minix/usr.bin/top/top.c

708 lines
14 KiB
C
Raw Normal View History

2006-03-17 08:54:55 +01:00
/* Author: Ben Gras <beng@few.vu.nl> 17 march 2006 */
2010-09-14 23:30:23 +02:00
/* Modified for ProcFS by Alen Stojanov and David van Moolenbroek */
2006-03-17 08:54:55 +01:00
#define _MINIX 1
#ifndef __NBSD_LIBC
#define _POSIX_SOURCE 1
#endif
#include <stdio.h>
#include <unistd.h>
#include <pwd.h>
#include <curses.h>
#include <timers.h>
#include <stdlib.h>
#include <limits.h>
#include <termcap.h>
#include <termios.h>
#include <time.h>
#include <string.h>
#include <signal.h>
#include <fcntl.h>
#include <errno.h>
2010-09-14 23:30:23 +02:00
#include <dirent.h>
#include <assert.h>
#include <sys/ioc_tty.h>
#include <sys/times.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/select.h>
#include <minix/com.h>
#include <minix/config.h>
#include <minix/type.h>
2010-09-14 23:30:23 +02:00
#include <minix/endpoint.h>
#include <minix/const.h>
#include <minix/u64.h>
#include <paths.h>
2010-09-14 23:30:23 +02:00
#include <minix/procfs.h>
#define TIMECYCLEKEY 't'
u32_t system_hz;
/* name of cpu cycle types, in the order they appear in /psinfo. */
char *cputimenames[] = { "user", "ipc", "kernelcall" };
#define CPUTIMENAMES (sizeof(cputimenames)/sizeof(cputimenames[0]))
#define CPUTIME(m, i) (m & (1L << (i)))
2010-09-14 23:30:23 +02:00
unsigned int nr_procs, nr_tasks;
int nr_total;
#define SLOT_NR(e) (_ENDPOINT_P(e) + nr_tasks)
#define TC_BUFFER 1024 /* Size of termcap(3) buffer */
#define TC_STRINGS 200 /* Enough room for cm,cl,so,se */
char *Tclr_all;
int blockedverbose = 0;
2010-09-14 23:30:23 +02:00
#define USED 0x1
#define IS_TASK 0x2
#define IS_SYSTEM 0x4
#define BLOCKED 0x8
struct proc {
int p_flags;
endpoint_t p_endpoint;
pid_t p_pid;
u64_t p_cpucycles[CPUTIMENAMES];
2010-09-14 23:30:23 +02:00
int p_priority;
endpoint_t p_blocked;
time_t p_user_time;
vir_bytes p_memory;
uid_t p_effuid;
int p_nice;
char p_name[PROC_NAME_LEN+1];
};
struct proc *proc = NULL, *prev_proc = NULL;
void parse_file(pid_t pid)
{
char path[PATH_MAX], name[256], type, state;
int version, endpt, effuid;
unsigned long cycles_hi, cycles_lo;
FILE *fp;
struct proc *p;
int slot;
int i;
2010-09-14 23:30:23 +02:00
sprintf(path, "%d/psinfo", pid);
if ((fp = fopen(path, "r")) == NULL)
return;
if (fscanf(fp, "%d", &version) != 1) {
fclose(fp);
return;
}
if (version != PSINFO_VERSION) {
fputs("procfs version mismatch!\n", stderr);
exit(1);
}
if (fscanf(fp, " %c %d", &type, &endpt) != 2) {
fclose(fp);
return;
}
slot = SLOT_NR(endpt);
if(slot < 0 || slot >= nr_total) {
fprintf(stderr, "top: unreasonable endpoint number %d\n", endpt);
fclose(fp);
return;
}
p = &proc[slot];
2010-09-14 23:30:23 +02:00
if (type == TYPE_TASK)
p->p_flags |= IS_TASK;
else if (type == TYPE_SYSTEM)
p->p_flags |= IS_SYSTEM;
p->p_endpoint = endpt;
p->p_pid = pid;
if (fscanf(fp, " %255s %c %d %d %lu %*u %lu %lu",
name, &state, &p->p_blocked, &p->p_priority,
