minix/drivers/ti1225/ti1225.c

436 lines
9.7 KiB
C
Raw Normal View History

/*
ti1225.c
Created: Dec 2005 by Philip Homburg
*/
#include <minix/drivers.h>
Driver refactory for live update and crash recovery. SYSLIB CHANGES: - DS calls to publish / retrieve labels consider endpoints instead of u32_t. VFS CHANGES: - mapdriver() only adds an entry in the dmap table in VFS. - dev_up() is only executed upon reception of a driver up event. INET CHANGES: - INET no longer searches for existing drivers instances at startup. - A newtwork driver is (re)initialized upon reception of a driver up event. - Networking startup is now race-free by design. No need to waste 5 seconds at startup any more. DRIVER CHANGES: - Every driver publishes driver up events when starting for the first time or in case of restart when recovery actions must be taken in the upper layers. - Driver up events are published by drivers through DS. - For regular drivers, VFS is normally the only subscriber, but not necessarily. For instance, when the filter driver is in use, it must subscribe to driver up events to initiate recovery. - For network drivers, inet is the only subscriber for now. - Every VFS driver is statically linked with libdriver, every network driver is statically linked with libnetdriver. DRIVER LIBRARIES CHANGES: - Libdriver is extended to provide generic receive() and ds_publish() interfaces for VFS drivers. - driver_receive() is a wrapper for sef_receive() also used in driver_task() to discard spurious messages that were meant to be delivered to a previous version of the driver. - driver_receive_mq() is the same as driver_receive() but integrates support for queued messages. - driver_announce() publishes a driver up event for VFS drivers and marks the driver as initialized and expecting a DEV_OPEN message. - Libnetdriver is introduced to provide similar receive() and ds_publish() interfaces for network drivers (netdriver_announce() and netdriver_receive()). - Network drivers all support live update with no state transfer now. KERNEL CHANGES: - Added kernel call statectl for state management. Used by driver_announce() to unblock eventual callers sendrecing to the driver.
2010-04-08 15:41:35 +02:00
#include <minix/driver.h>
#include <machine/pci.h>
#include <machine/vm.h>
#include <machine/vmparam.h>
#include <sys/mman.h>
#include "ti1225.h"
#include "i82365.h"
/* The use of interrupts is not yet ready for prime time */
#define USE_INTS 0
2012-03-25 20:25:53 +02:00
static struct port
{
int p_devind;
u8_t p_cb_busnr;
u16_t p_exca_port;
#if USE_INTS
int p_irq;
int p_hook;
#endif
volatile struct csr *csr_ptr;
} port;
2012-03-25 20:25:53 +02:00
static int instance;
static int debug;
2012-03-25 20:25:53 +02:00
static int hw_probe(int skip);
static void hw_init(struct port *pp, int devind);
static void do_int(struct port *pp);
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* SEF functions and variables. */
2012-03-25 20:25:53 +02:00
static void sef_local_startup(void);
static int sef_cb_init_fresh(int type, sef_init_info_t *info);
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
/*===========================================================================*
* main *
*===========================================================================*/
int main(int argc, char *argv[])
{
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
int r;
message m;
Driver refactory for live update and crash recovery. SYSLIB CHANGES: - DS calls to publish / retrieve labels consider endpoints instead of u32_t. VFS CHANGES: - mapdriver() only adds an entry in the dmap table in VFS. - dev_up() is only executed upon reception of a driver up event. INET CHANGES: - INET no longer searches for existing drivers instances at startup. - A newtwork driver is (re)initialized upon reception of a driver up event. - Networking startup is now race-free by design. No need to waste 5 seconds at startup any more. DRIVER CHANGES: - Every driver publishes driver up events when starting for the first time or in case of restart when recovery actions must be taken in the upper layers. - Driver up events are published by drivers through DS. - For regular drivers, VFS is normally the only subscriber, but not necessarily. For instance, when the filter driver is in use, it must subscribe to driver up events to initiate recovery. - For network drivers, inet is the only subscriber for now. - Every VFS driver is statically linked with libdriver, every network driver is statically linked with libnetdriver. DRIVER LIBRARIES CHANGES: - Libdriver is extended to provide generic receive() and ds_publish() interfaces for VFS drivers. - driver_receive() is a wrapper for sef_receive() also used in driver_task() to discard spurious messages that were meant to be delivered to a previous version of the driver. - driver_receive_mq() is the same as driver_receive() but integrates support for queued messages. - driver_announce() publishes a driver up event for VFS drivers and marks the driver as initialized and expecting a DEV_OPEN message. - Libnetdriver is introduced to provide similar receive() and ds_publish() interfaces for network drivers (netdriver_announce() and netdriver_receive()). - Network drivers all support live update with no state transfer now. KERNEL CHANGES: - Added kernel call statectl for state management. Used by driver_announce() to unblock eventual callers sendrecing to the driver.
