minix/servers/fs/exec.c

623 lines
18 KiB
C
Raw Normal View History

2006-05-11 16:57:23 +02:00
/* This file handles the EXEC system call. It performs the work as follows:
* - see if the permissions allow the file to be executed
* - read the header and extract the sizes
* - fetch the initial args and environment from the user space
* - allocate the memory for the new process
* - copy the initial stack from PM to the process
* - read in the text and data segments and copy to the process
* - take care of setuid and setgid bits
* - fix up 'mproc' table
* - tell kernel about EXEC
* - save offset to initial argc (for ps)
*
* The entry points into this file are:
* pm_exec: perform the EXEC system call
*/
#include "fs.h"
#include <sys/stat.h>
#include <minix/callnr.h>
#include <minix/endpoint.h>
#include <minix/com.h>
#include <a.out.h>
#include <signal.h>
#include <string.h>
#include "buf.h"
#include "fproc.h"
#include "inode.h"
#include "param.h"
#include "super.h"
FORWARD _PROTOTYPE( int exec_newmem, (int proc_e, vir_bytes text_bytes,
vir_bytes data_bytes, vir_bytes bss_bytes, vir_bytes tot_bytes,
vir_bytes frame_len, int sep_id,
Dev_t st_dev, ino_t st_ino, time_t st_ctime, char *progname,
int new_uid, int new_gid,
vir_bytes *stack_topp, int *load_textp, int *allow_setuidp) );
FORWARD _PROTOTYPE( int read_header, (struct inode *rip, int *sep_id,
vir_bytes *text_bytes, vir_bytes *data_bytes,
vir_bytes *bss_bytes, phys_bytes *tot_bytes, vir_bytes *pc,
int *hdrlenp) );
FORWARD _PROTOTYPE( int patch_stack, (struct inode *rip,
char stack[ARG_MAX], vir_bytes *stk_bytes) );
FORWARD _PROTOTYPE( int insert_arg, (char stack[ARG_MAX],
vir_bytes *stk_bytes, char *arg, int replace) );
FORWARD _PROTOTYPE( void patch_ptr, (char stack[ARG_MAX],
vir_bytes base) );
FORWARD _PROTOTYPE( int read_seg, (struct inode *rip, off_t off,
int proc_e, int seg, phys_bytes seg_bytes) );
FORWARD _PROTOTYPE( void clo_exec, (struct fproc *rfp) );
#define ESCRIPT (-2000) /* Returned by read_header for a #! script. */
#define PTRSIZE sizeof(char *) /* Size of pointers in argv[] and envp[]. */
/*===========================================================================*
* pm_exec *
*===========================================================================*/
PUBLIC int pm_exec(proc_e, path, path_len, frame, frame_len)
int proc_e;
char *path;
vir_bytes path_len;
char *frame;
vir_bytes frame_len;
{
/* Perform the execve(name, argv, envp) call. The user library builds a
* complete stack image, including pointers, args, environ, etc. The stack
* is copied to a buffer inside FS, and then to the new core image.
*/
int r, sep_id, round, proc_s, hdrlen, load_text, allow_setuid;
vir_bytes text_bytes, data_bytes, bss_bytes, pc;
phys_bytes tot_bytes; /* total space for program, including gap */
vir_bytes stack_top, vsp;
off_t off;
uid_t new_uid;
gid_t new_gid;
struct fproc *rfp;
struct inode *rip;
char *cp;
char progname[PROC_NAME_LEN];
static char mbuf[ARG_MAX]; /* buffer for stack and zeroes */
okendpt(proc_e, &proc_s);
rfp= fp= &fproc[proc_s];
who_e= proc_e;
who_p= proc_s;
super_user = (fp->fp_effuid == SU_UID ? TRUE : FALSE); /* su? */
/* Get the exec file name. */
r= fetch_name(path, path_len, 0);
if (r != OK)
{
printf("pm_exec: fetch_name failed\n");
return(r); /* file name not in user data segment */
}
/* Fetch the stack from the user before destroying the old core image. */
if (frame_len > ARG_MAX)
{
printf("pm_exec: bad frame_len\n");
return(ENOMEM); /* stack too big */
}
r = sys_datacopy(proc_e, (vir_bytes) frame,
SELF, (vir_bytes) mbuf, (phys_bytes)frame_len);
