minix/test/test56.c

2900 lines
61 KiB
C
Raw Normal View History

/*
* Test Program for Unix Domain Sockets
*
* Overview: This program tests Unix Domain Sockets. It attempts
* to exercise the functions associated with Unix Domain Sockets.
* It also attempts to make sure all of the functions which handle
* file/socket descriptors work correctly when given a socket
* descriptor for a Unix domain socket. It also implicitly checks
* for the existance of constants like AF_UNIX and structures like
* sockaddr_un (it won't compile if they aren't defined). Besides
* checking that the sockets work properly, this test program also
* checks that the errors returned conform to the POSIX 2008
* standards. Some tests are omitted as they could adversely affect
* the operation of the host system. For example, implementing a test
* for socket() failing with errno = ENFILE would require using up all
* of the file descriptors supported by the OS (defined in
* /proc/sys/fs/file-max on Linux); this could cause problems for
* daemons and other processes running on the system. Some tests are
* omitted because they would require changes to libc or the kernel.
* For example, getting EINTR would require delaying the system call
* execution time long enough to raise a signal to interupt it. Some
* tests were omitted because the particular errors cannot occur when
* using Unix domain sockets. For example, write() will never fail with
* ENETDOWN because Unix domain sockets don't use network interfaces.
*
* Structure: Some functions can be tested or partially tested without
* making a connection, socket() for example. These have test
* functions like test_NAME(). The functionality that needs two way
* communication is contained within test_xfer().
*
* Functions Tested: accept(), bind(), close(), connect(), dup(),
* dup2(), fstat(), getpeername(), getsockname(), getsockopt(),
* listen(), read(), readv(), recv(), recvfrom(), recvmsg(), select(),
* send(), sendmsg(), sendto(), setsockopt(), shutdown(), socket(),
* socketpair(), write(), writev()
*/
#define DEBUG 0
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/un.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
/* Maximum number of errors that we'll allow to occur before this test
* program gives us and quits.
*/
int max_error = 4;
#include "common.h"
/* Use the common testing code instead of reinventing the wheel. */
/* path of the unix domain socket */
#define TEST_SUN_PATH "test.sock"
#define TEST_SUN_PATHB "testb.sock"
/* filenames for symlinks -- we link these to each other to test ELOOP .*/
#define TEST_SYM_A "test.a"
#define TEST_SYM_B "test.b"
/* text file and test phrase for testing file descriptor passing */
#define TEST_TXT_FILE "test.txt"
#define MSG "This raccoon loves to eat bugs.\n"
/* buffer for send/recv */
#define BUFSIZE (128)
#define ISO8601_FORMAT "%Y-%m-%dT%H:%M:%S"
/* socket types supported */
int types[3] = {SOCK_STREAM, SOCK_SEQPACKET, SOCK_DGRAM};
char sock_fullpath[PATH_MAX + 1];
void test_abort_client_server(int abort_type);
void test_abort_client(int abort_type);
void test_abort_server(pid_t pid, int abort_type);
/* timestamps for debug and error logs */
char *get_timestamp(void)
{
struct tm *tm;
time_t t;
size_t len;
char *s;
len = sizeof(char) * 32;
t = time(NULL);
if (t == -1) {
return NULL;
}
tm = gmtime(&t);
if (tm == NULL) {
return NULL;
}
s = (char *) malloc(len);
if (!s) {
perror("malloc");
return NULL;
}
memset(s, '\0', len);
strftime(s, len - 1, ISO8601_FORMAT, tm);
return s;
}
/* macro to display information about a failed test and increment the errct */
void test_fail_fl(char *msg, char *file, int line)
{
char *timestamp;
timestamp = get_timestamp();
if (errct == 0) fprintf(stderr, "\n");
fprintf(stderr, "[ERROR][%s] (%s Line %d) %s [pid=%d:errno=%d:%s]\n",
timestamp, file, line, msg, getpid(),
errno, strerror(errno));
fflush(stderr);
if (timestamp != NULL) {
free(timestamp);
timestamp = NULL;
}
e(7);
}
#define test_fail(msg) test_fail_fl(msg, __FILE__, __LINE__)
/* Convert name to the full path of the socket. Assumes name is in cwd. */
char *fullpath(char *name)
{
char cwd[PATH_MAX + 1];
if (realpath(".", cwd) == NULL)
test_fail("Couldn't retrieve current working dir");
snprintf(sock_fullpath, PATH_MAX, "%s/%s", cwd, name);
return(sock_fullpath);
}
#if DEBUG == 1
/* macros to display debugging information */
void debug_fl(char *msg, char *file, int line)
{
char *timestamp;
timestamp = get_timestamp();
fprintf(stdout,"[DEBUG][%s] (%s:%d) %s [pid=%d]\n",
timestamp, __FILE__, __LINE__, msg, getpid());
fflush(stdout);
if (timestamp != NULL) {
free(timestamp);
timestamp = NULL;
}
}
#define debug(msg) debug_fl(msg, __FILE__, __LINE__)
#else
#define debug(msg)
#endif
#define SOCKET(sd,domain,type,protocol) \
do { \
errno = 0; \
sd = socket(domain, type, protocol); \
if (sd == -1) { \
test_fail("sd = socket(domain, type, protocol) failed");\
} \
} while (0)
#define UNLINK(path) \
do { \
int rc; \
errno = 0; \
rc = unlink(path); \
if (rc == -1 && errno != ENOENT) { \
test_fail("unlink(path) failed"); \
} \
} while(0)
#define SYMLINK(oldpath,newpath) \
do { \
int rc; \
errno = 0; \
rc = symlink(oldpath,newpath); \
if (rc == -1) { \
test_fail("symlink(oldpath,newpath) failed"); \
} \
} while(0)
#define CLOSE(sd) \
do { \
int rc; \
errno = 0; \
rc = close(sd); \
if (rc == -1) { \
test_fail("close(sd) failed"); \
} \
} while (0)
void test_socket(void)
{
struct stat statbuf, statbuf2;
int sd, sd2;
int rc;
int i;
debug("entering test_socket()");
debug("Test socket() with an unsupported address family");
errno = 0;
sd = socket(-1, SOCK_STREAM, 0);
if (!(sd == -1 && errno == EAFNOSUPPORT)) {
test_fail("socket");
if (sd != -1) {
CLOSE(sd);
}
}
debug("Test socket() with all available FDs open by this process");
for (i = 3; i < getdtablesize(); i++) {
rc = open("/dev/null", O_RDONLY);
if (rc == -1) {
test_fail("we couldn't open /dev/null for read");
}
}
errno = 0;
sd = socket(PF_UNIX, SOCK_STREAM, 0);
if (!(sd == -1 && errno == EMFILE)) {
test_fail("socket() call with all fds open should fail");
if (sd != -1) {
CLOSE(sd);
}
}
for (i = 3; i < getdtablesize(); i++) {
CLOSE(i);
}
debug("Test socket() with an mismatched protocol");
errno = 0;
sd = socket(PF_UNIX, SOCK_STREAM, 4);
if (!(sd == -1 && errno == EPROTONOSUPPORT)) {
test_fail("socket() should fail with errno = EPROTONOSUPPORT");
if (sd != -1) {
CLOSE(sd);
}
}
debug("Test socket() success");
/*
* open 2 sockets at once and *then* close them.
* This will test that /dev/uds is cloning properly.
