first one to be
|
||
|
* taken when a free buffer is needed later.
|
||
|
*/
|
||
|
if (bp->b_dev == DEV_RAM || (block_type & ONE_SHOT)) {
|
||
|
/* Block probably won't be needed quickly. Put it on front of chain.
|
||
|
* It will be the next block to be evicted from the cache.
|
||
|
*/
|
||
|
bp->b_prev = NULL;
|
||
|
bp->b_next = front;
|
||
|
if (front == NULL)
|
||
|
rear = bp; /* LRU chain was empty */
|
||
|
else
|
||
|
front->b_prev = bp;
|
||
|
front = bp;
|
||
|
}
|
||
|
else {
|
||
|
/* Block probably will be needed quickly. Put it on rear of chain.
|
||
|
* It will not be evicted from the cache for a long time.
|
||
|
*/
|
||
|
bp->b_prev = rear;
|
||
|
bp->b_next = NULL;
|
||
|
if (rear == NULL)
|
||
|
front = bp;
|
||
|
else
|
||
|
rear->b_next = bp;
|
||
|
rear = bp;
|
||
|
}
|
||
|
|
||
|
/* Some blocks are so important (e.g., inodes, indirect blocks) that they
|
||
|
* should be written to the disk immediately to avoid messing up the file
|
||
|
* system in the event of a crash.
|
||
|
*/
|
||
|
if ((block_type & WRITE_IMMED) && bp->b_dirt==DIRTY && bp->b_dev != NO_DEV) {
|
||
|
rw_block(bp, WRITING);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* rw_block *
|
||
|
*===========================================================================*/
|
||
|
PRIVATE void rw_block(
|
||
|
register struct buf *bp, /* buffer pointer */
|
||
|
int rw_flag /* READING or WRITING */
|
||
|
)
|
||
|
{
|
||
|
/* Read or write a disk block. This is the only routine in which actual disk
|
||
|
* I/O is invoked. If an error occurs, a message is printed here, but the error
|
||
|
* is not reported to the caller. If the error occurred while purging a block
|
||
|
* from the cache, it is not clear what the caller could do about it anyway.
|
||
|
*/
|
||
|
int r, op, op_failed = 0;
|
||
|
u64_t pos;
|
||
|
dev_t dev;
|
||
|
|
||
|
if ( (dev = bp->b_dev) != NO_DEV) {
|
||
|
pos = mul64u(bp->b_blocknr, fs_block_size);
|
||
|
op = (rw_flag == READING ? MFS_DEV_READ : MFS_DEV_WRITE);
|
||
|
r = block_dev_io(op, dev, SELF_E, bp->b_data, pos, fs_block_size);
|
||
|
if (r < 0) {
|
||
|
printf("Ext2(%d) I/O error on device %d/%d, block %lu\n",
|
||
|
SELF_E, major(dev), minor(dev), bp->b_blocknr);
|
||
|
op_failed = 1;
|
||
|
} else if( (unsigned) r != fs_block_size) {
|
||
|
r = END_OF_FILE;
|
||
|
op_failed = 1;
|
||
|
}
|
||
|
|
||
|
if (op_failed) {
|
||
|
bp->b_dev = NO_DEV; /* invalidate block */
|
||
|
|
||
|
/* Report read errors to interested parties. */
|
||
|
if (rw_flag == READING) rdwt_err = r;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bp->b_dirt = CLEAN;
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* invalidate *
|
||
|
*===========================================================================*/
|
||
|
PUBLIC void invalidate(
|
||
|
dev_t device /* device whose blocks are to be purged */
|
||
|
)
|
||
|
{
|
||
|
/* Remove all the blocks belonging to some device from the cache. */
|
||
|
|
||
|
register struct buf *bp;
|
||
|
|
||
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
|
||
|
if (bp->b_dev == device) bp->b_dev = NO_DEV;
|
||
|
|
||
|
vm_forgetblocks();
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* flushall *
|
||
|
*===========================================================================*/
|
||
|
PUBLIC void flushall(
|
||
|
dev_t dev /* device to flush */
|
||
|
)
|
||
|
{
|
||
|
