521 lines
13 KiB
C
521 lines
13 KiB
C
|
/* $NetBSD: regress_thread.c,v 1.4 2013/04/12 20:00:21 christos Exp $ */
|
||
|
/*
|
||
|
* Copyright (c) 2007-2012 Niels Provos and Nick Mathewson
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. The name of the author may not be used to endorse or promote products
|
||
|
* derived from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
/* The old tests here need assertions to work. */
|
||
|
#undef NDEBUG
|
||
|
|
||
|
#include "event2/event-config.h"
|
||
|
#include <sys/cdefs.h>
|
||
|
__RCSID("$NetBSD: regress_thread.c,v 1.4 2013/04/12 20:00:21 christos Exp $");
|
||
|
|
||
|
#include <sys/types.h>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#ifdef _EVENT_HAVE_UNISTD_H
|
||
|
#include <unistd.h>
|
||
|
#endif
|
||
|
#ifdef _EVENT_HAVE_SYS_WAIT_H
|
||
|
#include <sys/wait.h>
|
||
|
#endif
|
||
|
|
||
|
#ifdef _EVENT_HAVE_PTHREADS
|
||
|
#include <pthread.h>
|
||
|
#elif defined(WIN32)
|
||
|
#include <process.h>
|
||
|
#endif
|
||
|
#include <assert.h>
|
||
|
#ifdef _EVENT_HAVE_UNISTD_H
|
||
|
#include <unistd.h>
|
||
|
#endif
|
||
|
#include <time.h>
|
||
|
|
||
|
#include "sys/queue.h"
|
||
|
|
||
|
#include "event2/util.h"
|
||
|
#include "event2/event.h"
|
||
|
#include "event2/event_struct.h"
|
||
|
#include "event2/thread.h"
|
||
|
#include "evthread-internal.h"
|
||
|
#include "event-internal.h"
|
||
|
#include "defer-internal.h"
|
||
|
#include "regress.h"
|
||
|
#include "tinytest_macros.h"
|
||
|
|
||
|
#ifdef _EVENT_HAVE_PTHREADS
|
||
|
#define THREAD_T pthread_t
|
||
|
#define THREAD_FN void *
|
||
|
#define THREAD_RETURN() return (NULL)
|
||
|
#define THREAD_START(threadvar, fn, arg) \
|
||
|
pthread_create(&(threadvar), NULL, fn, arg)
|
||
|
#define THREAD_JOIN(th) pthread_join(th, NULL)
|
||
|
#else
|
||
|
#define THREAD_T HANDLE
|
||
|
#define THREAD_FN unsigned __stdcall
|
||
|
#define THREAD_RETURN() return (0)
|
||
|
#define THREAD_START(threadvar, fn, arg) do { \
|
||
|
uintptr_t threadhandle = _beginthreadex(NULL,0,fn,(arg),0,NULL); \
|
||
|
(threadvar) = (HANDLE) threadhandle; \
|
||
|
} while (/*CONSTCOND*/0)
|
||
|
#define THREAD_JOIN(th) WaitForSingleObject(th, INFINITE)
|
||
|
#endif
|
||
|
|
||
|
struct cond_wait {
|
||
|
void *lock;
|
||
|
void *cond;
|
||
|
};
|
||
|
|
||
|
static void
|
||
|
wake_all_timeout(evutil_socket_t fd, short what, void *arg)
|
||
|
{
|
||
|
struct cond_wait *cw = arg;
|
||
|
EVLOCK_LOCK(cw->lock, 0);
|
||
|
EVTHREAD_COND_BROADCAST(cw->cond);
|
||
|
EVLOCK_UNLOCK(cw->lock, 0);
|
||
|
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
static void
|
||
|
wake_one_timeout(evutil_socket_t fd, short what, void *arg)
|
||
|
{
|
||
|
struct cond_wait *cw = arg;
|
||
|
EVLOCK_LOCK(cw->lock, 0);
|
||
|
EVTHREAD_COND_SIGNAL(cw->cond);
|
||
|
EVLOCK_UNLOCK(cw->lock, 0);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#define NUM_THREADS 100
|
||
|
#define NUM_ITERATIONS 100
|
||
|
void *count_lock;
|
||
|
static int count;
|
||
|
|
||
|