*/
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
SOCKET(sd2, PF_UNIX, SOCK_STREAM, 0);
rc = fstat(sd, &statbuf);
if (rc == -1) {
test_fail("fstat failed on sd");
}
rc = fstat(sd2, &statbuf2);
if (rc == -1) {
test_fail("fstat failed on sd2");
}
if (statbuf.st_dev == statbuf2.st_dev) {
test_fail("/dev/uds isn't being cloned");
}
CLOSE(sd2);
CLOSE(sd);
debug("leaving test_socket()");
}
void test_header(void)
{
struct sockaddr_un sun;
debug("entering test_header()");
sun.sun_family = AF_UNIX;
sun.sun_path[0] = 'x';
sun.sun_path[1] = 'x';
sun.sun_path[2] = 'x';
sun.sun_path[3] = '\0';
if (SUN_LEN(&sun) != 4) {
test_fail("SUN_LEN(&sun) should be 4");
}
if (PF_UNIX != PF_LOCAL || PF_UNIX != PF_FILE || PF_UNIX != AF_UNIX) {
test_fail("PF_UNIX, PF_LOCAL, PF_FILE, and AF_UNIX");
}
}
void test_socketpair(void)
{
char buf[128];
struct sockaddr_un addr;
int socket_vector[2];
int rc;
int i;
debug("entering test_socketpair()");
UNLINK(TEST_SUN_PATH);
memset(&addr, '\0', sizeof(struct sockaddr_un));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
debug("Testing socketpair() success");
rc = socketpair(PF_UNIX, SOCK_STREAM, 0, socket_vector);
if (rc == -1) {
test_fail("socketpair() should have worked");
}
debug("Testing a simple read/write using sockets from socketpair()");
memset(buf, '\0', sizeof(buf));
strncpy(buf, "Howdy Partner", sizeof(buf) - 1);
rc = write(socket_vector[0], buf, sizeof(buf));
if (rc == -1) {
test_fail("write(sd, buf, sizeof(buf)) failed unexpectedly");
}
memset(buf, '\0', sizeof(buf));
rc = read(socket_vector[1], buf, sizeof(buf));
if (rc == -1) {
test_fail("read() failed unexpectedly");
}
if (strncmp(buf, "Howdy Partner", strlen("Howdy Partner")) != 0) {
test_fail("We did not read what we wrote");
}
CLOSE(socket_vector[0]);
CLOSE(socket_vector[1]);
debug("Test socketpair() with all FDs open by this process");
for (i = 3; i < getdtablesize(); i++) {
rc = open("/dev/null", O_RDONLY);
if (rc == -1) {
test_fail("we couldn't open /dev/null for read");
}
}
rc = socketpair(PF_UNIX, SOCK_STREAM, 0, socket_vector);
if (!(rc == -1 && errno == EMFILE)) {
test_fail("socketpair() should have failed with EMFILE");
}
for (i = 3; i < getdtablesize(); i++) {
CLOSE(i);
}
rc = socketpair(PF_UNIX, SOCK_STREAM, 4, socket_vector);
if (!(rc == -1 && errno == EPROTONOSUPPORT)) {
test_fail("socketpair() should have failed");
}
debug("leaving test_socketpair()");
}
void test_ucred(void)
{
struct ucred credentials;
socklen_t ucred_length;
uid_t euid = geteuid();
gid_t egid = getegid();
int sv[2];
int rc;
debug("Test credentials passing");
ucred_length = sizeof(struct ucred);
rc = socketpair(PF_UNIX, SOCK_STREAM, 0, sv);
if (rc == -1) {
test_fail("socketpair(PF_UNIX, SOCK_STREAM, 0, sv) failed");
}
memset(&credentials, '\0', ucred_length);
rc = getsockopt(sv[0], SOL_SOCKET, SO_PEERCRED, &credentials,
&ucred_length);
if (rc == -1) {
test_fail("getsockopt(SO_PEERCRED) failed");
} else if (credentials.pid != getpid() ||
credentials.uid != geteuid() ||
credentials.gid != getegid()) {
/* printf("%d=%d %d=%d %d=%d",credentials.pid, getpid(),
credentials.uid, geteuid(), credentials.gid, getegid()); */
test_fail("Credential passing gave us the wrong cred");
}
rc = getpeereid(sv[0], &euid, &egid);
if (rc == -1) {
test_fail("getpeereid(sv[0], &euid, &egid) failed");
} else if (credentials.uid != euid || credentials.gid != egid) {
test_fail("getpeereid() didn't give the correct euid/egid");
}
CLOSE(sv[0]);
CLOSE(sv[1]);
}
void test_getsockname(void)
{
int sd;
int rc;
struct sockaddr_un addr, sock_addr;
socklen_t sock_addr_len;
memset(&addr, '\0', sizeof(struct sockaddr_un));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
rc = bind(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (rc == -1) {
test_fail("bind() should have worked");
}
debug("Test getsockname() success");
memset(&sock_addr, '\0', sizeof(struct sockaddr_un));
sock_addr_len = sizeof(struct sockaddr_un);
rc = getsockname(sd, (struct sockaddr *) &sock_addr, &sock_addr_len);
if (rc == -1) {
test_fail("getsockname() should have worked");
}
if (!(sock_addr.sun_family == AF_UNIX && strncmp(sock_addr.sun_path,
fullpath(TEST_SUN_PATH),
sizeof(sock_addr.sun_path) - 1) == 0)) {
test_fail("getsockname() did return the right address");
fprintf(stderr, "exp: '%s' | got: '%s'\n", addr.sun_path,
sock_addr.sun_path);
}
CLOSE(sd);
}
void test_bind(void)
{
struct sockaddr_un addr;
struct sockaddr_un sock_addr;
socklen_t sock_addr_len;
int sd;
int sd2;
int rc;
debug("entering test_bind()");
UNLINK(TEST_SUN_PATH);
memset(&addr, '\0', sizeof(struct sockaddr_un));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
debug("Test bind() success");
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
rc = bind(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (rc == -1) {
test_fail("bind() should have worked");
}
debug("Test getsockname() success");
memset(&sock_addr, '\0', sizeof(struct sockaddr_un));
sock_addr_len = sizeof(struct sockaddr_un);
rc = getsockname(sd, (struct sockaddr *) &sock_addr, &sock_addr_len);
if (rc == -1) {
test_fail("getsockname() should have worked");
}
if (!(sock_addr.sun_family == AF_UNIX &&
strncmp(sock_addr.sun_path,
fullpath(TEST_SUN_PATH),
sizeof(sock_addr.sun_path) - 1) == 0)) {
test_fail("getsockname() didn't return the right addr");
fprintf(stderr, "exp: '%s' | got: '%s'\n", addr.sun_path,
sock_addr.sun_path);
}
debug("Test bind() with a address that has already been bind()'d");
SOCKET(sd2, PF_UNIX, SOCK_STREAM, 0);
errno = 0;
rc = bind(sd2, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (!((rc == -1) && (errno == EADDRINUSE))) {
test_fail("bind() should have failed with EADDRINUSE");
}
CLOSE(sd2);
CLOSE(sd);
UNLINK(TEST_SUN_PATH);
debug("Test bind() with an empty sun_path");
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
memset(addr.sun_path, '\0', sizeof(addr.sun_path));
errno = 0;
rc = bind(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (!(rc == -1 && errno == ENOENT)) {
test_fail("bind() should have failed with ENOENT");
}
CLOSE(sd);
debug("Test bind() with a NULL address");
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
errno = 0;
rc = bind(sd, (struct sockaddr *) NULL, sizeof(struct sockaddr_un));
if (!((rc == -1) && (errno == EFAULT))) {
test_fail("bind() should have failed with EFAULT");
}
CLOSE(sd);
debug("Test bind() using a symlink loop");
UNLINK(TEST_SUN_PATH);
UNLINK(TEST_SYM_A);
UNLINK(TEST_SYM_B);
SYMLINK(TEST_SYM_A, TEST_SYM_B);
SYMLINK(TEST_SYM_B, TEST_SYM_A);
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
strncpy(addr.sun_path, TEST_SYM_A, sizeof(addr.sun_path) - 1);
errno = 0;
rc = bind(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (!((rc == -1) && (errno == ELOOP))) {
test_fail("bind() should have failed with ELOOP");
}
CLOSE(sd);
UNLINK(TEST_SUN_PATH);
UNLINK(TEST_SYM_A);
UNLINK(TEST_SYM_B);
/* Test bind with garbage in sockaddr_un */
memset(&addr, '?', sizeof(struct sockaddr_un));
addr.sun_family = AF_UNIX;
addr.sun_path[0] = 'f';
addr.sun_path[1] = 'o';
addr.sun_path[2] = 'o';
addr.sun_path[3] = '\0';
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
rc = bind(sd, (struct sockaddr *) &addr, strlen(addr.sun_path) + 1);
if (rc == -1) {
test_fail("bind() should have worked");
}
CLOSE(sd);
UNLINK("foo");
debug("leaving test_bind()");
}
void test_listen(void)
{
int rc;
debug("entering test_listen()");
debug("Test listen() with a bad file descriptor");
errno = 0;
rc = listen(-1, 0);
if (!(rc == -1 && errno == EBADF)) {
test_fail("listen(-1, 0) should have failed");
}
debug("Test listen() with a non-socket file descriptor");
errno = 0;
rc = listen(0, 0);
if (!(rc == -1 && errno == ENOTTY)) {
test_fail("listen(0, 0) should have failed");
}
debug("leaving test_listen()");
}
void test_shutdown(void)
{
int how[3] = { SHUT_RD, SHUT_WR, SHUT_RDWR };
int sd;
int rc;
int i;
debug("entering test_shutdown()");
/* test for each direction (read, write, read-write) */
for (i = 0; i < 3; i++) {
debug("test shutdown() with an invalid descriptor");
errno = 0;
rc = shutdown(-1, how[i]);
if (!(rc == -1 && errno == EBADF)) {
test_fail("shutdown(-1, how[i]) should have failed");
}
debug("test shutdown() with a non-socket descriptor");
errno = 0;
rc = shutdown(0, how[i]);
if (!(rc == -1 && errno == ENOSYS)) {
test_fail("shutdown() should have failed with ENOSYS");
}
debug("test shutdown() with a socket that is not connected");
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
errno = 0;
rc = shutdown(sd, how[i]);
if (!(rc == -1 && errno == ENOTCONN)) {
test_fail("shutdown() should have failed");
}
CLOSE(sd);
}
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
errno = 0;
rc = shutdown(sd, -1);
if (!(rc == -1 && errno == ENOTCONN)) {
test_fail("shutdown(sd, -1) should have failed with ENOTCONN");
}
CLOSE(sd);
debug("leaving test_shutdown()");
}
void test_close(void)
{
struct sockaddr_un addr;
int sd, sd2;
int rc, i;
debug("entering test_close()");
UNLINK(TEST_SUN_PATH);
memset(&addr, '\0', sizeof(struct sockaddr_un));
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
addr.sun_family = AF_UNIX;
debug("Test close() success");
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
rc = bind(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (rc != 0) {
test_fail("bind() should have worked");
}
CLOSE(sd);
debug("Close an already closed file descriptor");
errno = 0;
rc = close(sd);
if (!(rc == -1 && errno == EBADF)) {
test_fail("close(sd) should have failed with EBADF");
}
UNLINK(TEST_SUN_PATH);
debug("dup()'ing a file descriptor and closing both should work");
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
rc = bind(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (rc != 0) {
test_fail("bind() should have worked");
}
errno = 0;
sd2 = dup(sd);
if (sd2 == -1) {
test_fail("dup(sd) should have worked");
} else {
CLOSE(sd2);
CLOSE(sd);
}
UNLINK(TEST_SUN_PATH);
/* Create and close a socket a bunch of times.
