minix/external/bsd/flex/dist/misc.c

1100 lines
22 KiB
C
Raw Normal View History

2012-06-06 16:10:32 +02:00
/* $NetBSD: misc.c,v 1.2 2009/10/26 04:27:15 christos Exp $ */
/* misc - miscellaneous flex routines */
/* Copyright (c) 1990 The Regents of the University of California. */
/* All rights reserved. */
/* This code is derived from software contributed to Berkeley by */
/* Vern Paxson. */
/* The United States Government has rights in this work pursuant */
/* to contract no. DE-AC03-76SF00098 between the United States */
/* Department of Energy and the University of California. */
/* This file is part of flex. */
/* Redistribution and use in source and binary forms, with or without */
/* modification, are permitted provided that the following conditions */
/* are met: */
/* 1. Redistributions of source code must retain the above copyright */
/* notice, this list of conditions and the following disclaimer. */
/* 2. Redistributions in binary form must reproduce the above copyright */
/* notice, this list of conditions and the following disclaimer in the */
/* documentation and/or other materials provided with the distribution. */
/* Neither the name of the University nor the names of its contributors */
/* may be used to endorse or promote products derived from this software */
/* without specific prior written permission. */
/* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
/* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
/* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
/* PURPOSE. */
#include "flexdef.h"
#include "tables.h"
#define CMD_IF_TABLES_SER "%if-tables-serialization"
#define CMD_TABLES_YYDMAP "%tables-yydmap"
#define CMD_DEFINE_YYTABLES "%define-yytables"
#define CMD_IF_CPP_ONLY "%if-c++-only"
#define CMD_IF_C_ONLY "%if-c-only"
#define CMD_IF_C_OR_CPP "%if-c-or-c++"
#define CMD_NOT_FOR_HEADER "%not-for-header"
#define CMD_OK_FOR_HEADER "%ok-for-header"
#define CMD_PUSH "%push"
#define CMD_POP "%pop"
#define CMD_IF_REENTRANT "%if-reentrant"
#define CMD_IF_NOT_REENTRANT "%if-not-reentrant"
#define CMD_IF_BISON_BRIDGE "%if-bison-bridge"
#define CMD_IF_NOT_BISON_BRIDGE "%if-not-bison-bridge"
#define CMD_ENDIF "%endif"
/* we allow the skeleton to push and pop. */
struct sko_state {
bool dc; /**< do_copy */
};
static struct sko_state *sko_stack=0;
static int sko_len=0,sko_sz=0;
static void sko_push(bool dc)
{
if(!sko_stack){
sko_sz = 1;
sko_stack = (struct sko_state*)flex_alloc(sizeof(struct sko_state)*sko_sz);
sko_len = 0;
}
if(sko_len >= sko_sz){
sko_sz *= 2;
sko_stack = (struct sko_state*)flex_realloc(sko_stack,sizeof(struct sko_state)*sko_sz);
}
/* initialize to zero and push */
sko_stack[sko_len].dc = dc;
sko_len++;
}
static void sko_peek(bool *dc)
{
if(sko_len <= 0)
flex_die("peek attempt when sko stack is empty");
if(dc)
*dc = sko_stack[sko_len-1].dc;
}
static void sko_pop(bool* dc)
{
sko_peek(dc);
sko_len--;
if(sko_len < 0)
flex_die("popped too many times in skeleton.");
}
/* Append "#define defname value\n" to the running buffer. */
void action_define (defname, value)
const char *defname;
int value;
{
char buf[MAXLINE];
char *cpy;
if ((int) strlen (defname) > MAXLINE / 2) {
format_pinpoint_message (_
("name \"%s\" ridiculously long"),
defname);
return;
}
snprintf (buf, sizeof(buf), "#define %s %d\n", defname, value);
add_action (buf);
/* track #defines so we can undef them when we're done. */
cpy = copy_string (defname);
buf_append (&defs_buf, &cpy, 1);
}
#ifdef notdef
/** Append "m4_define([[defname]],[[value]])m4_dnl\n" to the running buffer.