static THREAD_FN
|
||
|
basic_thread(void *arg)
|
||
|
{
|
||
|
struct cond_wait cw;
|
||
|
struct event_base *base = arg;
|
||
|
struct event ev;
|
||
|
int i = 0;
|
||
|
|
||
|
EVTHREAD_ALLOC_LOCK(cw.lock, 0);
|
||
|
EVTHREAD_ALLOC_COND(cw.cond);
|
||
|
assert(cw.lock);
|
||
|
assert(cw.cond);
|
||
|
|
||
|
evtimer_assign(&ev, base, wake_all_timeout, &cw);
|
||
|
for (i = 0; i < NUM_ITERATIONS; i++) {
|
||
|
struct timeval tv;
|
||
|
evutil_timerclear(&tv);
|
||
|
tv.tv_sec = 0;
|
||
|
tv.tv_usec = 3000;
|
||
|
|
||
|
EVLOCK_LOCK(cw.lock, 0);
|
||
|
/* we need to make sure that event does not happen before
|
||
|
* we get to wait on the conditional variable */
|
||
|
assert(evtimer_add(&ev, &tv) == 0);
|
||
|
|
||
|
assert(EVTHREAD_COND_WAIT(cw.cond, cw.lock) == 0);
|
||
|
EVLOCK_UNLOCK(cw.lock, 0);
|
||
|
|
||
|
EVLOCK_LOCK(count_lock, 0);
|
||
|
++count;
|
||
|
EVLOCK_UNLOCK(count_lock, 0);
|
||
|
}
|
||
|
|
||
|
/* exit the loop only if all threads fired all timeouts */
|
||
|
EVLOCK_LOCK(count_lock, 0);
|
||
|
if (count >= NUM_THREADS * NUM_ITERATIONS)
|
||
|
event_base_loopexit(base, NULL);
|
||
|
EVLOCK_UNLOCK(count_lock, 0);
|
||
|
|
||
|
EVTHREAD_FREE_LOCK(cw.lock, 0);
|
||
|
EVTHREAD_FREE_COND(cw.cond);
|
||
|
|
||
|
THREAD_RETURN();
|
||
|
}
|
||
|
|
||
|
static int notification_fd_used = 0;
|
||
|
#ifndef WIN32
|
||
|
static int got_sigchld = 0;
|
||
|
static void
|
||
|
sigchld_cb(evutil_socket_t fd, short event, void *arg)
|
||
|
{
|
||
|
struct timeval tv;
|
||
|
struct event_base *base = arg;
|
||
|
|
||
|
got_sigchld++;
|
||
|
tv.tv_usec = 100000;
|
||
|
tv.tv_sec = 0;
|
||
|
event_base_loopexit(base, &tv);
|
||
|
}
|
||
|
|
||
|
|
||
|
static void
|
||
|
notify_fd_cb(evutil_socket_t fd, short event, void *arg)
|
||
|
{
|
||
|
++notification_fd_used;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void
|
||
|
thread_basic(void *arg)
|
||
|
{
|
||
|
THREAD_T threads[NUM_THREADS];
|
||
|
struct event ev;
|
||
|
struct timeval tv;
|
||
|
int i;
|
||
|
struct basic_test_data *data = arg;
|
||
|
struct event_base *base = data->base;
|
||
|
|
||
|
struct event *notification_event = NULL;
|
||
|
struct event *sigchld_event = NULL;
|
||
|
|
||
|
EVTHREAD_ALLOC_LOCK(count_lock, 0);
|
||
|
tt_assert(count_lock);
|
||
|
|
||
|
tt_assert(base);
|
||
|
if (evthread_make_base_notifiable(base)<0) {
|
||
|
tt_abort_msg("Couldn't make base notifiable!");
|
||
|
}
|
||
|
|
||
|
#ifndef WIN32
|
||
|
if (data->setup_data && !strcmp(data->setup_data, "forking")) {
|
||
|
pid_t pid;
|
||
|
int status;
|
||
|
sigchld_event = evsignal_new(base, SIGCHLD, sigchld_cb, base);
|
||
|
/* This piggybacks on the th_notify_fd weirdly, and looks
|
||
|
* inside libevent internals. Not a good idea in non-testing
|
||
|
* code! */
|
||
|
notification_event = event_new(base,
|
||
|
base->th_notify_fd[0], EV_READ|EV_PERSIST, notify_fd_cb,
|
||
|
NULL);
|
||
|
event_add(sigchld_event, NULL);
|
||
|
event_add(notification_event, NULL);
|
||
|
|
||
|
if ((pid = fork()) == 0) {