* If the implementation doesn't properly free the
* socket during close(), eventually socket() will
* fail when the internal descriptor table is full.
*/
for (i = 0; i < 1024; i++) {
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
CLOSE(sd);
}
debug("leaving test_close()");
}
void test_sockopts(void)
{
int i;
int rc;
int sd;
int option_value;
socklen_t option_len;
debug("entering test_sockopts()");
for (i = 0; i < 3; i++) {
SOCKET(sd, PF_UNIX, types[i], 0);
debug("Test setsockopt() works");
option_value = 0;
option_len = sizeof(option_value);
errno = 0;
rc = getsockopt(sd, SOL_SOCKET, SO_TYPE, &option_value,
&option_len);
if (rc != 0) {
test_fail("setsockopt() should have worked");
}
if (option_value != types[i]) {
test_fail("SO_TYPE didn't seem to work.");
}
CLOSE(sd);
}
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
debug("Test setsockopt() works");
option_value = 0;
option_len = sizeof(option_value);
errno = 0;
rc = getsockopt(sd, SOL_SOCKET, SO_SNDBUF, &option_value, &option_len);
if (rc != 0) {
test_fail("getsockopt() should have worked");
}
if (option_value != PIPE_BUF) {
test_fail("SO_SNDBUF didn't seem to work.");
}
CLOSE(sd);
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
debug("Test setsockopt() works");
option_value = 0;
option_len = sizeof(option_value);
errno = 0;
rc = getsockopt(sd, SOL_SOCKET, SO_RCVBUF, &option_value, &option_len);
if (rc != 0) {
test_fail("getsockopt() should have worked");
}
if (option_value != PIPE_BUF) {
test_fail("SO_RCVBUF didn't seem to work.");
}
CLOSE(sd);
debug("leaving test_sockopts()");
}
void test_read(void)
{
int rc;
int fd;
char buf[BUFSIZE];
debug("entering test_read()");
errno = 0;
rc = read(-1, buf, sizeof(buf));
if (!(rc == -1 && errno == EBADF)) {
test_fail("read() should have failed with EBADF");
}
fd = open("/tmp", O_RDONLY);
if (fd == -1) {
test_fail("open(\"/tmp\", O_RDONLY) should have worked");
}
CLOSE(fd);
debug("leaving test_read()");
}
void test_write(void)
{
int rc;
char buf[BUFSIZE];
debug("entering test_write()");
errno = 0;
rc = write(-1, buf, sizeof(buf));
if (!(rc == -1 && errno == EBADF)) {
test_fail("write() should have failed with EBADF");
}
debug("leaving test_write()");
}
void test_dup(void)
{
struct stat info1;
struct stat info2;
struct sockaddr_un addr;
int sd, sd2;
int rc;
int i;
debug("entering test_dup()");
UNLINK(TEST_SUN_PATH);
memset(&addr, '\0', sizeof(struct sockaddr_un));
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
addr.sun_family = AF_UNIX;
debug("Test dup()");
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
rc = bind(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (rc != 0) {
test_fail("bind() should have worked");
}
errno = 0;
sd2 = dup(sd);
if (sd2 == -1) {
test_fail("dup(sd) should have worked");
}
rc = fstat(sd, &info1);
if (rc == -1) {
test_fail("fstat(fd, &info1) failed");
}
rc = fstat(sd2, &info2);
if (rc == -1) {
test_fail("fstat(sd, &info2) failed");
}
if (info1.st_ino != info2.st_ino) {
test_fail("dup() failed info1.st_ino != info2.st_ino");
}
CLOSE(sd);
CLOSE(sd2);
debug("Test dup() with a closed socket");
errno = 0;
rc = dup(sd);
if (!(rc == -1 && errno == EBADF)) {
test_fail("dup(sd) on a closed socket shouldn't have worked");
}
debug("Test dup() with socket descriptor of -1");
errno = 0;
rc = dup(-1);
if (!(rc == -1 && errno == EBADF)) {
test_fail("dup(-1) shouldn't have worked");
}
debug("Test dup() when all of the file descriptors are taken");
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
for (i = 4; i < getdtablesize(); i++) {
rc = open("/dev/null", O_RDONLY);
if (rc == -1) {
test_fail("we couldn't open /dev/null for read");
}
}
errno = 0;
sd2 = dup(sd);
if (!(sd2 == -1 && errno == EMFILE)) {
test_fail("dup(sd) should have failed with errno = EMFILE");
}
for (i = 3; i < getdtablesize(); i++) {
CLOSE(i);
}
UNLINK(TEST_SUN_PATH);
debug("leaving test_dup()");
}
void test_dup2(void)
{
struct stat info1;
struct stat info2;
struct sockaddr_un addr;
int sd;
int fd;
int rc;
debug("entering test_dup2()");
UNLINK(TEST_SUN_PATH);
memset(&addr, '\0', sizeof(struct sockaddr_un));
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
addr.sun_family = AF_UNIX;
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
rc = bind(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (rc != 0) {
test_fail("bind() should have worked");
}
fd = open("/dev/null", O_RDONLY);
if (fd == -1) {
test_fail("open(\"/dev/null\", O_RDONLY) failed");
}
fd = dup2(sd, fd);
if (fd == -1) {
test_fail("dup2(sd, fd) failed.");
}
memset(&info1, '\0', sizeof(struct stat));
memset(&info2, '\0', sizeof(struct stat));
rc = fstat(fd, &info1);
if (rc == -1) {
test_fail("fstat(fd, &info1) failed");
}
rc = fstat(sd, &info2);
if (rc == -1) {
test_fail("fstat(sd, &info2) failed");
}
if (!(info1.st_ino == info2.st_ino &&
major(info1.st_dev) == major(info2.st_dev) &&
minor(info1.st_dev) == minor(info2.st_dev))) {
test_fail("dup2() failed");
}
CLOSE(fd);
CLOSE(sd);
UNLINK(TEST_SUN_PATH);
debug("leaving test_dup2()");
}
/*
* A toupper() server. This toy server converts a string to upper case.
*/
void test_xfer_server(pid_t pid)
{
int i;
struct timeval tv;
fd_set readfds;
int status;
int rc;
int sd;
char buf[BUFSIZE];
socklen_t client_addr_size;
int client_sd;
struct sockaddr_un addr;
struct sockaddr_un client_addr;
status = 0;
rc = 0;
sd = 0;
client_sd = 0;
client_addr_size = sizeof(struct sockaddr_un);
memset(&buf, '\0', sizeof(buf));
memset(&addr, '\0', sizeof(struct sockaddr_un));
memset(&client_addr, '\0', sizeof(struct sockaddr_un));
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
addr.sun_family = AF_UNIX;
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
rc = bind(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (rc == -1) {
test_fail("bind() should have worked");
}
rc = listen(sd, 8);
if (rc == -1) {
test_fail("listen(sd, 8) should have worked");
}
/* we're ready for connections, time to tell the client to start
* the test
*/
kill(pid, SIGUSR1);
tv.tv_sec = 10;
tv.tv_usec = 0;
FD_ZERO(&readfds);
FD_SET(sd, &readfds);
/* use select() in case the client is really broken and never
* attempts to connect (we don't want to block on accept()
* forever).