* @param defname The macro name.
* @param value The macro value, can be NULL, which is the same as the empty string.
*/
static void action_m4_define (const char *defname, const char * value)
{
char buf[MAXLINE];
flexfatal ("DO NOT USE THIS FUNCTION!");
if ((int) strlen (defname) > MAXLINE / 2) {
format_pinpoint_message (_
("name \"%s\" ridiculously long"),
defname);
return;
}
snprintf (buf, sizeof(buf), "m4_define([[%s]],[[%s]])m4_dnl\n", defname, value?value:"");
add_action (buf);
}
#endif
/* Append "new_text" to the running buffer. */
void add_action (new_text)
const char *new_text;
{
int len = strlen (new_text);
while (len + action_index >= action_size - 10 /* slop */ ) {
int new_size = action_size * 2;
if (new_size <= 0)
/* Increase just a little, to try to avoid overflow
* on 16-bit machines.
*/
action_size += action_size / 8;
else
action_size = new_size;
action_array =
reallocate_character_array (action_array,
action_size);
}
strcpy (&action_array[action_index], new_text);
action_index += len;
}
/* allocate_array - allocate memory for an integer array of the given size */
void *allocate_array (size, element_size)
int size;
size_t element_size;
{
register void *mem;
size_t num_bytes = element_size * size;
mem = flex_alloc (num_bytes);
if (!mem)
flexfatal (_
("memory allocation failed in allocate_array()"));
return mem;
}
/* all_lower - true if a string is all lower-case */
int all_lower (str)
register char *str;
{
while (*str) {
if (!isascii ((Char)*str) || !islower ((Char)*str))
return 0;
++str;
}
return 1;
}
/* all_upper - true if a string is all upper-case */
int all_upper (str)
register char *str;
{
while (*str) {
if (!isascii ((Char)*str) || !isupper ((Char)*str))
return 0;
++str;
}
return 1;
}
/* bubble - bubble sort an integer array in increasing order
*
* synopsis
* int v[n], n;
* void bubble( v, n );
*
* description
* sorts the first n elements of array v and replaces them in
* increasing order.
*
* passed
* v - the array to be sorted
* n - the number of elements of 'v' to be sorted
*/
void bubble (v, n)
int v[], n;
{
register int i, j, k;
for (i = n; i > 1; --i)
for (j = 1; j < i; ++j)
if (v[j] > v[j + 1]) { /* compare */
k = v[j]; /* exchange */
v[j] = v[j + 1];
v[j + 1] = k;
}
}
/* check_char - checks a character to make sure it's within the range
* we're expecting. If not, generates fatal error message
* and exits.
*/
void check_char (c)
int c;
{
if (c >= CSIZE)
lerrsf (_("bad character '%s' detected in check_char()"),
readable_form (c));
if (c >= csize)
lerrsf (_
("scanner requires -8 flag to use the character %s"),
readable_form (c));
}
/* clower - replace upper-case letter to lower-case */
Char clower (c)
register int c;
{
return (Char) ((isascii (c) && isupper (c)) ? tolower (c) : c);
}
/* copy_string - returns a dynamically allocated copy of a string */
char *copy_string (str)
register const char *str;
{
register const char *c1;
register char *c2;
char *copy;
unsigned int size;
/* find length */
for (c1 = str; *c1; ++c1) ;
size = (c1 - str + 1) * sizeof (char);
copy = (char *) flex_alloc (size);
if (copy == NULL)
flexfatal (_("dynamic memory failure in copy_string()"));
for (c2 = copy; (*c2++ = *str++) != 0;) ;
return copy;
}
/* copy_unsigned_string -
* returns a dynamically allocated copy of a (potentially) unsigned string
*/
Char *copy_unsigned_string (str)
register Char *str;
{
register Char *c;
Char *copy;
/* find length */
for (c = str; *c; ++c) ;
copy = allocate_Character_array (c - str + 1);
for (c = copy; (*c++ = *str++) != 0;) ;
return copy;
}
/* cshell - shell sort a character array in increasing order
*
* synopsis
*
* Char v[n];
* int n, special_case_0;
* cshell( v, n, special_case_0 );
*
* description
* Does a shell sort of the first n elements of array v.