|
||
|
event_del(notification_event);
|
||
|
if (event_reinit(base) < 0) {
|
||
|
TT_FAIL(("reinit"));
|
||
|
exit(1);
|
||
|
}
|
||
|
event_assign(notification_event, base,
|
||
|
base->th_notify_fd[0], EV_READ|EV_PERSIST,
|
||
|
notify_fd_cb, NULL);
|
||
|
event_add(notification_event, NULL);
|
||
|
goto child;
|
||
|
}
|
||
|
|
||
|
event_base_dispatch(base);
|
||
|
|
||
|
if (waitpid(pid, &status, 0) == -1)
|
||
|
tt_abort_perror("waitpid");
|
||
|
TT_BLATHER(("Waitpid okay\n"));
|
||
|
|
||
|
tt_assert(got_sigchld);
|
||
|
tt_int_op(notification_fd_used, ==, 0);
|
||
|
|
||
|
goto end;
|
||
|
}
|
||
|
|
||
|
child:
|
||
|
#endif
|
||
|
for (i = 0; i < NUM_THREADS; ++i)
|
||
|
THREAD_START(threads[i], basic_thread, base);
|
||
|
|
||
|
evtimer_assign(&ev, base, NULL, NULL);
|
||
|
evutil_timerclear(&tv);
|
||
|
tv.tv_sec = 1000;
|
||
|
event_add(&ev, &tv);
|
||
|
|
||
|
event_base_dispatch(base);
|
||
|
|
||
|
for (i = 0; i < NUM_THREADS; ++i)
|
||
|
THREAD_JOIN(threads[i]);
|
||
|
|
||
|
event_del(&ev);
|
||
|
|
||
|
tt_int_op(count, ==, NUM_THREADS * NUM_ITERATIONS);
|
||
|
|
||
|
EVTHREAD_FREE_LOCK(count_lock, 0);
|
||
|
|
||
|
TT_BLATHER(("notifiations==%d", notification_fd_used));
|
||
|
|
||
|
end:
|
||
|
|
||
|
if (notification_event)
|
||
|
event_free(notification_event);
|
||
|
if (sigchld_event)
|
||
|
event_free(sigchld_event);
|
||
|
}
|
||
|
|
||
|
#undef NUM_THREADS
|
||
|
#define NUM_THREADS 10
|
||
|
|
||
|
struct alerted_record {
|
||
|
struct cond_wait *cond;
|
||
|
struct timeval delay;
|
||
|
struct timeval alerted_at;
|
||
|
int timed_out;
|
||
|
};
|
||
|
|
||
|
#if 0
|
||
|
static THREAD_FN
|
||
|
wait_for_condition(void *arg)
|
||
|
{
|
||
|
struct alerted_record *rec = arg;
|
||
|
int r;
|
||
|
|
||
|
EVLOCK_LOCK(rec->cond->lock, 0);
|
||
|
if (rec->delay.tv_sec || rec->delay.tv_usec) {
|
||
|
r = EVTHREAD_COND_WAIT_TIMED(rec->cond->cond, rec->cond->lock,
|
||
|
&rec->delay);
|
||
|
} else {
|
||
|
r = EVTHREAD_COND_WAIT(rec->cond->cond, rec->cond->lock);
|
||
|
}
|
||
|
EVLOCK_UNLOCK(rec->cond->lock, 0);
|
||
|
|
||
|
evutil_gettimeofday(&rec->alerted_at, NULL);
|
||
|
if (r == 1)
|
||
|
rec->timed_out = 1;
|
||
|
|
||
|
THREAD_RETURN();
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
thread_conditions_simple(void *arg)
|
||
|
{
|
||
|
struct timeval tv_signal, tv_timeout, tv_broadcast;
|
||
|
struct alerted_record alerted[NUM_THREADS];
|
||
|
THREAD_T threads[NUM_THREADS];
|
||
|
struct cond_wait cond;
|
||
|
int i;
|
||
|
struct timeval launched_at;
|
||
|
struct event wake_one;
|
||
|
struct event wake_all;
|
||
|
struct basic_test_data *data = arg;
|
||
|
struct event_base *base = data->base;
|
||
|
int n_timed_out=0, n_signal=0, n_broadcast=0;
|
||
|
|
||
|
tv_signal.tv_sec = tv_timeout.tv_sec = tv_broadcast.tv_sec = 0;
|
||
|
tv_signal.tv_usec = 30*1000;
|
||
|
tv_timeout.tv_usec = 150*1000;
|
||
|
tv_broadcast.tv_usec = 500*1000;
|
||
|
|
||
|
EVTHREAD_ALLOC_LOCK(cond.lock, EVTHREAD_LOCKTYPE_RECURSIVE);