/* can't fetch stack (e.g. bad virtual addr) */
if (r != OK)
{
printf("pm_exec: sys_datacopy failed\n");
return(r);
}
/* The default is the keep the original user and group IDs */
new_uid= rfp->fp_effuid;
new_gid= rfp->fp_effgid;
for (round= 0; round < 2; round++)
/* round = 0 (first attempt), or 1 (interpreted script) */
{
/* Save the name of the program */
(cp= strrchr(user_path, '/')) ? cp++ : (cp= user_path);
strncpy(progname, cp, PROC_NAME_LEN-1);
progname[PROC_NAME_LEN-1] = '\0';
#if 0
printf("pm_exec: eat_path '%s'\n", user_path);
#endif
rip= eat_path(user_path);
if (rip == NIL_INODE)
{
return(err_code);
}
if ((rip->i_mode & I_TYPE) != I_REGULAR)
r = ENOEXEC;
else
r = forbidden(rip, X_BIT); /* check if file is executable */
if (r != OK) {
put_inode(rip);
printf("pm_exec: bad executable\n");
return(r);
}
if (round == 0)
{
/* Deal with setuid/setgid executables */
if (rip->i_mode & I_SET_UID_BIT)
new_uid = rip->i_uid;
if (rip->i_mode & I_SET_GID_BIT)
new_gid = rip->i_gid;
}
/* Read the file header and extract the segment sizes. */
r = read_header(rip, &sep_id, &text_bytes, &data_bytes, &bss_bytes,
&tot_bytes, &pc, &hdrlen);
if (r != ESCRIPT || round != 0)
break;
/* Get fresh copy of the file name. */
r= fetch_name(path, path_len, 0);
if (r != OK)
{
printf("pm_exec: 2nd fetch_name failed\n");
put_inode(rip);
return(r); /* strange */
}
r= patch_stack(rip, mbuf, &frame_len);
put_inode(rip);
if (r != OK)
{
printf("pm_exec: patch stack\n");
return r;
}
}
if (r != OK)
{
printf("pm_exec: returning ENOEXEC, r = %d\n", r);
return ENOEXEC;
}
r= exec_newmem(proc_e, text_bytes, data_bytes, bss_bytes, tot_bytes,
frame_len, sep_id, rip->i_dev, rip->i_num, rip->i_ctime,
progname, new_uid, new_gid, &stack_top, &load_text, &allow_setuid);
if (r != OK)
{
printf("pm_exec: exec_newmap failed: %d\n", r);
put_inode(rip);
return r;
}
/* Patch up stack and copy it from FS to new core image. */
vsp = stack_top;
vsp -= frame_len;
patch_ptr(mbuf, vsp);
r = sys_datacopy(SELF, (vir_bytes) mbuf,
proc_e, (vir_bytes) vsp, (phys_bytes)frame_len);
if (r != OK) panic(__FILE__,"pm_exec stack copy err on", proc_e);
off = hdrlen;
/* Read in text and data segments. */
if (load_text) {
r= read_seg(rip, off, proc_e, T, text_bytes);
}
off += text_bytes;
if (r == OK)
r= read_seg(rip, off, proc_e, D, data_bytes);
put_inode(rip);
if (r != OK) return r;
clo_exec(rfp);
if (allow_setuid)
{
rfp->fp_effuid= new_uid;
rfp->fp_effgid= new_gid;
}
/* This child has now exec()ced. */
rfp->fp_execced = 1;
/* Check if this is a driver that can now be useful. */
dmap_endpt_up(rfp->fp_endpoint);
return OK;
}
/*===========================================================================*
* exec_newmem *
*===========================================================================*/
PRIVATE int exec_newmem(proc_e, text_bytes, data_bytes, bss_bytes, tot_bytes,
frame_len, sep_id, st_dev, st_ino, st_ctime, progname,
new_uid, new_gid, stack_topp, load_textp, allow_setuidp)
int proc_e;
vir_bytes text_bytes;
vir_bytes data_bytes;
vir_bytes bss_bytes;
vir_bytes tot_bytes;
vir_bytes frame_len;
int sep_id;
dev_t st_dev;
ino_t st_ino;
time_t st_ctime;
int new_uid;
int new_gid;
char *progname;
vir_bytes *stack_topp;
int *load_textp;
int *allow_setuidp;
{
int r;
struct exec_newmem e;
message m;
e.text_bytes= text_bytes;
e.data_bytes= data_bytes;
e.bss_bytes= bss_bytes;
e.tot_bytes= tot_bytes;
e.args_bytes= frame_len;
e.sep_id= sep_id;
e.st_dev= st_dev;
e.st_ino= st_ino;
e.st_ctime= st_ctime;
e.new_uid= new_uid;
e.new_gid= new_gid;
strncpy(e.progname, progname, sizeof(e.progname)-1);