* If special_case_0 is true, then any element equal to 0
* is instead assumed to have infinite weight.
*
* passed
* v - array to be sorted
* n - number of elements of v to be sorted
*/
void cshell (v, n, special_case_0)
Char v[];
int n, special_case_0;
{
int gap, i, j, jg;
Char k;
for (gap = n / 2; gap > 0; gap = gap / 2)
for (i = gap; i < n; ++i)
for (j = i - gap; j >= 0; j = j - gap) {
jg = j + gap;
if (special_case_0) {
if (v[jg] == 0)
break;
else if (v[j] != 0
&& v[j] <= v[jg])
break;
}
else if (v[j] <= v[jg])
break;
k = v[j];
v[j] = v[jg];
v[jg] = k;
}
}
/* dataend - finish up a block of data declarations */
void dataend ()
{
/* short circuit any output */
if (gentables) {
if (datapos > 0)
dataflush ();
/* add terminator for initialization; { for vi */
outn (" } ;\n");
}
dataline = 0;
datapos = 0;
}
/* dataflush - flush generated data statements */
void dataflush ()
{
/* short circuit any output */
if (!gentables)
return;
outc ('\n');
if (++dataline >= NUMDATALINES) {
/* Put out a blank line so that the table is grouped into
* large blocks that enable the user to find elements easily.
*/
outc ('\n');
dataline = 0;
}
/* Reset the number of characters written on the current line. */
datapos = 0;
}
/* flexerror - report an error message and terminate */
void flexerror (msg)
const char *msg;
{
fprintf (stderr, "%s: %s\n", program_name, msg);
flexend (1);
}
/* flexfatal - report a fatal error message and terminate */
void flexfatal (msg)
const char *msg;
{
fprintf (stderr, _("%s: fatal internal error, %s\n"),
program_name, msg);
FLEX_EXIT (1);
}
/* htoi - convert a hexadecimal digit string to an integer value */
int htoi (str)
Char str[];
{
unsigned int result;
(void) sscanf ((char *) str, "%x", &result);
return result;
}
/* lerrif - report an error message formatted with one integer argument */
void lerrif (msg, arg)
const char *msg;
int arg;
{
char errmsg[MAXLINE];
snprintf (errmsg, sizeof(errmsg), msg, arg);
flexerror (errmsg);
}
/* lerrsf - report an error message formatted with one string argument */
void lerrsf (msg, arg)
const char *msg, arg[];
{
char errmsg[MAXLINE];
snprintf (errmsg, sizeof(errmsg), msg, arg);
flexerror (errmsg);
}
/* line_directive_out - spit out a "#line" statement */
void line_directive_out (output_file, do_infile)
FILE *output_file;
int do_infile;
{
char directive[MAXLINE], filename[MAXLINE];
char *s1, *s2, *s3;
static const char line_fmt[] = "#line %d \"%s\"\n";
if (!gen_line_dirs)
return;
s1 = do_infile ? infilename : "M4_YY_OUTFILE_NAME";
if (do_infile && !s1)
s1 = "<stdin>";
s2 = filename;
s3 = &filename[sizeof (filename) - 2];
while (s2 < s3 && *s1) {
if (*s1 == '\\')
/* Escape the '\' */
*s2++ = '\\';
*s2++ = *s1++;
}
*s2 = '\0';
if (do_infile)
snprintf (directive, sizeof(directive), line_fmt, linenum, filename);
else {
if (output_file == stdout)
/* Account for the line directive itself. */
++out_linenum;
snprintf (directive, sizeof(directive), line_fmt, out_linenum, filename);
}
/* If output_file is nil then we should put the directive in
* the accumulated actions.