2010-04-08 15:41:35 +02:00
int ipc_status;
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* SEF local startup. */
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
env_setargs(argc, argv);
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
sef_local_startup();
for (;;)
{
Driver refactory for live update and crash recovery. SYSLIB CHANGES: - DS calls to publish / retrieve labels consider endpoints instead of u32_t. VFS CHANGES: - mapdriver() only adds an entry in the dmap table in VFS. - dev_up() is only executed upon reception of a driver up event. INET CHANGES: - INET no longer searches for existing drivers instances at startup. - A newtwork driver is (re)initialized upon reception of a driver up event. - Networking startup is now race-free by design. No need to waste 5 seconds at startup any more. DRIVER CHANGES: - Every driver publishes driver up events when starting for the first time or in case of restart when recovery actions must be taken in the upper layers. - Driver up events are published by drivers through DS. - For regular drivers, VFS is normally the only subscriber, but not necessarily. For instance, when the filter driver is in use, it must subscribe to driver up events to initiate recovery. - For network drivers, inet is the only subscriber for now. - Every VFS driver is statically linked with libdriver, every network driver is statically linked with libnetdriver. DRIVER LIBRARIES CHANGES: - Libdriver is extended to provide generic receive() and ds_publish() interfaces for VFS drivers. - driver_receive() is a wrapper for sef_receive() also used in driver_task() to discard spurious messages that were meant to be delivered to a previous version of the driver. - driver_receive_mq() is the same as driver_receive() but integrates support for queued messages. - driver_announce() publishes a driver up event for VFS drivers and marks the driver as initialized and expecting a DEV_OPEN message. - Libnetdriver is introduced to provide similar receive() and ds_publish() interfaces for network drivers (netdriver_announce() and netdriver_receive()). - Network drivers all support live update with no state transfer now. KERNEL CHANGES: - Added kernel call statectl for state management. Used by driver_announce() to unblock eventual callers sendrecing to the driver.
2010-04-08 15:41:35 +02:00
r= driver_receive(ANY, &m, &ipc_status);
if (r != OK)
Driver refactory for live update and crash recovery. SYSLIB CHANGES: - DS calls to publish / retrieve labels consider endpoints instead of u32_t. VFS CHANGES: - mapdriver() only adds an entry in the dmap table in VFS. - dev_up() is only executed upon reception of a driver up event. INET CHANGES: - INET no longer searches for existing drivers instances at startup. - A newtwork driver is (re)initialized upon reception of a driver up event. - Networking startup is now race-free by design. No need to waste 5 seconds at startup any more. DRIVER CHANGES: - Every driver publishes driver up events when starting for the first time or in case of restart when recovery actions must be taken in the upper layers. - Driver up events are published by drivers through DS. - For regular drivers, VFS is normally the only subscriber, but not necessarily. For instance, when the filter driver is in use, it must subscribe to driver up events to initiate recovery. - For network drivers, inet is the only subscriber for now. - Every VFS driver is statically linked with libdriver, every network driver is statically linked with libnetdriver. DRIVER LIBRARIES CHANGES: - Libdriver is extended to provide generic receive() and ds_publish() interfaces for VFS drivers. - driver_receive() is a wrapper for sef_receive() also used in driver_task() to discard spurious messages that were meant to be delivered to a previous version of the driver. - driver_receive_mq() is the same as driver_receive() but integrates support for queued messages. - driver_announce() publishes a driver up event for VFS drivers and marks the driver as initialized and expecting a DEV_OPEN message. - Libnetdriver is introduced to provide similar receive() and ds_publish() interfaces for network drivers (netdriver_announce() and netdriver_receive()). - Network drivers all support live update with no state transfer now. KERNEL CHANGES: - Added kernel call statectl for state management. Used by driver_announce() to unblock eventual callers sendrecing to the driver.