*/
rc = select(sd + 1, &readfds, NULL, NULL, &tv);
if (rc == -1) {
test_fail("[server] select() should not have failed");
}
if (rc != 1) {
test_fail("[server] select() should have returned 1");
printf("[server] select returned %d\n", rc);
}
if (!(FD_ISSET(sd, &readfds))) {
test_fail("[server] client didn't connect within 10 seconds");
kill(pid, SIGKILL);
return;
}
client_sd = accept(sd, (struct sockaddr *) &client_addr,
&client_addr_size);
if (client_sd == -1) {
test_fail("accept() should have worked");
kill(pid, SIGKILL);
return;
} else {
debug("[server] client accept()'d");
}
debug("[server] Reading message");
rc = read(client_sd, buf, sizeof(buf));
if (rc == -1) {
test_fail("read() failed unexpectedly");
kill(pid, SIGKILL);
return;
}
debug("[server] we got the following message:");
debug(buf);
for (i = 0; i < rc && i < 127; i++) {
buf[i] = toupper(buf[i]);
}
debug("[server] Writing message...");
rc = write(client_sd, buf, sizeof(buf));
if (rc == -1) {
test_fail("write(client_sd, buf, sizeof(buf)) failed");
kill(pid, SIGKILL);
return;
}
if (rc < strlen(buf)) {
test_fail("[server] write didn't write all the bytes");
}
memset(&buf, '\0', sizeof(buf));
debug("[server] Recv message");
rc = recv(client_sd, buf, sizeof(buf), 0);
if (rc == -1) {
test_fail("recv() failed unexpectedly");
kill(pid, SIGKILL);
return;
}
debug("[server] we got the following message:");
debug(buf);
for (i = 0; i < rc && i < 127; i++) {
buf[i] = toupper(buf[i]);
}
debug("[server] Sending message...");
rc = send(client_sd, buf, sizeof(buf), 0);
if (rc == -1) {
test_fail("send(client_sd, buf, sizeof(buf), 0) failed");
kill(pid, SIGKILL);
return;
}
if (rc < strlen(buf)) {
test_fail("[server] write didn't write all the bytes");
}
memset(&buf, '\0', sizeof(buf));
debug("[server] Recvfrom message");
rc = recvfrom(client_sd, buf, sizeof(buf), 0, NULL, 0);
if (rc == -1) {
test_fail("recvfrom() failed unexpectedly");
kill(pid, SIGKILL);
return;
}
debug("[server] we got the following message:");
debug(buf);
for (i = 0; i < rc && i < 127; i++) {
buf[i] = toupper(buf[i]);
}
debug("[server] Sendto message...");
rc = sendto(client_sd, buf, sizeof(buf), 0, NULL, 0);
if (rc == -1) {
test_fail("sendto() failed");
kill(pid, SIGKILL);
return;
}
if (rc < strlen(buf)) {
test_fail("[server] write didn't write all the bytes");
}
shutdown(client_sd, SHUT_RDWR);
CLOSE(client_sd);
shutdown(sd, SHUT_RDWR);
CLOSE(sd);
/* wait for client to exit */
do {
errno = 0;
rc = waitpid(pid, &status, 0);
} while (rc == -1 && errno == EINTR);
/* we use the exit status to get its error count */
errct += WEXITSTATUS(status);
}
int server_ready = 0;
/* signal handler for the client */
void test_xfer_sighdlr(int sig)
{
debug("entering signal handler");
switch (sig) {
/* the server will send SIGUSR1 when it is time for us
* to start the tests
*/
case SIGUSR1:
server_ready = 1;
debug("got SIGUSR1, the server is ready for the client");
break;
default:
debug("didn't get SIGUSR1");
}
debug("leaving signal handler");
}
/*
* A toupper() client.
*/
void test_xfer_client(void)
{
struct ucred credentials;
socklen_t ucred_length;
struct timeval tv;
fd_set readfds;
struct sockaddr_un addr;
struct sockaddr_un peer_addr;
socklen_t peer_addr_len;
int sd;
int rc;
char buf[BUFSIZE];
debug("[client] entering test_xfer_client()");
errct = 0; /* reset error count */
ucred_length = sizeof(struct ucred);
memset(&buf, '\0', sizeof(buf));
while (server_ready == 0) {
debug("[client] waiting for the server to signal");
sleep(1);
}
peer_addr_len = sizeof(struct sockaddr_un);
debug("Creating symlink to TEST_SUN_PATH");
SYMLINK(TEST_SUN_PATH, TEST_SYM_A);
memset(&addr, '\0', sizeof(struct sockaddr_un));
strncpy(addr.sun_path, TEST_SYM_A, sizeof(addr.sun_path) - 1);
addr.sun_family = AF_UNIX;
debug("[client] creating client socket");
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
debug("[client] connecting to server through the symlink");
rc = connect(sd, (struct sockaddr *) &addr,
sizeof(struct sockaddr_un));
if (rc == -1) {
test_fail("[client] connect() should have worked");
} else {
debug("[client] connected");
}
debug("[client] testing getpeername()");
memset(&peer_addr, '\0', sizeof(struct sockaddr_un));
rc = getpeername(sd, (struct sockaddr *) &peer_addr, &peer_addr_len);
if (rc == -1) {
test_fail("[client] getpeername() should have worked");
}
/* we need to use the full path "/usr/src/test/DIR_56/test.sock"
* because that is what is returned by getpeername().
*/
if (!(peer_addr.sun_family == AF_UNIX &&
strncmp(peer_addr.sun_path,
fullpath(TEST_SUN_PATH),
sizeof(peer_addr.sun_path) - 1) == 0)) {
test_fail("getpeername() didn't return the right address");
}
strncpy(buf, "Hello, World!", sizeof(buf) - 1);
debug("[client] send to server");
rc = write(sd, buf, sizeof(buf));
if (rc == -1) {
test_fail("[client] write() failed unexpectedly");
}
memset(buf, '\0', sizeof(buf));
debug("[client] read from server");
rc = read(sd, buf, sizeof(buf));
if (rc == -1) {
test_fail("[client] read() failed unexpectedly");
} else {
debug("[client] we got the following message:");
debug(buf);
}
if (strncmp(buf, "HELLO, WORLD!", sizeof(buf)) != 0) {
test_fail("[client] We didn't get the correct response");
}
memset(&buf, '\0', sizeof(buf));
strncpy(buf, "Bonjour!", sizeof(buf) - 1);
debug("[client] send to server");
rc = send(sd, buf, sizeof(buf), 0);
if (rc == -1) {
test_fail("[client] send() failed unexpectedly");
}
debug("Test passing the client credentials to the server");
memset(&credentials, '\0', ucred_length);
rc = getsockopt(sd, SOL_SOCKET, SO_PEERCRED, &credentials,
&ucred_length);
if (rc == -1) {
test_fail("[client] getsockopt() failed");
} else if (credentials.uid != geteuid() ||
credentials.gid != getegid()) {
printf("%d=%d=%d %d=%d=%d\n", credentials.uid, getuid(),
geteuid(), credentials.gid, getgid(), getegid());
test_fail("[client] Credential passing gave us a bad UID/GID");
}
debug("Testing select()");
tv.tv_sec = 2;
tv.tv_usec = 500000;
FD_ZERO(&readfds);
FD_SET(sd, &readfds);
rc = select(sd + 1, &readfds, NULL, NULL, &tv);
if (rc == -1) {
test_fail("[client] select() should not have failed");
}
if (rc != 1) {
test_fail("[client] select() should have returned 1");
}
if (!(FD_ISSET(sd, &readfds))) {
test_fail("The server didn't respond within 2.5 seconds");
}
memset(buf, '\0', sizeof(buf));
debug("[client] recv from server");
rc = recv(sd, buf, sizeof(buf), 0);
if (rc == -1) {
test_fail("[client] recv() failed unexpectedly");
} else {
debug("[client] we got the following message:");
debug(buf);
}
if (strncmp(buf, "BONJOUR!", sizeof(buf)) != 0) {
test_fail("[client] We didn't get the right response.");
}
memset(&buf, '\0', sizeof(buf));
strncpy(buf, "Hola!", sizeof(buf) - 1);
debug("[client] sendto to server");
rc = sendto(sd, buf, sizeof(buf), 0, NULL, 0);
if (rc == -1) {
test_fail("[client] sendto() failed");
}
debug("Testing select()");
tv.tv_sec = 2;
tv.tv_usec = 500000;
FD_ZERO(&readfds);
FD_SET(sd, &readfds);
rc = select(sd + 1, &readfds, NULL, NULL, &tv);
if (rc == -1) {
test_fail("[client] select() should not have failed");
}
if (rc != 1) {
test_fail("[client] select() should have returned 1");
}
if (!(FD_ISSET(sd, &readfds))) {
test_fail("[client] The server didn't respond in 2.5 seconds");
}
memset(buf, '\0', sizeof(buf));
debug("[client] recvfrom from server");
rc = recvfrom(sd, buf, sizeof(buf), 0, NULL, 0);
if (rc == -1) {
test_fail("[cleint] recvfrom() failed unexpectedly");
} else {
debug("[client] we got the following message:");
debug(buf);
}
if (strncmp(buf, "HOLA!", sizeof(buf)) != 0) {
test_fail("[client] We didn't get the right response.");
}
debug("[client] closing socket");
CLOSE(sd);
debug("[client] leaving test_xfer_client()");
exit(errct);
}
void test_xfer(void)
{
pid_t pid;
UNLINK(TEST_SYM_A);
UNLINK(TEST_SUN_PATH);
/* the signal handler is only used by the client, but we have to
* install it now. if we don't the server may signal the client
* before the handler is installed.
