2013-01-29 20:58:00 +01:00
|
|
|
/* Some utility functions around the free running clock on ARM. The clock is
|
|
|
|
* 32-bits wide, but we provide 64-bit wrapper functions to make it look
|
|
|
|
* similar to the read_tsc functions. On hardware we could actually make use
|
|
|
|
* of the timer overflow counter, but emulator doesn't emulate it. */
|
|
|
|
|
|
|
|
#include "omap_timer_registers.h"
|
|
|
|
#include <minix/minlib.h>
|
|
|
|
#include <minix/sysutil.h>
|
|
|
|
#include <minix/type.h>
|
|
|
|
#include <sys/errno.h>
|
|
|
|
#include <sys/types.h>
|
2013-02-21 17:02:42 +01:00
|
|
|
#include <assert.h>
|
2013-01-29 20:58:00 +01:00
|
|
|
|
|
|
|
#define MICROHZ 1000000ULL /* number of micros per second */
|
|
|
|
#define MICROSPERTICK(h) (MICROHZ/(h)) /* number of micros per HZ tick */
|
|
|
|
|
2013-06-17 00:33:47 +02:00
|
|
|
static u64_t Hz;
|
|
|
|
|
|
|
|
extern struct minix_kerninfo *_minix_kerninfo;
|
|
|
|
|
2013-01-29 20:58:00 +01:00
|
|
|
int
|
|
|
|
micro_delay(u32_t micros)
|
|
|
|
{
|
|
|
|
u64_t start, delta, delta_end;
|
|
|
|
|
|
|
|
Hz = sys_hz();
|
|
|
|
|
|
|
|
/* Start of delay. */
|
2013-02-21 17:02:42 +01:00
|
|
|
read_frclock_64(&start);
|
2013-06-17 00:33:47 +02:00
|
|
|
assert(_minix_kerninfo->minix_arm_frclock_hz);
|
|
|
|
delta_end = (_minix_kerninfo->minix_arm_frclock_hz * micros) / MICROHZ;
|
2013-01-29 20:58:00 +01:00
|
|
|
|
|
|
|
/* If we have to wait for at least one HZ tick, use the regular
|
|
|
|
* tickdelay first. Round downwards on purpose, so the average
|
|
|
|
* half-tick we wait short (depending on where in the current tick
|
|
|
|
* we call tickdelay). We can correct for both overhead of tickdelay
|
|
|
|
* itself and the short wait in the busywait later.
|
|
|
|
*/
|
|
|
|
if (micros >= MICROSPERTICK(Hz))
|
|
|
|
tickdelay(micros*Hz/MICROHZ);
|
|
|
|
|
|
|
|
/* Wait (the rest) of the delay time using busywait. */
|
|
|
|
do {
|
2013-02-21 17:02:42 +01:00
|
|
|
read_frclock_64(&delta);
|
2013-01-29 20:58:00 +01:00
|
|
|
} while (delta_frclock_64(start, delta) < delta_end);
|
|
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
u32_t frclock_64_to_micros(u64_t tsc)
|
|
|
|
{
|
2013-06-17 10:40:28 +02:00
|
|
|
return (u32_t) (tsc / (_minix_kerninfo->minix_arm_frclock_hz / MICROHZ));
|
2013-01-29 20:58:00 +01:00
|
|
|
}
|
|
|
|
|
2013-02-21 17:02:42 +01:00
|
|
|
void
|
|
|
|
read_frclock(u32_t *frclk)
|
2013-01-29 20:58:00 +01:00
|
|
|
{
|
2013-02-21 17:02:42 +01:00
|
|
|
assert(frclk);
|
2013-06-17 00:33:47 +02:00
|
|
|
assert(_minix_kerninfo->minix_frclock_tcrr);
|
|
|
|
assert(_minix_kerninfo->minix_arm_frclock_hz);
|
|
|
|
*frclk = *(volatile u32_t *)((u8_t *) _minix_kerninfo->minix_frclock_tcrr);
|
2013-01-29 20:58:00 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
u32_t
|
|
|
|
delta_frclock(u32_t base, u32_t cur)
|
|
|
|
{
|
|
|
|
u32_t delta;
|
|
|
|
|
|
|
|
if (cur < base) {
|
|
|
|
/* We have wrapped around, so delta is base to wrapping point
|
|
|
|
* plus starting point (0) to cur. This supports wrapping once
|
|
|
|
* only. */
|
|
|
|
delta = (UINT_MAX - base) + cur;
|
|
|
|
} else {
|
|
|
|
delta = cur - base;
|
|
|
|
}
|
|
|
|
|
|
|
|
return delta;
|
|
|
|
}
|
|
|
|
|
2013-02-21 17:02:42 +01:00
|
|
|
void
|
|
|
|
read_frclock_64(u64_t *frclk)
|
2013-01-29 20:58:00 +01:00
|
|
|
{
|
2013-02-21 17:02:42 +01:00
|
|
|
read_frclock((u32_t *) frclk);
|
2013-01-29 20:58:00 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
u64_t
|
|
|
|
delta_frclock_64(u64_t base, u64_t cur)
|
|
|
|
{
|
2013-02-21 17:02:42 +01:00
|
|
|
return (u64_t) delta_frclock((u32_t) base, (u32_t) cur);
|
2013-01-29 20:58:00 +01:00
|
|
|
}
|
|
|
|
|