2010-04-08 15:41:35 +02:00
panic("driver_receive failed: %d", r);
printf("ti1225: got message %u from %d\n",
m.m_type, m.m_source);
}
return 0;
}
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/*===========================================================================*
* sef_local_startup *
*===========================================================================*/
2012-03-25 20:25:53 +02:00
static void sef_local_startup()
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
{
/* Register init callbacks. */
sef_setcb_init_fresh(sef_cb_init_fresh);
sef_setcb_init_lu(sef_cb_init_fresh);
sef_setcb_init_restart(sef_cb_init_fresh);
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
/* Register live update callbacks. */
sef_setcb_lu_prepare(sef_cb_lu_prepare_always_ready);
sef_setcb_lu_state_isvalid(sef_cb_lu_state_isvalid_standard);
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* Let SEF perform startup. */
sef_startup();
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
}
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
/*===========================================================================*
* sef_cb_init_fresh *
*===========================================================================*/
2012-03-25 20:25:53 +02:00
static int sef_cb_init_fresh(int UNUSED(type), sef_init_info_t *UNUSED(info))
{
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
/* Initialize the ti1225 driver. */
int r, devind;
long v;
if((r=tsc_calibrate()) != OK)
panic("tsc_calibrate failed: %d", r);
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
v = 0;
(void) env_parse("instance", "d", 0, &v, 0, 255);
instance = (int) v;
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
v = 0;
(void) env_parse("debug", "d", 0, &v, 0, 1);
debug = (int) v;
devind = hw_probe(instance);
if (devind < 0)
return(ENODEV);
hw_init(&port, devind);
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
return(OK);
}
/*===========================================================================*
* hw_probe *
*===========================================================================*/
2012-03-25 20:25:53 +02:00
static int hw_probe(int skip)
{
u16_t vid, did;
int devind;
pci_init();
if (pci_first_dev(&devind, &vid, &did) != 1)
return(-1);
while (skip--)
if (pci_next_dev(&devind, &vid, &did) != 1)
return(-1);
pci_reserve(devind);
if (debug)
printf("ti1225: found device %04x/%04x\n", vid, did);
return(devind);
}
/*===========================================================================*
* hw_init *
*===========================================================================*/
2012-03-25 20:25:53 +02:00
static void hw_init(struct port *pp, int devind)
{
u8_t v8;
u16_t v16;
u32_t v32;
#if USE_INTS
int r, irq;
#endif
pp->p_devind= devind;
if (debug)
printf("hw_init: devind = %d\n", devind);
if (debug)
{
v16= pci_attr_r16(devind, PCI_CR);
printf("ti1225: command register 0x%x\n", v16);
}
v32= pci_attr_r32(devind, TI_CB_BASEADDR);
if (debug)