*/
debug("installing signal handler");
if (signal(SIGUSR1, test_xfer_sighdlr) == SIG_ERR) {
test_fail("signal(SIGUSR1, test_xfer_sighdlr) failed");
}
debug("signal handler installed");
server_ready = 0;
pid = fork();
if (pid == -1) {
test_fail("fork() failed");
return;
} else if (pid == 0) {
debug("child");
test_xfer_client();
test_fail("we should never get here");
exit(1);
} else {
debug("parent");
test_xfer_server(pid);
debug("parent done");
}
UNLINK(TEST_SYM_A);
UNLINK(TEST_SUN_PATH);
}
void test_simple_client(int type)
{
char buf[BUFSIZE];
int sd, rc;
struct sockaddr_un addr;
sd = socket(PF_UNIX, type, 0);
if (sd == -1) {
test_fail("socket");
exit(errct);
}
while (server_ready == 0) {
debug("[client] waiting for the server");
sleep(1);
}
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
addr.sun_family = AF_UNIX;
bzero(buf, BUFSIZE);
snprintf(buf, BUFSIZE-1, "Hello, My Name is Client.");
if (type == SOCK_DGRAM) {
rc = sendto(sd, buf, strlen(buf) + 1, 0,
(struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (rc == -1) {
test_fail("sendto");
exit(errct);
}
} else {
rc = connect(sd, (struct sockaddr *) &addr,
sizeof(struct sockaddr_un));
if (rc == -1) {
test_fail("connect");
exit(errct);
}
rc = write(sd, buf, strlen(buf) + 1);
if (rc == -1) {
test_fail("write");
}
memset(buf, '\0', BUFSIZE);
rc = read(sd, buf, BUFSIZE);
if (rc == -1) {
test_fail("read");
}
if (strcmp("Hello, My Name is Server.", buf) != 0) {
test_fail("didn't read the correct string");
}
}
rc = close(sd);
if (rc == -1) {
test_fail("close");
}
exit(errct);
}
void test_simple_server(int type, pid_t pid)
{
char buf[BUFSIZE];
int sd, rc, client_sd, status;
struct sockaddr_un addr;
socklen_t addr_len;
addr_len = sizeof(struct sockaddr_un);
sd = socket(PF_UNIX, type, 0);
if (sd == -1) {
test_fail("socket");
}
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
addr.sun_family = AF_UNIX;
rc = bind(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (rc == -1) {
test_fail("bind");
}
if (type == SOCK_DGRAM) {
/* ready for client */
kill(pid, SIGUSR1);
rc = recvfrom(sd, buf, BUFSIZE, 0,
(struct sockaddr *) &addr, &addr_len);
if (rc == -1) {
test_fail("recvfrom");
}
} else {
rc = listen(sd, 5);
if (rc == -1) {
test_fail("listen");
}
/* we're ready for connections, time to tell the client
* to start the test
*/
kill(pid, SIGUSR1);
client_sd = accept(sd, (struct sockaddr *) &addr, &addr_len);
if (client_sd == -1) {
test_fail("accept");
}
memset(buf, '\0', BUFSIZE);
rc = read(client_sd, buf, BUFSIZE);
if (rc == -1) {
test_fail("read");
}
if (strcmp("Hello, My Name is Client.", buf) != 0) {
test_fail("didn't read the correct string");
}
/* added for extra fun to make the client block on read() */
sleep(1);
bzero(buf, BUFSIZE);
snprintf(buf, BUFSIZE-1, "Hello, My Name is Server.");
rc = write(client_sd, buf, strlen(buf) + 1);
if (rc == -1) {
test_fail("write");
}
rc = close(client_sd);
if (rc == -1) {
test_fail("close");
}
}
rc = close(sd);
if (rc == -1) {
test_fail("close");
}
/* wait for client to exit */
do {
errno = 0;
rc = waitpid(pid, &status, 0);
} while (rc == -1 && errno == EINTR);
/* we use the exit status to get its error count */
errct += WEXITSTATUS(status);
}
void test_abort_client_server(int abort_type)
{
pid_t pid;
debug("test_simple_client_server()");
UNLINK(TEST_SUN_PATH);
/* the signal handler is only used by the client, but we have to
* install it now. if we don't the server may signal the client
* before the handler is installed.
*/
debug("installing signal handler");
if (signal(SIGUSR1, test_xfer_sighdlr) == SIG_ERR) {
test_fail("signal(SIGUSR1, test_xfer_sighdlr) failed");
}
debug("signal handler installed");
server_ready = 0;
pid = fork();
if (pid == -1) {
test_fail("fork() failed");
return;
} else if (pid == 0) {
debug("child");
test_abort_client(abort_type);
test_fail("we should never get here");
exit(1);
} else {
debug("parent");
test_abort_server(pid, abort_type);
debug("parent done");
}
UNLINK(TEST_SUN_PATH);
}
void test_abort_client(int abort_type)
{
char buf[BUFSIZE];
int sd, rc;
struct sockaddr_un addr;
sd = socket(PF_UNIX, SOCK_STREAM, 0);
if (sd == -1) {
test_fail("socket");
exit(errct);
}
while (server_ready == 0) {
debug("[client] waiting for the server");
sleep(1);
}
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
addr.sun_family = AF_UNIX;
bzero(buf, BUFSIZE);
snprintf(buf, BUFSIZE-1, "Hello, My Name is Client.");
rc = connect(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (rc == -1) {
test_fail("connect");
exit(errct);
}
if (abort_type == 2) {
/* Give server a chance to close connection */
sleep(2);
rc = write(sd, buf, strlen(buf) + 1);
if (rc != -1) {
test_fail("write should have failed\n");
}
if (errno != ECONNRESET) {
test_fail("errno should've been ECONNRESET\n");
}
}
rc = close(sd);
if (rc == -1) {
test_fail("close");
}
exit(errct);
}
void test_abort_server(pid_t pid, int abort_type)
{
char buf[BUFSIZE];
int sd, rc, client_sd, status;
struct sockaddr_un addr;
socklen_t addr_len;
addr_len = sizeof(struct sockaddr_un);
sd = socket(PF_UNIX, SOCK_STREAM, 0);
if (sd == -1) {
test_fail("socket");
}
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
addr.sun_family = AF_UNIX;
rc = bind(sd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un));
if (rc == -1) {
test_fail("bind");
}
rc = listen(sd, 5);
if (rc == -1) {
test_fail("listen");
}
/* we're ready for connections, time to tell the client
* to start the test
*/
kill(pid, SIGUSR1);
client_sd = accept(sd, (struct sockaddr *) &addr, &addr_len);
if (client_sd == -1) {
test_fail("accept");
}
if (abort_type == 1) {
memset(buf, '\0', BUFSIZE);
rc = read(client_sd, buf, BUFSIZE);
if (rc != -1) {
test_fail("read should've failed\n");
}
if (errno != ECONNRESET) {
test_fail("errno should've been ECONNRESET\n");
}
} /* else if (abort_type == 2) { */
rc = close(client_sd);
if (rc == -1) {
test_fail("close");
}
/* } */
rc = close(sd);
if (rc == -1) {
test_fail("close");
}
/* wait for client to exit */
do {
errno = 0;
rc = waitpid(pid, &status, 0);
} while (rc == -1 && errno == EINTR);
/* we use the exit status to get its error count */
errct += WEXITSTATUS(status);
}
void test_simple_client_server(int type)
{
pid_t pid;
debug("test_simple_client_server()");
UNLINK(TEST_SUN_PATH);
/* the signal handler is only used by the client, but we have to
* install it now. if we don't the server may signal the client
* before the handler is installed.