&p->p_user_time, &cycles_hi, &cycles_lo) != 7) {
fclose(fp);
return;
}
strncpy(p->p_name, name, sizeof(p->p_name)-1);
p->p_name[sizeof(p->p_name)-1] = 0;
if (state != STATE_RUN)
p->p_flags |= BLOCKED;
p->p_cpucycles[0] = make64(cycles_lo, cycles_hi);
2010-09-14 23:30:23 +02:00
p->p_memory = 0L;
if (!(p->p_flags & IS_TASK)) {
int i;
if ((i=fscanf(fp, " %lu %*u %*u %*c %*d %*u %u %*u %d %*c %*d %*u",
&p->p_memory, &effuid, &p->p_nice)) != 3) {
2010-09-14 23:30:23 +02:00
fclose(fp);
return;
}
p->p_effuid = effuid;
}
for(i = 1; i < CPUTIMENAMES; i++) {
if(fscanf(fp, " %lu %lu",
&cycles_hi, &cycles_lo) == 2) {
p->p_cpucycles[i] = make64(cycles_lo, cycles_hi);
} else {
p->p_cpucycles[i] = make64(0, 0);
}
}
2010-09-14 23:30:23 +02:00
p->p_flags |= USED;
fclose(fp);
}
void parse_dir(void)
{
DIR *p_dir;
struct dirent *p_ent;
pid_t pid;
char *end;
if ((p_dir = opendir(".")) == NULL) {
perror("opendir on " _PATH_PROC);
exit(1);
}
for (p_ent = readdir(p_dir); p_ent != NULL; p_ent = readdir(p_dir)) {
pid = strtol(p_ent->d_name, &end, 10);
if (!end[0] && pid != 0)
parse_file(pid);
}
closedir(p_dir);
}
void get_procs(void)
{
struct proc *p;
int i;
p = prev_proc;
prev_proc = proc;
proc = p;
if (proc == NULL) {
proc = malloc(nr_total * sizeof(proc[0]));
if (proc == NULL) {
fprintf(stderr, "Out of memory!\n");
exit(1);
}
}
for (i = 0; i < nr_total; i++)
proc[i].p_flags = 0;
parse_dir();
}
int print_memory(void)
{
2010-09-14 23:30:23 +02:00
FILE *fp;
unsigned int pagesize;
unsigned long total, free, largest, cached;
if ((fp = fopen("meminfo", "r")) == NULL)
return 0;
if (fscanf(fp, "%u %lu %lu %lu %lu", &pagesize, &total, &free,
&largest, &cached) != 5) {
fclose(fp);
return 0;
}
fclose(fp);
printf("main memory: %ldK total, %ldK free, %ldK contig free, "
"%ldK cached\n",
2010-09-14 23:30:23 +02:00
(pagesize * total)/1024, (pagesize * free)/1024,
(pagesize * largest)/1024, (pagesize * cached)/1024);
return 1;
}
int print_load(double *loads, int nloads)
{
int i;
printf("load averages: ");
for(i = 0; i < nloads; i++)
printf("%s %.2f", (i > 0) ? "," : "", loads[i]);
printf("\n");
return 1;
}
int print_proc_summary(struct proc *proc)
{
int p, alive, running, sleeping;
alive = running = sleeping = 0;
2010-09-14 23:30:23 +02:00
for(p = 0; p < nr_total; p++) {
if (proc[p].p_endpoint == IDLE)
continue;
2010-09-14 23:30:23 +02:00
if(!(proc[p].p_flags & USED))
continue;
alive++;
2010-09-14 23:30:23 +02:00
if(proc[p].p_flags & BLOCKED)
sleeping++;
else
running++;
}
printf("%d processes: %d running, %d sleeping\n",
alive, running, sleeping);
return 1;
}
2010-09-14 23:30:23 +02:00
struct tp {
struct proc *p;
u64_t ticks;
};
int cmp_ticks(const void *v1, const void *v2)
{
int c;
struct tp *p1 = (struct tp *) v1, *p2 = (struct tp *) v2;
int p1blocked, p2blocked;
2010-09-14 23:30:23 +02:00
p1blocked = !!(p1->p->p_flags & BLOCKED);
p2blocked = !!(p2->p->p_flags & BLOCKED);
/* Primarily order by used number of cpu cycles.