|
||
|
EVTHREAD_ALLOC_COND(cond.cond);
|
||
|
tt_assert(cond.lock);
|
||
|
tt_assert(cond.cond);
|
||
|
for (i = 0; i < NUM_THREADS; ++i) {
|
||
|
memset(&alerted[i], 0, sizeof(struct alerted_record));
|
||
|
alerted[i].cond = &cond;
|
||
|
}
|
||
|
|
||
|
/* Threads 5 and 6 will be allowed to time out */
|
||
|
memcpy(&alerted[5].delay, &tv_timeout, sizeof(tv_timeout));
|
||
|
memcpy(&alerted[6].delay, &tv_timeout, sizeof(tv_timeout));
|
||
|
|
||
|
evtimer_assign(&wake_one, base, wake_one_timeout, &cond);
|
||
|
evtimer_assign(&wake_all, base, wake_all_timeout, &cond);
|
||
|
|
||
|
evutil_gettimeofday(&launched_at, NULL);
|
||
|
|
||
|
/* Launch the threads... */
|
||
|
for (i = 0; i < NUM_THREADS; ++i) {
|
||
|
THREAD_START(threads[i], wait_for_condition, &alerted[i]);
|
||
|
}
|
||
|
|
||
|
/* Start the timers... */
|
||
|
tt_int_op(event_add(&wake_one, &tv_signal), ==, 0);
|
||
|
tt_int_op(event_add(&wake_all, &tv_broadcast), ==, 0);
|
||
|
|
||
|
/* And run for a bit... */
|
||
|
event_base_dispatch(base);
|
||
|
|
||
|
/* And wait till the threads are done. */
|
||
|
for (i = 0; i < NUM_THREADS; ++i)
|
||
|
THREAD_JOIN(threads[i]);
|
||
|
|
||
|
/* Now, let's see what happened. At least one of 5 or 6 should
|
||
|
* have timed out. */
|
||
|
n_timed_out = alerted[5].timed_out + alerted[6].timed_out;
|
||
|
tt_int_op(n_timed_out, >=, 1);
|
||
|
tt_int_op(n_timed_out, <=, 2);
|
||
|
|
||
|
for (i = 0; i < NUM_THREADS; ++i) {
|
||
|
const struct timeval *target_delay;
|
||
|
struct timeval target_time, actual_delay;
|
||
|
if (alerted[i].timed_out) {
|
||
|
TT_BLATHER(("%d looks like a timeout\n", i));
|
||
|
target_delay = &tv_timeout;
|
||
|
tt_assert(i == 5 || i == 6);
|
||
|
} else if (evutil_timerisset(&alerted[i].alerted_at)) {
|
||
|
long diff1,diff2;
|
||
|
evutil_timersub(&alerted[i].alerted_at,
|
||
|
&launched_at, &actual_delay);
|
||
|
diff1 = timeval_msec_diff(&actual_delay,
|
||
|
&tv_signal);
|
||
|
diff2 = timeval_msec_diff(&actual_delay,
|
||
|
&tv_broadcast);
|
||
|
if (abs(diff1) < abs(diff2)) {
|
||
|
TT_BLATHER(("%d looks like a signal\n", i));
|
||
|
target_delay = &tv_signal;
|
||
|
++n_signal;
|
||
|
} else {
|
||
|
TT_BLATHER(("%d looks like a broadcast\n", i));
|
||
|
target_delay = &tv_broadcast;
|
||
|
++n_broadcast;
|
||
|
}
|
||
|
} else {
|
||
|
TT_FAIL(("Thread %d never got woken", i));
|
||
|
continue;
|
||
|
}
|
||
|
evutil_timeradd(target_delay, &launched_at, &target_time);
|
||
|
test_timeval_diff_leq(&target_time, &alerted[i].alerted_at,
|
||
|
0, 150);
|
||
|
}
|
||
|
tt_int_op(n_broadcast + n_signal + n_timed_out, ==, NUM_THREADS);
|
||
|
tt_int_op(n_signal, ==, 1);
|
||
|
|
||
|
end:
|
||
|
;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#define CB_COUNT 128
|
||
|
#define QUEUE_THREAD_COUNT 8
|
||
|
|
||
|
#ifdef WIN32
|
||
|
#define SLEEP_MS(ms) Sleep(ms)
|
||
|
#else
|
||
|
#define SLEEP_MS(ms) usleep((ms) * 1000)
|
||
|
#endif
|
||
|
|
||
|
struct deferred_test_data {
|
||
|
struct deferred_cb cbs[CB_COUNT];