*/
debug("installing signal handler");
if (signal(SIGUSR1, test_xfer_sighdlr) == SIG_ERR) {
test_fail("signal(SIGUSR1, test_xfer_sighdlr) failed");
}
debug("signal handler installed");
server_ready = 0;
pid = fork();
if (pid == -1) {
test_fail("fork() failed");
return;
} else if (pid == 0) {
debug("child");
test_simple_client(type);
test_fail("we should never get here");
exit(1);
} else {
debug("parent");
test_simple_server(type, pid);
debug("parent done");
}
UNLINK(TEST_SUN_PATH);
}
void test_vectorio(int type)
{
int sv[2];
int rc;
struct iovec iov[3];
char buf1[BUFSIZE];
char buf2[BUFSIZE];
char buf3[BUFSIZE];
char buf4[BUFSIZE*3];
const struct iovec *iovp = iov;
debug("begin vectorio tests");
memset(buf1, '\0', BUFSIZE);
strncpy(buf1, "HELLO ", BUFSIZE - 1);
memset(buf2, '\0', BUFSIZE);
strncpy(buf2, "WORLD", BUFSIZE - 1);
memset(buf3, '\0', BUFSIZE);
rc = socketpair(PF_UNIX, type, 0, sv);
if (rc == -1) {
test_fail("socketpair");
}
iov[0].iov_base = buf1;
iov[0].iov_len = strlen(buf1);
iov[1].iov_base = buf2;
iov[1].iov_len = strlen(buf2);
iov[2].iov_base = buf3;
iov[2].iov_len = 1;
rc = writev(sv[0], iovp, 3);
if (rc == -1) {
test_fail("writev");
}
memset(buf4, '\0', BUFSIZE*3);
rc = read(sv[1], buf4, BUFSIZE*3);
if (rc == -1) {
test_fail("read");
}
if (strncmp(buf4, "HELLO WORLD", strlen("HELLO WORLD"))) {
test_fail("the string we read was not 'HELLO WORLD'");
}
memset(buf1, '\0', BUFSIZE);
strncpy(buf1, "Unit Test Time", BUFSIZE - 1);
rc = write(sv[1], buf1, strlen(buf1) + 1);
if (rc == -1) {
test_fail("write");
}
memset(buf2, '\0', BUFSIZE);
memset(buf3, '\0', BUFSIZE);
memset(buf4, '\0', BUFSIZE*3);
iov[0].iov_base = buf2;
iov[0].iov_len = 5;
iov[1].iov_base = buf3;
iov[1].iov_len = 5;
iov[2].iov_base = buf4;
iov[2].iov_len = 32;
rc = readv(sv[0], iovp, 3);
if (rc == -1) {
test_fail("readv");
}
if (strncmp(buf2, "Unit ", 5) || strncmp(buf3, "Test ", 5) ||
strncmp(buf4, "Time", 4)) {
test_fail("readv");
}
rc = close(sv[0]);
if (rc == -1) {
test_fail("close");
}
rc = close(sv[1]);
if (rc == -1) {
test_fail("close");
}
debug("done vector io tests");
}
void test_msg(int type)
{
int sv[2];
int rc;
struct msghdr msg1;
struct msghdr msg2;
struct iovec iov[3];
char buf1[BUFSIZE];
char buf2[BUFSIZE];
char buf3[BUFSIZE];
char buf4[BUFSIZE*3];
debug("begin sendmsg/recvmsg tests");
memset(buf1, '\0', BUFSIZE);
strncpy(buf1, "HELLO ", BUFSIZE - 1);
memset(buf2, '\0', BUFSIZE);
strncpy(buf2, "WORLD", BUFSIZE - 1);
memset(buf3, '\0', BUFSIZE);
rc = socketpair(PF_UNIX, type, 0, sv);
if (rc == -1) {
test_fail("socketpair");
}
iov[0].iov_base = buf1;
iov[0].iov_len = strlen(buf1);
iov[1].iov_base = buf2;
iov[1].iov_len = strlen(buf2);
iov[2].iov_base = buf3;
iov[2].iov_len = 1;
memset(&msg1, '\0', sizeof(struct msghdr));
msg1.msg_name = NULL;
msg1.msg_namelen = 0;
msg1.msg_iov = iov;
msg1.msg_iovlen = 3;
msg1.msg_control = NULL;
msg1.msg_controllen = 0;
msg1.msg_flags = 0;
rc = sendmsg(sv[0], &msg1, 0);
if (rc == -1) {
test_fail("writev");
}
memset(buf4, '\0', BUFSIZE*3);
rc = read(sv[1], buf4, BUFSIZE*3);
if (rc == -1) {
test_fail("read");
}
if (strncmp(buf4, "HELLO WORLD", strlen("HELLO WORLD"))) {
test_fail("the string we read was not 'HELLO WORLD'");
}
memset(buf1, '\0', BUFSIZE);
strncpy(buf1, "Unit Test Time", BUFSIZE - 1);
rc = write(sv[1], buf1, strlen(buf1) + 1);
if (rc == -1) {
test_fail("write");
}
memset(buf2, '\0', BUFSIZE);
memset(buf3, '\0', BUFSIZE);
memset(buf4, '\0', BUFSIZE*3);
iov[0].iov_base = buf2;
iov[0].iov_len = 5;
iov[1].iov_base = buf3;
iov[1].iov_len = 5;
iov[2].iov_base = buf4;
iov[2].iov_len = 32;
memset(&msg2, '\0', sizeof(struct msghdr));
msg2.msg_name = NULL;
msg2.msg_namelen = 0;
msg2.msg_iov = iov;
msg2.msg_iovlen = 3;
msg2.msg_control = NULL;
msg2.msg_controllen = 0;
msg2.msg_flags = 0;
rc = recvmsg(sv[0], &msg2, 0);
if (rc == -1) {
test_fail("readv");
}
if (strncmp(buf2, "Unit ", 5) || strncmp(buf3, "Test ", 5) ||
strncmp(buf4, "Time", 4)) {
test_fail("readv");
}
rc = close(sv[0]);
if (rc == -1) {
test_fail("close");
}
rc = close(sv[1]);
if (rc == -1) {
test_fail("close");
}
}
void test_msg_dgram(void)
{
int rc;
int src;
int dst;
struct sockaddr_un addr;
struct iovec iov[3];
struct msghdr msg1;
struct msghdr msg2;
char buf1[BUFSIZE];
char buf2[BUFSIZE];
char buf3[BUFSIZE];
socklen_t addrlen = sizeof(struct sockaddr_un);
debug("test msg_dgram");
UNLINK(TEST_SUN_PATH);
UNLINK(TEST_SUN_PATHB);
src = socket(PF_UNIX, SOCK_DGRAM, 0);
if (src == -1) {
test_fail("socket");
}
dst = socket(PF_UNIX, SOCK_DGRAM, 0);
if (dst == -1) {
test_fail("socket");
}
memset(&addr, '\0', sizeof(struct sockaddr_un));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, TEST_SUN_PATHB, sizeof(addr.sun_path) - 1);
rc = bind(src, (struct sockaddr *) &addr, addrlen);
if (rc == -1) {
test_fail("bind");
}
memset(&addr, '\0', sizeof(struct sockaddr_un));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
rc = bind(dst, (struct sockaddr *) &addr, addrlen);
if (rc == -1) {
test_fail("bind");
}
memset(&buf1, '\0', BUFSIZE);
memset(&buf2, '\0', BUFSIZE);
memset(&buf3, '\0', BUFSIZE);
strncpy(buf1, "Minix ", BUFSIZE-1);
strncpy(buf2, "is ", BUFSIZE-1);
strncpy(buf3, "great!", BUFSIZE-1);
iov[0].iov_base = buf1;
iov[0].iov_len = 6;
iov[1].iov_base = buf2;
iov[1].iov_len = 3;
iov[2].iov_base = buf3;
iov[2].iov_len = 32;
memset(&msg1, '\0', sizeof(struct msghdr));
msg1.msg_name = &addr;
msg1.msg_namelen = addrlen;
msg1.msg_iov = iov;
msg1.msg_iovlen = 3;
msg1.msg_control = NULL;
msg1.msg_controllen = 0;
msg1.msg_flags = 0;
rc = sendmsg(src, &msg1, 0);
if (rc == -1) {
test_fail("sendmsg");
}
memset(&buf1, '\0', BUFSIZE);
memset(&buf2, '\0', BUFSIZE);
iov[0].iov_base = buf1;
iov[0].iov_len = 9;
iov[1].iov_base = buf2;
iov[1].iov_len = 32;
memset(&addr, '\0', sizeof(struct sockaddr_un));
memset(&msg2, '\0', sizeof(struct msghdr));
msg2.msg_name = &addr;
msg2.msg_namelen = sizeof(struct sockaddr_un);
msg2.msg_iov = iov;
msg2.msg_iovlen = 2;
msg2.msg_control = NULL;
msg2.msg_controllen = 0;
msg2.msg_flags = 0;
rc = recvmsg(dst, &msg2, 0);
if (rc == -1) {
test_fail("recvmsg");
}
if (strncmp(buf1, "Minix is ", 9) || strncmp(buf2, "great!", 6)) {
test_fail("recvmsg");
}
/* we need to use the full path "/usr/src/test/DIR_56/testb.sock"
* because that is what is returned by recvmsg().