*/
if (output_file) {
fputs (directive, output_file);
}
else
add_action (directive);
}
/* mark_defs1 - mark the current position in the action array as
* representing where the user's section 1 definitions end
* and the prolog begins
*/
void mark_defs1 ()
{
defs1_offset = 0;
action_array[action_index++] = '\0';
action_offset = prolog_offset = action_index;
action_array[action_index] = '\0';
}
/* mark_prolog - mark the current position in the action array as
* representing the end of the action prolog
*/
void mark_prolog ()
{
action_array[action_index++] = '\0';
action_offset = action_index;
action_array[action_index] = '\0';
}
/* mk2data - generate a data statement for a two-dimensional array
*
* Generates a data statement initializing the current 2-D array to "value".
*/
void mk2data (value)
int value;
{
/* short circuit any output */
if (!gentables)
return;
if (datapos >= NUMDATAITEMS) {
outc (',');
dataflush ();
}
if (datapos == 0)
/* Indent. */
out (" ");
else
outc (',');
++datapos;
out_dec ("%5d", value);
}
/* mkdata - generate a data statement
*
* Generates a data statement initializing the current array element to
* "value".
*/
void mkdata (value)
int value;
{
/* short circuit any output */
if (!gentables)
return;
if (datapos >= NUMDATAITEMS) {
outc (',');
dataflush ();
}
if (datapos == 0)
/* Indent. */
out (" ");
else
outc (',');
++datapos;
out_dec ("%5d", value);
}
/* myctoi - return the integer represented by a string of digits */
int myctoi (array)
const char *array;
{
int val = 0;
(void) sscanf (array, "%d", &val);
return val;
}
/* myesc - return character corresponding to escape sequence */
Char myesc (array)
Char array[];
{
Char c, esc_char;
switch (array[1]) {
case 'b':
return '\b';
case 'f':
return '\f';
case 'n':
return '\n';
case 'r':
return '\r';
case 't':
return '\t';
#if defined (__STDC__)
case 'a':
return '\a';
case 'v':
return '\v';
#else
case 'a':
return '\007';
case 'v':
return '\013';
#endif
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
{ /* \<octal> */
int sptr = 1;
while (isascii (array[sptr]) &&
isdigit (array[sptr]))
/* Don't increment inside loop control
* because if isdigit() is a macro it might
* expand into multiple increments ...
*/
++sptr;
c = array[sptr];
array[sptr] = '\0';
esc_char = otoi (array + 1);
array[sptr] = c;
return esc_char;
}
case 'x':
{ /* \x<hex> */
int sptr = 2;
while (isascii (array[sptr]) &&
isxdigit ((Char)array[sptr]))
/* Don't increment inside loop control
* because if isdigit() is a macro it might
* expand into multiple increments ...
*/
++sptr;
c = array[sptr];
array[sptr] = '\0';
esc_char = htoi (array + 2);
array[sptr] = c;
return esc_char;
}
default:
return array[1];
}
}
/* otoi - convert an octal digit string to an integer value */
int otoi (str)
Char str[];
{
unsigned int result;
(void) sscanf ((char *) str, "%o", &result);
return result;
}
/* out - various flavors of outputing a (possibly formatted) string for the
* generated scanner, keeping track of the line count.
*/
void out (str)
const char *str;
{
fputs (str, stdout);
out_line_count (str);
}
void out_dec (fmt, n)
const char *fmt;
int n;
{
fprintf (stdout, fmt, n);
out_line_count (fmt);
}
void out_dec2 (fmt, n1, n2)
const char *fmt;
int n1, n2;
{
fprintf (stdout, fmt, n1, n2);
out_line_count (fmt);
}
void out_hex (fmt, x)
const char *fmt;
unsigned int x;
{
fprintf (stdout, fmt, x);
out_line_count (fmt);
}
void out_line_count (str)
const char *str;
{
register int i;
for (i = 0; str[i]; ++i)
if (str[i] == '\n')
++out_linenum;
}
void out_str (fmt, str)
const char *fmt, str[];
{
fprintf (stdout,fmt, str);
out_line_count (fmt);
out_line_count (str);
}
void out_str3 (fmt, s1, s2, s3)
const char *fmt, s1[], s2[], s3[];
{
fprintf (stdout,fmt, s1, s2, s3);
out_line_count (fmt);
out_line_count (s1);
out_line_count (s2);
out_line_count (s3);
}
void out_str_dec (fmt, str, n)
const char *fmt, str[];
int n;
{
fprintf (stdout,fmt, str, n);
out_line_count (fmt);
out_line_count (str);
}
void outc (c)
int c;
{
fputc (c, stdout);
if (c == '\n')
++out_linenum;
}
void outn (str)
const char *str;
{
fputs (str,stdout);
fputc('\n',stdout);
out_line_count (str);
++out_linenum;
}
/** Print "m4_define( [[def]], [[val]])m4_dnl\n".