printf("ti1225: Cardbus/ExCA base address 0x%x\n", v32);
v32 &= PCI_BAR_MEM_MASK; /* Clear low order bits in base */
pp->csr_ptr=
(struct csr *) vm_map_phys(SELF, (void *) v32, PAGE_SIZE);
if (pp->csr_ptr == MAP_FAILED)
panic("hw_init: vm_map_phys failed");
if (debug)
{
v8= pci_attr_r8(devind, TI_PCI_BUS_NR);
printf("ti1225: PCI bus number %d\n", v8);
}
v8= pci_attr_r8(devind, TI_CB_BUS_NR);
pp->p_cb_busnr= v8;
if (debug)
{
printf("ti1225: CardBus bus number %d\n", v8);
v8= pci_attr_r8(devind, TI_SO_BUS_NR);
printf("ti1225: Subordinate bus number %d\n", v8);
}
#if USE_INTS
irq= pci_attr_r8(devind, PCI_ILR);
pp->p_irq= irq;
printf("ti1225 using IRQ %d\n", irq);
#endif
v32= pci_attr_r32(devind, TI_LEGACY_BA);
v32 &= ~1;
if (debug)
{
printf("ti1225: PC Card 16-bit legacy-mode base address 0x%x\n",
v32);
}
if (v32 == 0)
panic("bad legacy-mode base address: %d", v32);
pp->p_exca_port= v32;
if (debug)
{
v32= pci_attr_r32(devind, TI_MF_ROUTE);
printf("ti1225: Multifunction routing 0x%08x\n", v32);
}
#if USE_INTS
pp->p_hook = pp->p_irq;
r= sys_irqsetpolicy(pp->p_irq, 0, &pp->p_hook);
if (r != OK)
panic("sys_irqsetpolicy failed: %d", r);
#endif
/* Clear CBB_BC_INTEXCA */
v16= pci_attr_r16(devind, CBB_BRIDGECTRL);
if (debug)
printf("ti1225: Bridge control 0x%04x\n", v16);
v16 &= ~CBB_BC_INTEXCA;
pci_attr_w16(devind, CBB_BRIDGECTRL, v16);
if (debug)
{
v32= pci_attr_r32(devind, TI_SYSCTRL);
printf("ti1225: System Control Register 0x%08x\n", v32);
v8= pci_attr_r8(devind, TI_CARD_CTRL);
printf("ti1225: Card Control 0x%02x\n", v8);
v8= pci_attr_r8(devind, TI_DEV_CTRL);
printf("ti1225: Device Control 0x%02x\n", v8);
}
/* Enable socket interrupts */
pp->csr_ptr->csr_mask |= CM_PWRMASK | CM_CDMASK | CM_CSTSMASK;
do_int(pp);
#if USE_INTS
r= sys_irqenable(&pp->p_hook);
if (r != OK)
panic("unable enable interrupts: %d", r);
#endif
}
/*===========================================================================*
* do_int *
*===========================================================================*/
2012-03-25 20:25:53 +02:00
static void do_int(struct port *pp)
{
int devind, vcc_5v, vcc_3v, vcc_Xv, vcc_Yv,
socket_5v, socket_3v, socket_Xv, socket_Yv;
spin_t spin;
u32_t csr_event, csr_present, csr_control;
u8_t v8;
u16_t v16;
#if USE_INTS
int r;
#endif
devind= pp->p_devind;
v8= pci_attr_r8(devind, TI_CARD_CTRL);
if (v8 & TI_CCR_IFG)
{
2008-02-21 17:09:58 +01:00
printf("ti1225: got functional interrupt\n");
pci_attr_w8(devind, TI_CARD_CTRL, v8);
}
if (debug)
{
printf("Socket event: 0x%x\n", pp->csr_ptr->csr_event);
printf("Socket mask: 0x%x\n", pp->csr_ptr->csr_mask);
}
csr_present= pp->csr_ptr->csr_present;
csr_control= pp->csr_ptr->csr_control;
if ((csr_present & (CP_CDETECT1|CP_CDETECT2)) != 0)
{
if (debug)
printf("do_int: no card present\n");
return;
}
if (csr_present & CP_BADVCCREQ)
{
printf("do_int: Bad Vcc request\n");
/* return; */
}
if (csr_present & CP_DATALOST)
{
/* Do we care? */
if (debug)
printf("do_int: Data lost\n");
/* return; */
