minix/lib/libsys/Makefile

118 lines
1.7 KiB
Makefile
Raw Normal View History

# Makefile for libsys
LIB= sys
CPPFLAGS+=-O -D_MINIX -D_POSIX_SOURCE
SRCS= \
alloc_util.c \
assert.c \
kernel_call.c \
panic.c \
2006-01-17 11:49:30 +01:00
pci_attr_r16.c \
pci_attr_r32.c \
pci_attr_r8.c \
2006-01-17 11:49:30 +01:00
pci_attr_w16.c \
pci_attr_w32.c \
2006-01-17 11:49:30 +01:00
pci_attr_w8.c \
pci_del_acl.c \
pci_dev_name.c \
pci_find_dev.c \
pci_first_dev.c \
pci_ids.c \
pci_init.c \
2006-01-17 11:49:30 +01:00
pci_init1.c \
pci_next_dev.c \
2006-01-17 11:49:30 +01:00
pci_rescan_bus.c \
pci_reserve.c \
pci_set_acl.c \
pci_slot_name.c \
safecopies.c \
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
sef.c \
sef_liveupdate.c \
sef_ping.c \
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
sef_init.c \
sys_abort.c \
sys_mcontext.c \
sys_cprof.c \
sys_endsig.c \
sys_eniop.c \
sys_exec.c \
sys_exit.c \
sys_fork.c \
sys_getinfo.c \
sys_getsig.c \
sys_in.c \
sys_int86.c \
sys_irqctl.c \
sys_kill.c \
sys_memset.c \
sys_newmap.c \
sys_nice.c \
sys_out.c \
sys_physcopy.c \
sys_readbios.c \
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
sys_runctl.c \
sys_safecopy.c \
sys_safemap.c \
sys_sysctl.c \
sys_vsafecopy.c \
sys_profbuf.c \
sys_sdevio.c \
sys_segctl.c \
sys_setalarm.c \
sys_sigreturn.c \
sys_sigsend.c \
2006-01-27 13:54:47 +01:00
sys_privctl.c \
2006-06-23 17:35:05 +02:00
sys_setgrant.c \
sys_sprof.c \
sys_stime.c \
sys_times.c \
sys_trace.c \
sys_umap.c \
sys_vinb.c \
sys_vinl.c \
sys_vinw.c \
sys_vircopy.c \
sys_vmctl.c \
sys_voutb.c \
sys_voutl.c \
sys_voutw.c \
sys_vtimer.c \
taskcall.c \
ds.c \
vm_brk.c \
vm_exec_newmem.c \
vm_exit.c \
2009-09-21 16:42:58 +02:00
vm_notify_sig.c \
vm_fork.c \
2010-01-19 22:00:20 +01:00
vm_info.c \
vm_map_phys.c \
vm_umap.c \
vm_push_sig.c \
asynsend.c \
kprintf.c \
kputc.c \
tickdelay.c \
get_randomness.c \
getidle.c \
getuptime.c \
getuptime2.c \
env_get_prm.c \
env_parse.c \
env_panic.c \
env_prefix.c \
fkey_ctl.c \
tsc_util.c \
read_tsc.S \
read_tsc_64.c \
ser_putc.c \
stacktrace.c \
sys_hz.c \
timing.c \
profile_extern.c \
profile.c \
vprintf.c
.include <minix.lib.mk>