/* Flush all dirty blocks for one device. */
|
||
|
|
||
|
register struct buf *bp;
|
||
|
static struct buf **dirty; /* static so it isn't on stack */
|
||
|
static int unsigned dirtylistsize = 0;
|
||
|
int ndirty;
|
||
|
|
||
|
if(dirtylistsize != nr_bufs) {
|
||
|
if(dirtylistsize > 0) {
|
||
|
assert(dirty != NULL);
|
||
|
free(dirty);
|
||
|
}
|
||
|
if(!(dirty = malloc(sizeof(dirty[0])*nr_bufs)))
|
||
|
panic("couldn't allocate dirty buf list");
|
||
|
dirtylistsize = nr_bufs;
|
||
|
}
|
||
|
|
||
|
for (bp = &buf[0], ndirty = 0; bp < &buf[nr_bufs]; bp++)
|
||
|
if (bp->b_dirt == DIRTY && bp->b_dev == dev) dirty[ndirty++] = bp;
|
||
|
rw_scattered(dev, dirty, ndirty, WRITING);
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* rw_scattered *
|
||
|
*===========================================================================*/
|
||
|
PUBLIC void rw_scattered(
|
||
|
dev_t dev, /* major-minor device number */
|
||
|
struct buf **bufq, /* pointer to array of buffers */
|
||
|
int bufqsize, /* number of buffers */
|
||
|
int rw_flag /* READING or WRITING */
|
||
|
)
|
||
|
{
|
||
|
/* Read or write scattered data from a device. */
|
||
|
|
||
|
register struct buf *bp;
|
||
|
int gap;
|
||
|
register int i;
|
||
|
register iovec_t *iop;
|
||
|
static iovec_t *iovec = NULL;
|
||
|
int j, r;
|
||
|
|
||
|
STATICINIT(iovec, NR_IOREQS);
|
||
|
|
||
|
/* (Shell) sort buffers on b_blocknr. */
|
||
|
gap = 1;
|
||
|
do
|
||
|
gap = 3 * gap + 1;
|
||
|
while (gap <= bufqsize);
|
||
|
while (gap != 1) {
|
||
|
gap /= 3;
|
||
|
for (j = gap; j < bufqsize; j++) {
|
||
|
for (i = j - gap;
|
||
|
i >= 0 && bufq[i]->b_blocknr > bufq[i + gap]->b_blocknr;
|
||
|
i -= gap) {
|
||
|
bp = bufq[i];
|
||
|
bufq[i] = bufq[i + gap];
|
||
|
bufq[i + gap] = bp;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Set up I/O vector and do I/O. The result of dev_io is OK if everything
|
||
|
* went fine, otherwise the error code for the first failed transfer.
|
||
|
*/
|
||
|
while (bufqsize > 0) {
|
||
|
for (j = 0, iop = iovec; j < NR_IOREQS && j < bufqsize; j++, iop++) {
|
||
|
bp = bufq[j];
|
||
|
if (bp->b_blocknr != (block_t) bufq[0]->b_blocknr + j) break;
|
||
|
iop->iov_addr = (vir_bytes) bp->b_data;
|
||
|
iop->iov_size = (vir_bytes) fs_block_size;
|
||
|
}
|
||
|
r = block_dev_io(rw_flag == WRITING ? MFS_DEV_SCATTER : MFS_DEV_GATHER,
|
||
|
dev, SELF_E, iovec,
|
||
|
mul64u(bufq[0]->b_blocknr, fs_block_size), j);
|
||
|
|
||
|
/* Harvest the results. Dev_io reports the first error it may have
|
||
|
* encountered, but we only care if it's the first block that failed.
|
||
|
*/
|
||
|
for (i = 0, iop = iovec; i < j; i++, iop++) {
|
||
|
bp = bufq[i];
|
||
|
if (iop->iov_size != 0) {
|
||
|
/* Transfer failed. An error? Do we care? */
|
||
|
if (r != OK && i == 0) {
|
||
|
printf(
|
||
|
"fs: I/O error on device %d/%d, block %lu\n",
|
||
|
major(dev), minor(dev), bp->b_blocknr);
|
||
|
bp->b_dev = NO_DEV; /* invalidate block */
|
||
|
vm_forgetblocks();
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
if (rw_flag == READING) {
|
||
|
bp->b_dev = dev; /* validate block */
|
||
|
put_block(bp, PARTIAL_DATA_BLOCK);
|
||
|
} else {
|
||
|
bp->b_dirt = CLEAN;
|
||
|
}
|
||
|
}
|
||
|
bufq += i;
|
||
|
bufqsize -= i;
|
||
|
if (rw_flag == READING) {
|
||
|
/* Don't bother reading more than the device is willing to
|
||
|
* give at this time. Don't forget to release those extras.