}
if (csr_present & CP_NOTACARD)
{
printf("do_int: Not a card\n");
return;
}
if (debug)
{
if (csr_present & CP_CBCARD)
printf("do_int: Cardbus card detected\n");
if (csr_present & CP_16BITCARD)
printf("do_int: 16-bit card detected\n");
}
if (csr_present & CP_PWRCYCLE)
{
if (debug)
printf("do_int: powered up\n");
return;
}
vcc_5v= !!(csr_present & CP_5VCARD);
vcc_3v= !!(csr_present & CP_3VCARD);
vcc_Xv= !!(csr_present & CP_XVCARD);
vcc_Yv= !!(csr_present & CP_YVCARD);
if (debug)
{
printf("do_int: card supports:%s%s%s%s\n",
vcc_5v ? " 5V" : "", vcc_3v ? " 3V" : "",
vcc_Xv ? " X.X V" : "", vcc_Yv ? " Y.Y V" : "");
}
socket_5v= !!(csr_present & CP_5VSOCKET);
socket_3v= !!(csr_present & CP_3VSOCKET);
socket_Xv= !!(csr_present & CP_XVSOCKET);
socket_Yv= !!(csr_present & CP_YVSOCKET);
if (debug)
{
printf("do_int: socket supports:%s%s%s%s\n",
socket_5v ? " 5V" : "", socket_3v ? " 3V" : "",
socket_Xv ? " X.X V" : "", socket_Yv ? " Y.Y V" : "");
}
if (vcc_5v && socket_5v)
{
csr_control= (csr_control & ~CC_VCCCTRL) | CC_VCC_5V;
pp->csr_ptr->csr_control= csr_control;
if (debug)
printf("do_int: applying 5V\n");
}
else if (vcc_3v && socket_3v)
{
csr_control= (csr_control & ~CC_VCCCTRL) | CC_VCC_3V;
pp->csr_ptr->csr_control= csr_control;
if (debug)
printf("do_int: applying 3V\n");
}
else if (vcc_Xv && socket_Xv)
{
csr_control= (csr_control & ~CC_VCCCTRL) | CC_VCC_XV;
pp->csr_ptr->csr_control= csr_control;
printf("do_int: applying X.X V\n");
}
else if (vcc_Yv && socket_Yv)
{
csr_control= (csr_control & ~CC_VCCCTRL) | CC_VCC_YV;
pp->csr_ptr->csr_control= csr_control;
printf("do_int: applying Y.Y V\n");
}
else
{
printf("do_int: socket and card are not compatible\n");
return;
}
csr_event= pp->csr_ptr->csr_event;
if (csr_event)
{
if (debug)
printf("clearing socket event\n");
pp->csr_ptr->csr_event= csr_event;
if (debug)
{
printf("Socket event (cleared): 0x%x\n",
pp->csr_ptr->csr_event);
}
}
devind= pp->p_devind;
v8= pci_attr_r8(devind, TI_CARD_CTRL);
if (v8 & TI_CCR_IFG)
{
printf("ti1225: got functional interrupt\n");
pci_attr_w8(devind, TI_CARD_CTRL, v8);
}
if (debug)
{
v8= pci_attr_r8(devind, TI_CARD_CTRL);
printf("TI_CARD_CTRL: 0x%02x\n", v8);
}
spin_init(&spin, 100000);
do {
csr_present= pp->csr_ptr->csr_present;
if (csr_present & CP_PWRCYCLE)
break;
} while (spin_check(&spin));
if (!(csr_present & CP_PWRCYCLE))
{
printf("do_int: not powered up?\n");
return;
}
/* Reset device */
v16= pci_attr_r16(devind, CBB_BRIDGECTRL);
v16 |= CBB_BC_CRST;
pci_attr_w16(devind, CBB_BRIDGECTRL, v16);
/* Wait one microsecond. Is this correct? What are the specs? */
micro_delay(1);
/* Clear CBB_BC_CRST */
v16= pci_attr_r16(devind, CBB_BRIDGECTRL);
v16 &= ~CBB_BC_CRST;
pci_attr_w16(devind, CBB_BRIDGECTRL, v16);
/* Wait one microsecond after clearing the reset line. Is this
* correct? What are the specs?
*/
micro_delay(1);
pci_rescan_bus(pp->p_cb_busnr);
#if USE_INTS
r= sys_irqenable(&pp->p_hook);
if (r != OK)
panic("unable enable interrupts: %d", r);
#endif
}