* @param def The m4 symbol to define.
* @param val The definition; may be NULL.
* @return buf
*/
void out_m4_define (const char* def, const char* val)
{
const char * fmt = "m4_define( [[%s]], [[%s]])m4_dnl\n";
fprintf(stdout, fmt, def, val?val:"");
}
/* readable_form - return the the human-readable form of a character
*
* The returned string is in static storage.
*/
char *readable_form (c)
register int c;
{
static char rform[10];
if ((c >= 0 && c < 32) || c >= 127) {
switch (c) {
case '\b':
return "\\b";
case '\f':
return "\\f";
case '\n':
return "\\n";
case '\r':
return "\\r";
case '\t':
return "\\t";
#if defined (__STDC__)
case '\a':
return "\\a";
case '\v':
return "\\v";
#endif
default:
snprintf (rform, sizeof(rform), "\\%.3o", (unsigned int) c);
return rform;
}
}
else if (c == ' ')
return "' '";
else {
rform[0] = c;
rform[1] = '\0';
return rform;
}
}
/* reallocate_array - increase the size of a dynamic array */
void *reallocate_array (array, size, element_size)
void *array;
int size;
size_t element_size;
{
register void *new_array;
size_t num_bytes = element_size * size;
new_array = flex_realloc (array, num_bytes);
if (!new_array)
flexfatal (_("attempt to increase array size failed"));
return new_array;
}
/* skelout - write out one section of the skeleton file
*
* Description
* Copies skelfile or skel array to stdout until a line beginning with
* "%%" or EOF is found.
*/
void skelout ()
{
char buf_storage[MAXLINE];
char *buf = buf_storage;
bool do_copy = true;
/* "reset" the state by clearing the buffer and pushing a '1' */
if(sko_len > 0)
sko_peek(&do_copy);
sko_len = 0;
sko_push(do_copy=true);
/* Loop pulling lines either from the skelfile, if we're using
* one, or from the skel[] array.
*/
while (skelfile ?
(fgets (buf, MAXLINE, skelfile) != NULL) :
((buf = (char *) skel[skel_ind++]) != 0)) {
if (skelfile)
chomp (buf);
/* copy from skel array */
if (buf[0] == '%') { /* control line */
/* print the control line as a comment. */
if (ddebug && buf[1] != '#') {
if (buf[strlen (buf) - 1] == '\\')
out_str ("/* %s */\\\n", buf);
else
out_str ("/* %s */\n", buf);
}
/* We've been accused of using cryptic markers in the skel.
* So we'll use emacs-style-hyphenated-commands.
* We might consider a hash if this if-else-if-else
* chain gets too large.