|
||
|
*/
|
||
|
while (bufqsize > 0) {
|
||
|
put_block(*bufq++, PARTIAL_DATA_BLOCK);
|
||
|
bufqsize--;
|
||
|
}
|
||
|
}
|
||
|
if (rw_flag == WRITING && i == 0) {
|
||
|
/* We're not making progress, this means we might keep
|
||
|
* looping. Buffers remain dirty if un-written. Buffers are
|
||
|
* lost if invalidate()d or LRU-removed while dirty. This
|
||
|
* is better than keeping unwritable blocks around forever..
|
||
|
*/
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* rm_lru *
|
||
|
*===========================================================================*/
|
||
|
PRIVATE void rm_lru(
|
||
|
struct buf *bp
|
||
|
)
|
||
|
{
|
||
|
/* Remove a block from its LRU chain. */
|
||
|
struct buf *next_ptr, *prev_ptr;
|
||
|
|
||
|
bufs_in_use++;
|
||
|
next_ptr = bp->b_next; /* successor on LRU chain */
|
||
|
prev_ptr = bp->b_prev; /* predecessor on LRU chain */
|
||
|
if (prev_ptr != NULL)
|
||
|
prev_ptr->b_next = next_ptr;
|
||
|
else
|
||
|
front = next_ptr; /* this block was at front of chain */
|
||
|
|
||
|
if (next_ptr != NULL)
|
||
|
next_ptr->b_prev = prev_ptr;
|
||
|
else
|
||
|
rear = prev_ptr; /* this block was at rear of chain */
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* set_blocksize *
|
||
|
*===========================================================================*/
|
||
|
PUBLIC void set_blocksize(unsigned int blocksize)
|
||
|
{
|
||
|
struct buf *bp;
|
||
|
struct inode *rip;
|
||
|
|
||
|
ASSERT(blocksize > 0);
|
||
|
|
||
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++)
|
||
|
if(bp->b_count != 0) panic("change blocksize with buffer in use");
|
||
|
|
||
|
for (rip = &inode[0]; rip < &inode[NR_INODES]; rip++)
|
||
|
if (rip->i_count > 0) panic("change blocksize with inode in use");
|
||
|
|
||
|
buf_pool(nr_bufs);
|
||
|
fs_block_size = blocksize;
|
||
|
}
|
||
|
|
||
|
/*===========================================================================*
|
||
|
* buf_pool *
|
||
|
*===========================================================================*/
|
||
|
PUBLIC void buf_pool(int new_nr_bufs)
|
||
|
{
|
||
|
/* Initialize the buffer pool. */
|
||
|
register struct buf *bp;
|
||
|
|
||
|
assert(new_nr_bufs > 0);
|
||
|
|
||
|
if(nr_bufs > 0) {
|
||
|
assert(buf);
|
||
|
(void) fs_sync();
|
||
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
|
||
|
if(bp->bp) {
|
||
|
assert(bp->b_bytes > 0);
|
||
|
free_contig(bp->bp, bp->b_bytes);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(buf)
|
||
|
free(buf);
|
||
|
|
||
|
if(!(buf = calloc(sizeof(buf[0]), new_nr_bufs)))
|
||
|
panic("couldn't allocate buf list (%d)", new_nr_bufs);
|
||
|
|
||
|
if(buf_hash)
|
||
|
free(buf_hash);
|
||
|
if(!(buf_hash = calloc(sizeof(buf_hash[0]), new_nr_bufs)))
|
||
|
panic("couldn't allocate buf hash list (%d)", new_nr_bufs);
|
||
|
|
||
|
nr_bufs = new_nr_bufs;
|
||
|
|
||
|
bufs_in_use = 0;
|
||
|
front = &buf[0];
|
||
|
rear = &buf[nr_bufs - 1];
|
||
|
|
||
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) {
|
||
|
bp->b_blocknr = NO_BLOCK;
|
||
|
bp->b_dev = NO_DEV;
|
||
|
bp->b_next = bp + 1;
|
||
|
bp->b_prev = bp - 1;
|
||
|
bp->bp = NULL;
|
||
|
bp->b_bytes = 0;
|
||
|
}
|
||
|
buf[0].b_prev = NULL;
|
||
|
buf[nr_bufs - 1].b_next = NULL;
|
||
|
|
||
|
for (bp = &buf[0]; bp < &buf[nr_bufs]; bp++) bp->b_hash = bp->b_next;
|
||
|
buf_hash[0] = front;
|
||
|
|
||
|
vm_forgetblocks();
|
||
|
}
|