*
* Exception: if in blockedverbose mode, a blocked
* process is always printed after an unblocked
* process, and used cpu cycles don't matter.
*
* In both cases, process slot number is a tie breaker.
*/
if(blockedverbose && (p1blocked || p2blocked)) {
if(!p1blocked && p2blocked)
return -1;
if( p2blocked && !p1blocked)
return 1;
} else if((c=cmp64(p1->ticks, p2->ticks)) != 0)
return -c;
/* Process slot number is a tie breaker. */
2010-09-14 23:30:23 +02:00
return (int) (p1->p - p2->p);
}
struct tp *lookup(endpoint_t who, struct tp *tptab, int np)
{
int t;
for(t = 0; t < np; t++)
if(who == tptab[t].p->p_endpoint)
return &tptab[t];
fprintf(stderr, "lookup: tp %d (0x%x) not found.\n", who, who);
abort();
return NULL;
}
/*
* since we don't have true div64(u64_t, u64_t) we scale the 64 bit counters to
* 32. Since the samplig happens every ~1s and the counters count CPU cycles
* during this period, unless we have extremely fast CPU, shifting the counters
* by 12 make them 32bit counters which we can use for normal integer
* arithmetics
*/
#define SCALE (1 << 12)
double ktotal = 0;
2010-09-14 23:30:23 +02:00
void print_proc(struct tp *tp, u32_t tcyc)
{
int euid = 0;
static struct passwd *who = NULL;
static int last_who = -1;
char *name = "";
unsigned long pcyc;
int ticks;
struct proc *pr = tp->p;
2010-09-14 23:30:23 +02:00
printf("%5d ", pr->p_pid);
euid = pr->p_effuid;
name = pr->p_name;
if(last_who != euid || !who) {
who = getpwuid(euid);
last_who = euid;
}
if(who && who->pw_name) printf("%-8s ", who->pw_name);
2010-09-14 23:30:23 +02:00
else if(!(pr->p_flags & IS_TASK)) printf("%8d ", pr->p_effuid);
else printf(" ");
printf(" %2d ", pr->p_priority);
2010-09-14 23:30:23 +02:00
if(!(pr->p_flags & IS_TASK)) {
printf(" %3d ", pr->p_nice);
} else printf(" ");
2011-07-15 14:15:15 +02:00
printf("%6ldK", (pr->p_memory + 512) / 1024);
2010-09-14 23:30:23 +02:00
printf("%6s", (pr->p_flags & BLOCKED) ? "" : "RUN");
ticks = pr->p_user_time;
printf(" %3u:%02u ", (ticks/system_hz/60), (ticks/system_hz)%60);
pcyc = div64u(tp->ticks, SCALE);
printf("%6.2f%% %s", 100.0*pcyc/tcyc, name);
}
char *cputimemodename(int cputimemode)
{
static char name[100];
int i;
name[0] = '\0';
for(i = 0; i < CPUTIMENAMES; i++) {
if(CPUTIME(cputimemode, i)) {
assert(strlen(name) +
strlen(cputimenames[i]) < sizeof(name));
strcat(name, cputimenames[i]);
strcat(name, " ");
}
}
return name;
}
u64_t cputicks(struct proc *p1, struct proc *p2, int timemode)
{
int i;
u64_t t = make64(0, 0);
for(i = 0; i < CPUTIMENAMES; i++) {