*/
#define cmd_match(s) (strncmp(buf,(s),strlen(s))==0)
if (buf[1] == '%') {
/* %% is a break point for skelout() */
return;
}
else if (cmd_match (CMD_PUSH)){
sko_push(do_copy);
if(ddebug){
out_str("/*(state = (%s) */",do_copy?"true":"false");
}
out_str("%s\n", buf[strlen (buf) - 1] =='\\' ? "\\" : "");
}
else if (cmd_match (CMD_POP)){
sko_pop(&do_copy);
if(ddebug){
out_str("/*(state = (%s) */",do_copy?"true":"false");
}
out_str("%s\n", buf[strlen (buf) - 1] =='\\' ? "\\" : "");
}
else if (cmd_match (CMD_IF_REENTRANT)){
sko_push(do_copy);
do_copy = reentrant && do_copy;
}
else if (cmd_match (CMD_IF_NOT_REENTRANT)){
sko_push(do_copy);
do_copy = !reentrant && do_copy;
}
else if (cmd_match(CMD_IF_BISON_BRIDGE)){
sko_push(do_copy);
do_copy = bison_bridge_lval && do_copy;
}
else if (cmd_match(CMD_IF_NOT_BISON_BRIDGE)){
sko_push(do_copy);
do_copy = !bison_bridge_lval && do_copy;
}
else if (cmd_match (CMD_ENDIF)){
sko_pop(&do_copy);
}
else if (cmd_match (CMD_IF_TABLES_SER)) {
do_copy = do_copy && tablesext;
}
else if (cmd_match (CMD_TABLES_YYDMAP)) {
if (tablesext && yydmap_buf.elts)
outn ((char *) (yydmap_buf.elts));
}
else if (cmd_match (CMD_DEFINE_YYTABLES)) {
out_str("#define YYTABLES_NAME \"%s\"\n",
tablesname?tablesname:"yytables");
}
else if (cmd_match (CMD_IF_CPP_ONLY)) {
/* only for C++ */
sko_push(do_copy);
do_copy = C_plus_plus;
}
else if (cmd_match (CMD_IF_C_ONLY)) {
/* %- only for C */
sko_push(do_copy);
do_copy = !C_plus_plus;
}
else if (cmd_match (CMD_IF_C_OR_CPP)) {
/* %* for C and C++ */
sko_push(do_copy);
do_copy = true;
}
else if (cmd_match (CMD_NOT_FOR_HEADER)) {
/* %c begin linkage-only (non-header) code. */
OUT_BEGIN_CODE ();
}
else if (cmd_match (CMD_OK_FOR_HEADER)) {
/* %e end linkage-only code. */
OUT_END_CODE ();
}
else if (buf[1] == '#') {
/* %# a comment in the skel. ignore. */
}
else {
flexfatal (_("bad line in skeleton file"));
}
}
else if (do_copy)
outn (buf);
} /* end while */
}
/* transition_struct_out - output a yy_trans_info structure
*
* outputs the yy_trans_info structure with the two elements, element_v and
* element_n. Formats the output with spaces and carriage returns.
*/
void transition_struct_out (element_v, element_n)
int element_v, element_n;
{
/* short circuit any output */
if (!gentables)
return;
out_dec2 (" {%4d,%4d },", element_v, element_n);
datapos += TRANS_STRUCT_PRINT_LENGTH;
if (datapos >= 79 - TRANS_STRUCT_PRINT_LENGTH) {
outc ('\n');
if (++dataline % 10 == 0)
outc ('\n');
datapos = 0;
}
}
/* The following is only needed when building flex's parser using certain
* broken versions of bison.
*/
void *yy_flex_xmalloc (size)
int size;
{
void *result = flex_alloc ((size_t) size);
if (!result)
flexfatal (_
("memory allocation failed in yy_flex_xmalloc()"));
return result;
}
/* zero_out - set a region of memory to 0
*
* Sets region_ptr[0] through region_ptr[size_in_bytes - 1] to zero.
*/
void zero_out (region_ptr, size_in_bytes)
char *region_ptr;
size_t size_in_bytes;
{
register char *rp, *rp_end;
rp = region_ptr;
rp_end = region_ptr + size_in_bytes;
while (rp < rp_end)
*rp++ = 0;
}
/* Remove all '\n' and '\r' characters, if any, from the end of str.
* str can be any null-terminated string, or NULL.
* returns str. */
char *chomp (str)
char *str;
{
char *p = str;
if (!str || !*str) /* s is null or empty string */
return str;
/* find end of string minus one */
while (*p)
++p;
--p;
/* eat newlines */
while (p >= str && (*p == '\r' || *p == '\n'))
*p-- = 0;
return str;
}