*/
if (addr.sun_family != AF_UNIX || strcmp(addr.sun_path,
fullpath(TEST_SUN_PATHB))) {
test_fail("recvmsg");
}
rc = close(dst);
if (rc == -1) {
test_fail("close");
}
rc = close(src);
if (rc == -1) {
test_fail("close");
}
UNLINK(TEST_SUN_PATH);
UNLINK(TEST_SUN_PATHB);
}
void test_scm_credentials(void)
{
int rc;
int src;
int dst;
struct ucred cred;
struct cmsghdr *cmsg = NULL;
struct sockaddr_un addr;
struct iovec iov[3];
struct msghdr msg1;
struct msghdr msg2;
char buf1[BUFSIZE];
char buf2[BUFSIZE];
char buf3[BUFSIZE];
char ctrl[BUFSIZE];
socklen_t addrlen = sizeof(struct sockaddr_un);
debug("test_scm_credentials");
UNLINK(TEST_SUN_PATH);
UNLINK(TEST_SUN_PATHB);
debug("creating src socket");
src = socket(PF_UNIX, SOCK_DGRAM, 0);
if (src == -1) {
test_fail("socket");
}
debug("creating dst socket");
dst = socket(PF_UNIX, SOCK_DGRAM, 0);
if (dst == -1) {
test_fail("socket");
}
debug("binding src socket");
memset(&addr, '\0', sizeof(struct sockaddr_un));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, TEST_SUN_PATHB, sizeof(addr.sun_path) - 1);
rc = bind(src, (struct sockaddr *) &addr, addrlen);
if (rc == -1) {
test_fail("bind");
}
debug("binding dst socket");
memset(&addr, '\0', sizeof(struct sockaddr_un));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
rc = bind(dst, (struct sockaddr *) &addr, addrlen);
if (rc == -1) {
test_fail("bind");
}
memset(&buf1, '\0', BUFSIZE);
memset(&buf2, '\0', BUFSIZE);
memset(&buf3, '\0', BUFSIZE);
memset(&ctrl, '\0', BUFSIZE);
strncpy(buf1, "Minix ", BUFSIZE-1);
strncpy(buf2, "is ", BUFSIZE-1);
strncpy(buf3, "great!", BUFSIZE-1);
iov[0].iov_base = buf1;
iov[0].iov_len = 6;
iov[1].iov_base = buf2;
iov[1].iov_len = 3;
iov[2].iov_base = buf3;
iov[2].iov_len = 32;
memset(&msg1, '\0', sizeof(struct msghdr));
msg1.msg_name = &addr;
msg1.msg_namelen = addrlen;
msg1.msg_iov = iov;
msg1.msg_iovlen = 3;
msg1.msg_control = NULL;
msg1.msg_controllen = 0;
msg1.msg_flags = 0;
debug("sending msg1");
rc = sendmsg(src, &msg1, 0);
if (rc == -1) {
test_fail("sendmsg");
}
memset(&buf1, '\0', BUFSIZE);
memset(&buf2, '\0', BUFSIZE);
memset(&buf3, '\0', BUFSIZE);
memset(&ctrl, '\0', BUFSIZE);
iov[0].iov_base = buf1;
iov[0].iov_len = 9;
iov[1].iov_base = buf2;
iov[1].iov_len = 32;
memset(&addr, '\0', sizeof(struct sockaddr_un));
memset(&msg2, '\0', sizeof(struct msghdr));
msg2.msg_name = &addr;
msg2.msg_namelen = sizeof(struct sockaddr_un);
msg2.msg_iov = iov;
msg2.msg_iovlen = 2;
msg2.msg_control = ctrl;
msg2.msg_controllen = BUFSIZE;
msg2.msg_flags = 0;
debug("recv msg2");
rc = recvmsg(dst, &msg2, 0);
if (rc == -1) {
test_fail("recvmsg");
}
debug("checking results");
if (strncmp(buf1, "Minix is ", 9) || strncmp(buf2, "great!", 6)) {
test_fail("recvmsg");
}
/* we need to use the full path "/usr/src/test/DIR_56/testb.sock"
* because that is what is returned by recvmsg().
*/
if (addr.sun_family != AF_UNIX || strcmp(addr.sun_path,
fullpath(TEST_SUN_PATHB))) {
test_fail("recvmsg");
}
debug("looking for credentials");
memset(&cred, '\0', sizeof(struct ucred));
for (cmsg = CMSG_FIRSTHDR(&msg2); cmsg != NULL;
cmsg = CMSG_NXTHDR(&msg2, cmsg)) {
if (cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SCM_CREDENTIALS) {
memcpy(&cred, CMSG_DATA(cmsg), sizeof(struct ucred));
break;
}
}
if (cred.pid != getpid() || cred.uid != geteuid() ||
cred.gid != getegid()) {
test_fail("did no receive the proper credentials");
}
rc = close(dst);
if (rc == -1) {
test_fail("close");
}
rc = close(src);
if (rc == -1) {
test_fail("close");
}
UNLINK(TEST_SUN_PATH);
UNLINK(TEST_SUN_PATHB);
}
void test_connect(void)
{
int i, sd, sds[2], rc;
/* connect() is already tested throughout test56, but
* in most cases the client and server end up on /dev/uds
* minor 0 and minor 1. This test opens some sockets first and
* then calls test_simple_client_server(). This forces the
* client and server minor numbers higher in the descriptor table.
*/
debug("starting test_connect()");
sd = socket(AF_UNIX, SOCK_DGRAM, 0);
if (sd == -1) {
test_fail("couldn't create a socket");
}
rc = socketpair(AF_UNIX, SOCK_STREAM, 0, sds);
if (rc == -1) {
test_fail("couldn't create a socketpair");
}
for (i = 0; i < 3; i++) {
test_simple_client_server(types[i]);
}
rc = close(sds[1]);
if (rc == -1) {
test_fail("close() failed");
}
rc = close(sds[0]);
if (rc == -1) {
test_fail("close() failed");
}
rc = close(sd);
if (rc == -1) {
test_fail("close() failed");
}
debug("exiting test_connect()");
}
int test_multiproc_read(void)
{
/* test that when we fork() a process with an open socket descriptor,
* the descriptor in each process points to the same thing.
*/
pid_t pid;
int sds[2];
int rc, status;
char buf[3];
debug("entering test_multiproc_read()");
rc = socketpair(PF_UNIX, SOCK_STREAM, 0, sds);
if (rc == -1) {
test_fail("socketpair");
return 1;
}
memset(buf, '\0', 3);
/* the signal handler is only used by the client, but we have to
* install it now. if we don't the server may signal the client
* before the handler is installed.
*/
debug("installing signal handler");
if (signal(SIGUSR1, test_xfer_sighdlr) == SIG_ERR) {
test_fail("signal(SIGUSR1, test_xfer_sighdlr) failed");
return 1;
}
debug("signal handler installed");
server_ready = 0;
pid = fork();
if (pid == -1) {
test_fail("fork");
return 1;
} else if (pid == 0) {
while (server_ready == 0) {
debug("waiting for SIGUSR1 from parent");
sleep(1);
}
rc = read(sds[1], buf, 2);
if (rc == -1) {
test_fail("read");
exit(1);
}
if (!(buf[0] == 'X' && buf[1] == '3')) {
test_fail("Didn't read X3");
exit(1);
}
exit(0);
} else {
rc = write(sds[0], "MNX3", 4);
if (rc == -1) {
test_fail("write");
}
rc = read(sds[1], buf, 2);
if (rc == -1) {
test_fail("read");
}
if (!(buf[0] == 'M' && buf[1] == 'N')) {
test_fail("Didn't read MN");
}
/* time to tell the client to start the test */
kill(pid, SIGUSR1);
do {
rc = waitpid(pid, &status, 0);
} while (rc == -1 && errno == EINTR);
/* we use the exit status to get its error count */
errct += WEXITSTATUS(status);
}
return 0;
}
int test_multiproc_write(void)
{
/* test that when we fork() a process with an open socket descriptor,
* the descriptor in each process points to the same thing.
*/
pid_t pid;
int sds[2];
int rc, status;
char buf[7];
debug("entering test_multiproc_write()");
rc = socketpair(PF_UNIX, SOCK_STREAM, 0, sds);
if (rc == -1) {
test_fail("socketpair");
return 1;
}
memset(buf, '\0', 7);
/* the signal handler is only used by the client, but we have to
* install it now. if we don't the server may signal the client
* before the handler is installed.