if(!CPUTIME(timemode, i))
continue;
if(p1->p_endpoint == p2->p_endpoint) {
t = add64(t, sub64(p2->p_cpucycles[i],
p1->p_cpucycles[i]));
} else {
t = add64(t, p2->p_cpucycles[i]);
}
}
return t;
}
void print_procs(int maxlines,
struct proc *proc1, struct proc *proc2, int cputimemode)
{
2010-09-14 23:30:23 +02:00
int p, nprocs;
u64_t idleticks = cvu64(0);
u64_t kernelticks = cvu64(0);
u64_t systemticks = cvu64(0);
u64_t userticks = cvu64(0);
u64_t total_ticks = cvu64(0);
unsigned long tcyc;
unsigned long tmp;
int blockedseen = 0;
2010-09-14 23:30:23 +02:00
static struct tp *tick_procs = NULL;
2010-09-14 23:30:23 +02:00
if (tick_procs == NULL) {
tick_procs = malloc(nr_total * sizeof(tick_procs[0]));
if (tick_procs == NULL) {
fprintf(stderr, "Out of memory!\n");
exit(1);
}
}
for(p = nprocs = 0; p < nr_total; p++) {
u64_t uticks;
2010-09-14 23:30:23 +02:00
if(!(proc2[p].p_flags & USED))
continue;
tick_procs[nprocs].p = proc2 + p;
tick_procs[nprocs].ticks = cputicks(&proc1[p], &proc2[p], cputimemode);
uticks = cputicks(&proc1[p], &proc2[p], 1);
total_ticks = add64(total_ticks, uticks);
if(p-NR_TASKS == IDLE) {
idleticks = uticks;
continue;
}
if(p-NR_TASKS == KERNEL) {
kernelticks = uticks;
continue;
}
2010-09-14 23:30:23 +02:00
if(!(proc2[p].p_flags & IS_TASK)) {
if(proc2[p].p_flags & IS_SYSTEM)
systemticks = add64(systemticks,
tick_procs[nprocs].ticks);
else
userticks = add64(userticks,
tick_procs[nprocs].ticks);
}
nprocs++;
}
if (!cmp64u(total_ticks, 0))
return;
qsort(tick_procs, nprocs, sizeof(tick_procs[0]), cmp_ticks);
tcyc = div64u(total_ticks, SCALE);
tmp = div64u(userticks, SCALE);
printf("CPU states: %6.2f%% user, ", 100.0*(tmp)/tcyc);
tmp = div64u(systemticks, SCALE);
printf("%6.2f%% system, ", 100.0*tmp/tcyc);
tmp = div64u(kernelticks, SCALE);
printf("%6.2f%% kernel, ", 100.0*tmp/tcyc);
tmp = div64u(idleticks, SCALE);
printf("%6.2f%% idle", 100.0*tmp/tcyc);
#define NEWLINE do { printf("\n"); if(--maxlines <= 0) { return; } } while(0)
NEWLINE;
printf("CPU time displayed (press '%c' to cycle): %s",
TIMECYCLEKEY, cputimemodename(cputimemode));
NEWLINE;
NEWLINE;
2011-07-15 14:15:15 +02:00
printf(" PID USERNAME PRI NICE SIZE STATE TIME CPU COMMAND");
NEWLINE;
for(p = 0; p < nprocs; p++) {
struct proc *pr;
int level = 0;
2010-09-14 23:30:23 +02:00
pr = tick_procs[p].p;
2010-09-14 23:30:23 +02:00
if(pr->p_flags & IS_TASK) {
/* skip old kernel tasks as they don't run anymore */
continue;
2006-03-29 14:44:06 +02:00
}
/* If we're in blocked verbose mode, indicate start of
* blocked processes.