|
||
|
struct deferred_cb_queue *queue;
|
||
|
};
|
||
|
|
||
|
static time_t timer_start = 0;
|
||
|
static time_t timer_end = 0;
|
||
|
static unsigned callback_count = 0;
|
||
|
static THREAD_T load_threads[QUEUE_THREAD_COUNT];
|
||
|
static struct deferred_test_data deferred_data[QUEUE_THREAD_COUNT];
|
||
|
|
||
|
static void
|
||
|
deferred_callback(struct deferred_cb *cb, void *arg)
|
||
|
{
|
||
|
SLEEP_MS(1);
|
||
|
callback_count += 1;
|
||
|
}
|
||
|
|
||
|
static THREAD_FN
|
||
|
load_deferred_queue(void *arg)
|
||
|
{
|
||
|
struct deferred_test_data *data = arg;
|
||
|
size_t i;
|
||
|
|
||
|
for (i = 0; i < CB_COUNT; ++i) {
|
||
|
event_deferred_cb_init(&data->cbs[i], deferred_callback, NULL);
|
||
|
event_deferred_cb_schedule(data->queue, &data->cbs[i]);
|
||
|
SLEEP_MS(1);
|
||
|
}
|
||
|
|
||
|
THREAD_RETURN();
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
timer_callback(evutil_socket_t fd, short what, void *arg)
|
||
|
{
|
||
|
timer_end = time(NULL);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
start_threads_callback(evutil_socket_t fd, short what, void *arg)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < QUEUE_THREAD_COUNT; ++i) {
|
||
|
THREAD_START(load_threads[i], load_deferred_queue,
|
||
|
&deferred_data[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
thread_deferred_cb_skew(void *arg)
|
||
|
{
|
||
|
struct basic_test_data *data = arg;
|
||
|
struct timeval tv_timer = {4, 0};
|
||
|
struct deferred_cb_queue *queue;
|
||
|
time_t elapsed;
|
||
|
int i;
|
||
|
|
||
|
queue = event_base_get_deferred_cb_queue(data->base);
|
||
|
tt_assert(queue);
|
||
|
|
||
|
for (i = 0; i < QUEUE_THREAD_COUNT; ++i)
|
||
|
deferred_data[i].queue = queue;
|
||
|
|
||
|
timer_start = time(NULL);
|
||
|
event_base_once(data->base, -1, EV_TIMEOUT, timer_callback, NULL,
|
||
|
&tv_timer);
|
||
|
event_base_once(data->base, -1, EV_TIMEOUT, start_threads_callback,
|
||
|
NULL, NULL);
|
||
|
event_base_dispatch(data->base);
|
||
|
|
||
|
elapsed = timer_end - timer_start;
|
||
|
TT_BLATHER(("callback count, %u", callback_count));
|
||
|
TT_BLATHER(("elapsed time, %u", (unsigned)elapsed));
|
||
|
/* XXX be more intelligent here. just make sure skew is
|
||
|
* within 2 seconds for now. */
|
||
|
tt_assert(elapsed >= 4 && elapsed <= 6);
|
||
|
|
||
|
end:
|
||
|
for (i = 0; i < QUEUE_THREAD_COUNT; ++i)
|
||
|
THREAD_JOIN(load_threads[i]);
|
||
|
}
|
||
|
|
||
|
#define TEST(name) \
|
||
|
{ #name, thread_##name, TT_FORK|TT_NEED_THREADS|TT_NEED_BASE, \
|
||
|
&basic_setup, NULL }
|
||
|
|
||
|
struct testcase_t thread_testcases[] = {
|
||
|
{ "basic", thread_basic, TT_FORK|TT_NEED_THREADS|TT_NEED_BASE,
|
||
|
&basic_setup, NULL },
|
||
|
#ifndef WIN32
|
||
|
{ "forking", thread_basic, TT_FORK|TT_NEED_THREADS|TT_NEED_BASE,
|
||
|
&basic_setup, __UNCONST("forking") },
|
||
|
#endif
|
||
|
#if 0
|
||
|
TEST(conditions_simple),
|
||
|
#endif
|
||
|
TEST(deferred_cb_skew),
|
||
|
END_OF_TESTCASES
|
||
|
};
|
||
|
|