*/
debug("installing signal handler");
if (signal(SIGUSR1, test_xfer_sighdlr) == SIG_ERR) {
test_fail("signal(SIGUSR1, test_xfer_sighdlr) failed");
return 1;
}
debug("signal handler installed");
server_ready = 0;
pid = fork();
if (pid == -1) {
test_fail("fork");
return 1;
} else if (pid == 0) {
while (server_ready == 0) {
debug("waiting for SIGUSR1 from parent");
sleep(1);
}
rc = write(sds[1], "IX3", 3);
if (rc == -1) {
test_fail("write");
exit(1);
}
rc = read(sds[0], buf, 6);
if (rc == -1) {
test_fail("read");
exit(1);
}
if (strcmp(buf, "MINIX3") != 0) {
test_fail("didn't read MINIX3");
exit(1);
}
exit(0);
} else {
rc = write(sds[1], "MIN", 3);
if (rc == -1) {
test_fail("write");
}
/* time to tell the client to start the test */
kill(pid, SIGUSR1);
do {
rc = waitpid(pid, &status, 0);
} while (rc == -1 && errno == EINTR);
/* we use the exit status to get its error count */
errct += WEXITSTATUS(status);
}
return 0;
}
void test_fd_passing_child(int sd)
{
int fd, rc;
char x = 'x';
struct msghdr msghdr;
struct cmsghdr *cmsg;
struct iovec iov;
char buf[BUFSIZE];
memset(buf, '\0', BUFSIZE);
fd = open(TEST_TXT_FILE, O_CREAT|O_TRUNC|O_RDWR);
if (fd == -1) {
test_fail("could not open test.txt");
}
msghdr.msg_name = NULL;
msghdr.msg_namelen = 0;
iov.iov_base = &x;
iov.iov_len = 1;
msghdr.msg_iov = &iov;
msghdr.msg_iovlen = 1;
msghdr.msg_control = buf;
msghdr.msg_controllen = CMSG_SPACE(sizeof(int));
msghdr.msg_flags = 0;
cmsg = CMSG_FIRSTHDR(&msghdr);
cmsg->cmsg_len = CMSG_SPACE(sizeof(int));
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
((int *) CMSG_DATA(cmsg))[0] = fd;
rc = sendmsg(sd, &msghdr, 0);
if (rc == -1) {
test_fail("could not send message");
}
memset(buf, '\0', BUFSIZE);
rc = read(sd, buf, BUFSIZE);
if (rc == -1) {
test_fail("could not read from socket");
}
if (strcmp(buf, "done") != 0) {
test_fail("we didn't read the right message");
}
memset(buf, '\0', BUFSIZE);
rc = lseek(fd, 0, SEEK_SET);
if (rc == -1) {
test_fail("could not seek to start of test.txt");
}
rc = read(fd, buf, BUFSIZE);
if (rc == -1) {
test_fail("could not read from test.txt");
}
if (strcmp(buf, MSG) != 0) {
test_fail("other process didn't write MSG to test.txt");
}
rc = close(fd);
if (rc == -1) {
test_fail("could not close test.txt");
}
rc = close(sd);
if (rc == -1) {
test_fail("could not close socket");
}
rc = unlink(TEST_TXT_FILE);
if (rc == -1) {
test_fail("could not unlink test.txt");
}
exit(errct);
}
void test_fd_passing_parent(int sd)
{
int rc, fd;
char x;
struct msghdr msghdr;
struct cmsghdr *cmsg;
struct iovec iov;
char buf[BUFSIZE];
memset(buf, '\0', BUFSIZE);
msghdr.msg_name = NULL;
msghdr.msg_namelen = 0;
iov.iov_base = &x;
iov.iov_len = 1;
msghdr.msg_iov = &iov;
msghdr.msg_iovlen = 1;
msghdr.msg_iov = &iov;
msghdr.msg_iovlen = 1;
msghdr.msg_control = buf;
msghdr.msg_controllen = BUFSIZE;
msghdr.msg_flags = 0;
rc = recvmsg(sd, &msghdr, 0);
if (rc == -1) {
test_fail("could not recv message.");
}
cmsg = CMSG_FIRSTHDR(&msghdr);
fd = ((int *) CMSG_DATA(cmsg))[0];
rc = write(fd, MSG, strlen(MSG));
if (rc != strlen(MSG)) {
test_fail("could not write the full message to test.txt");
}
rc = close(fd);
if (rc == -1) {
test_fail("could not close test.txt");
}
memset(buf, '\0', BUFSIZE);
strcpy(buf, "done");
rc = write(sd, buf, BUFSIZE);
if (rc == -1) {
test_fail("could not write to socket");
}
rc = close(sd);
if (rc == -1) {
test_fail("could not close socket");
}
}
void test_permissions(void) {
/* Test bind and connect for permission verification
*
* After creating a UDS socket we change user credentials. At that
* point we should not be allowed to bind or connect to the UDS socket
*/
pid_t pid;
int sd, rc, status;
2012-02-02 11:47:06 +01:00
struct sockaddr_un addr;
memset(&addr, '\0', sizeof(struct sockaddr_un));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, TEST_SUN_PATH, sizeof(addr.sun_path) - 1);
UNLINK(TEST_SUN_PATH);
pid = fork();
if (pid < 0) test_fail("unable to fork");
else if (pid == 0) {
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
if (setuid(999) != 0) test_fail("unable to chance uid");
rc = bind(sd, (struct sockaddr *) &addr,
sizeof(struct sockaddr_un));
if (rc != -1) {
test_fail("bind() should not have worked");
}
exit(errct);
} else {
rc = waitpid(pid, &status, 0);
errct += WEXITSTATUS(status);
}
/* the signal handler is only used by the client, but we have to
* install it now. if we don't the server may signal the client
* before the handler is installed.
*/
debug("installing signal handler");
if (signal(SIGUSR1, test_xfer_sighdlr) == SIG_ERR) {
test_fail("signal(SIGUSR1, test_xfer_sighdlr) failed");
}
debug("signal handler installed");
server_ready = 0;
pid = fork();
if (pid < 0) test_fail("unable to fork");
else if (pid == 0) {
while (server_ready == 0) {
debug("[client] waiting for the server to signal");
sleep(1);
}
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
if (setuid(999) != 0) test_fail("unable to chance uid");
rc = connect(sd, (struct sockaddr *) &addr,
sizeof(struct sockaddr_un));
if (rc != -1)
test_fail("connect should not have worked");
exit(errct);
} else {
SOCKET(sd, PF_UNIX, SOCK_STREAM, 0);
rc = bind(sd, (struct sockaddr *) &addr,
sizeof(struct sockaddr_un));
if (rc == -1) {
test_fail("bind() should have worked");
}
rc = listen(sd, 8);
if (rc == -1) {
test_fail("listen(sd, 8) should have worked");
}
kill(pid, SIGUSR1);
sleep(1);
CLOSE(sd);
rc = waitpid(pid, &status, 0);
errct += WEXITSTATUS(status);
}
UNLINK(TEST_SUN_PATH);
}
void test_fd_passing(void) {
int status;
int sv[2];
pid_t pid;
int rc;
rc = socketpair(AF_UNIX, SOCK_STREAM, 0, sv);
if (rc == -1) {
test_fail("socketpair failed");
}
pid = fork();
if (pid == -1) {
test_fail("fork() failed");
rc = close(sv[0]);
if (rc == -1) {
test_fail("could not close sv[0]");
}
rc = close(sv[1]);
if (rc == -1) {
test_fail("could not close sv[1]");
}
exit(0);
} else if (pid == 0) {
rc = close(sv[0]);
if (rc == -1) {
test_fail("could not close sv[0]");
}
test_fd_passing_child(sv[1]);
test_fail("should never get here");
exit(1);
} else {
rc = close(sv[1]);
if (rc == -1) {
test_fail("could not close sv[1]");
}
test_fd_passing_parent(sv[0]);
/* wait for client to exit */
do {
errno = 0;
rc = waitpid(pid, &status, 0);
} while (rc == -1 && errno == EINTR);
/* we use the exit status to get its error count */
errct += WEXITSTATUS(status);
}
}
void test_select()
{
int i, nfds = -1;
int socks[2];
fd_set readfds, writefds;
struct timeval tv;
int res = 0;
char buf[1];
for (i = 0; i < OPEN_MAX; i++) {
FD_CLR(i, &readfds);
FD_CLR(i, &writefds);
}
tv.tv_sec = 2;
tv.tv_usec = 0; /* 2 sec time out */
if (socketpair(AF_UNIX, SOCK_STREAM, 0, socks) < 0) {
test_fail("Can't open socket pair.");
}
FD_SET(socks[0], &readfds);
nfds = socks[1] + 1;
/* Close the write end of the socket to generate EOF on read end */
if ((res = shutdown(socks[1], SHUT_WR)) != 0) {
test_fail("shutdown failed\n");
}
res = select(nfds, &readfds, NULL, NULL, &tv);
if (res != 1) {
test_fail("select should've returned 1 ready fd\n");
}
if (!(FD_ISSET(socks[0], &readfds))) {
test_fail("The server didn't respond within 2 seconds");
}
/* Now try to read from empty, closed pipe */
if (read(socks[0], buf, sizeof(buf)) != 0) {
test_fail("reading from empty, closed pipe should return EOF");
}
close(socks[0]);
/* Try again the other way around: create a socketpair, close the
* read end, and try to write. This should cause an EPIPE */
tv.tv_sec = 2;
tv.tv_usec = 0; /* 2 sec time out */
if (socketpair(AF_UNIX, SOCK_STREAM, 0, socks) < 0) {
test_fail("Can't open socket pair.");
}
FD_SET(socks[1], &writefds);
nfds = socks[1] + 1;
/* kill the read end of the socket to generate EPIPE on write end */
if ((res = shutdown(socks[0], SHUT_RD)) != 0) {
test_fail("shutdown failed\n");
}
res = select(nfds, NULL, &writefds, NULL, &tv);
if (res != 1) {
test_fail("select should've returned 1 ready fd\n");
}
if (!(FD_ISSET(socks[1], &writefds))) {
test_fail("The server didn't respond within 2 seconds");
}
/* Now try to write to closed pipe */
errno = 0;
if ((res = write(socks[1], buf, sizeof(buf))) != -1) {
printf("write res = %d\n", res);
test_fail("writing to empty, closed pipe should fail");
}
if (errno != EPIPE) {
printf("errno = %d\n", errno);
test_fail("writing to closed pipe should return EPIPE\n");
}
close(socks[1]);
}
int main(int argc, char *argv[])
{
int i;
debug("entering main()");
start(56);
test_socket();
test_bind();
test_listen();
test_getsockname();
test_header();
test_shutdown();
test_close();
test_permissions();
test_dup();
test_dup2();
test_socketpair();
test_shutdown();
test_read();
test_write();
test_sockopts();
test_ucred();
test_xfer();
for (i = 0; i < 3; i++) {
test_simple_client_server(types[i]);
if (types[i] != SOCK_DGRAM) test_vectorio(types[i]);
if (types[i] != SOCK_DGRAM) test_msg(types[i]);
}
test_abort_client_server(1);
test_abort_client_server(2);
test_msg_dgram();
test_connect();
test_multiproc_read();
test_multiproc_write();
test_scm_credentials();
test_fd_passing();
test_select();
quit();
return -1; /* we should never get here */
}