*/
2010-09-14 23:30:23 +02:00
if(blockedverbose && (pr->p_flags & BLOCKED) && !blockedseen) {
NEWLINE;
printf("Blocked processes:");
NEWLINE;
blockedseen = 1;
}
2010-09-14 23:30:23 +02:00
print_proc(&tick_procs[p], tcyc);
NEWLINE;
if(!blockedverbose)
continue;
/* Traverse dependency chain if blocked. */
2010-09-14 23:30:23 +02:00
while(pr->p_flags & BLOCKED) {
endpoint_t dep = NONE;
struct tp *tpdep;
level += 5;
2010-09-14 23:30:23 +02:00
if((dep = pr->p_blocked) == NONE) {
printf("not blocked on a process");
NEWLINE;
break;
}
if(dep == ANY)
break;
tpdep = lookup(dep, tick_procs, nprocs);
pr = tpdep->p;
printf("%*s> ", level, "");
2010-09-14 23:30:23 +02:00
print_proc(tpdep, tcyc);
NEWLINE;
}
}
}
void showtop(int cputimemode, int r)
{
#define NLOADS 3
double loads[NLOADS];
2010-09-14 23:30:23 +02:00
int nloads, lines = 0;
struct winsize winsize;
if(ioctl(STDIN_FILENO, TIOCGWINSZ, &winsize) != 0) {
perror("TIOCGWINSZ");
fprintf(stderr, "TIOCGWINSZ failed\n");
exit(1);
}
2010-09-14 23:30:23 +02:00
get_procs();
if (prev_proc == NULL)
get_procs();
if((nloads = getloadavg(loads, NLOADS)) != NLOADS) {
fprintf(stderr, "getloadavg() failed - %d loads\n", nloads);
exit(1);
}
printf("%s", Tclr_all);
lines += print_load(loads, NLOADS);
lines += print_proc_summary(proc);
2010-09-14 23:30:23 +02:00
lines += print_memory();
if(winsize.ws_row > 0) r = winsize.ws_row;
print_procs(r - lines - 2, prev_proc, proc, cputimemode);
fflush(NULL);
}
void init(int *rows)
{
char *term;
static char buffer[TC_BUFFER], strings[TC_STRINGS];
char *s = strings, *v;
*rows = 0;
if(!(term = getenv("TERM"))) {
fprintf(stderr, "No TERM set\n");
exit(1);
}
if ( tgetent( buffer, term ) != 1 ) {
fprintf(stderr, "tgetent failed for term %s\n", term);
exit(1);
}
initscr();
cbreak();
if ( (Tclr_all = tgetstr( "cl", &s )) == NULL )
Tclr_all = "\f";
if((v = tgetstr ("li", &s)) != NULL)
sscanf(v, "%d", rows);
if(*rows < 1) *rows = 24;
}
void sigwinch(int sig) { }
2010-09-14 23:30:23 +02:00
void getkinfo(void)
{
FILE *fp;
if ((fp = fopen("kinfo", "r")) == NULL) {
fprintf(stderr, "opening " _PATH_PROC "kinfo failed\n");
2010-09-14 23:30:23 +02:00
exit(1);
}
if (fscanf(fp, "%u %u", &nr_procs, &nr_tasks) != 2) {
fprintf(stderr, "reading from " _PATH_PROC "kinfo failed\n");
2010-09-14 23:30:23 +02:00
exit(1);
}
fclose(fp);
nr_total = (int) (nr_procs + nr_tasks);
}
int main(int argc, char *argv[])
{
2010-09-14 23:30:23 +02:00
int r, c, s = 0;
int cputimemode = 1; /* bitmap. */
2010-09-14 23:30:23 +02:00
if (chdir(_PATH_PROC) != 0) {
perror("chdir to " _PATH_PROC);
return 1;
}
system_hz = (u32_t) sysconf(_SC_CLK_TCK);
2010-09-14 23:30:23 +02:00
getkinfo();
init(&r);
while((c=getopt(argc, argv, "s:B")) != EOF) {
switch(c) {
case 's':
s = atoi(optarg);
break;
case 'B':
blockedverbose = 1;
break;
default:
fprintf(stderr,
"Usage: %s [-s<secdelay>] [-B]\n",
argv[0]);
return 1;
}
}
if(s < 1)
s = 2;
/* Catch window size changes so display is updated properly
* right away.
*/
signal(SIGWINCH, sigwinch);
while(1) {
fd_set fds;
int ns;
struct timeval tv;
showtop(cputimemode, r);
tv.tv_sec = s;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(STDIN_FILENO, &fds);
if((ns=select(STDIN_FILENO+1, &fds, NULL, NULL, &tv)) < 0
&& errno != EINTR) {
perror("select");
sleep(1);
}
if(ns > 0 && FD_ISSET(STDIN_FILENO, &fds)) {
char c;
if(read(STDIN_FILENO, &c, 1) == 1) {
switch(c) {
case 'q':
2010-09-14 23:30:23 +02:00
putchar('\r');
return 0;
break;
case TIMECYCLEKEY:
cputimemode++;
if(cputimemode >= (1L << CPUTIMENAMES))
cputimemode = 1;
break;
}
}
}
}
return 0;
}