e.progname[sizeof(e.progname)-1]= '\0';
m.m_type= EXEC_NEWMEM;
m.EXC_NM_PROC= proc_e;
m.EXC_NM_PTR= (char *)&e;
r= sendrec(PM_PROC_NR, &m);
if (r != OK)
return r;
#if 0
printf("exec_newmem: r = %d, m_type = %d\n", r, m.m_type);
#endif
*stack_topp= m.m1_i1;
*load_textp= !!(m.m1_i2 & EXC_NM_RF_LOAD_TEXT);
*allow_setuidp= !!(m.m1_i2 & EXC_NM_RF_ALLOW_SETUID);
#if 0
printf("exec_newmem: stack_top = 0x%x\n", *stack_topp);
printf("exec_newmem: load_text = %d\n", *load_textp);
#endif
return m.m_type;
}
/*===========================================================================*
* read_header *
*===========================================================================*/
PRIVATE int read_header(rip, sep_id, text_bytes, data_bytes, bss_bytes,
tot_bytes, pc, hdrlenp)
struct inode *rip; /* inode for reading exec file */
int *sep_id; /* true iff sep I&D */
vir_bytes *text_bytes; /* place to return text size */
vir_bytes *data_bytes; /* place to return initialized data size */
vir_bytes *bss_bytes; /* place to return bss size */
phys_bytes *tot_bytes; /* place to return total size */
vir_bytes *pc; /* program entry point (initial PC) */
int *hdrlenp;
{
/* Read the header and extract the text, data, bss and total sizes from it. */
off_t pos;
block_t b;
struct buf *bp;
struct exec hdr; /* a.out header is read in here */
/* Read the header and check the magic number. The standard MINIX header
* is defined in <a.out.h>. It consists of 8 chars followed by 6 longs.
* Then come 4 more longs that are not used here.
* Byte 0: magic number 0x01
* Byte 1: magic number 0x03
* Byte 2: normal = 0x10 (not checked, 0 is OK), separate I/D = 0x20
* Byte 3: CPU type, Intel 16 bit = 0x04, Intel 32 bit = 0x10,
* Motorola = 0x0B, Sun SPARC = 0x17
* Byte 4: Header length = 0x20
* Bytes 5-7 are not used.
*
* Now come the 6 longs
* Bytes 8-11: size of text segments in bytes
* Bytes 12-15: size of initialized data segment in bytes
* Bytes 16-19: size of bss in bytes
* Bytes 20-23: program entry point
* Bytes 24-27: total memory allocated to program (text, data + stack)
* Bytes 28-31: size of symbol table in bytes
* The longs are represented in a machine dependent order,
* little-endian on the 8088, big-endian on the 68000.
* The header is followed directly by the text and data segments, and the
* symbol table (if any). The sizes are given in the header. Only the
* text and data segments are copied into memory by exec. The header is
* used here only. The symbol table is for the benefit of a debugger and
* is ignored here.
*/
pos= 0; /* Read from the start of the file */
b = read_map(rip, pos); /* get block number */
if (b == 0) /* Hole */
return ENOEXEC;
bp = get_block(rip->i_dev, b, NORMAL); /* get block */
/* Interpreted script? */
if (bp->b_data[0] == '#' && bp->b_data[1] == '!' && rip->i_size >= 2)
{
put_block(bp, FULL_DATA_BLOCK);
return ESCRIPT;
}
memcpy(&hdr, bp->b_data, sizeof(hdr));
put_block(bp, FULL_DATA_BLOCK);
if (rip->i_size < A_MINHDR) return(ENOEXEC);
/* Check magic number, cpu type, and flags. */
if (BADMAG(hdr)) return(ENOEXEC);
#if (CHIP == INTEL && _WORD_SIZE == 2)
if (hdr.a_cpu != A_I8086) return(ENOEXEC);
#endif
#if (CHIP == INTEL && _WORD_SIZE == 4)
if (hdr.a_cpu != A_I80386) return(ENOEXEC);
#endif
if ((hdr.a_flags & ~(A_NSYM | A_EXEC | A_SEP)) != 0) return(ENOEXEC);
*sep_id = !!(hdr.a_flags & A_SEP); /* separate I & D or not */
/* Get text and data sizes. */
*text_bytes = (vir_bytes) hdr.a_text; /* text size in bytes */
*data_bytes = (vir_bytes) hdr.a_data; /* data size in bytes */
*bss_bytes = (vir_bytes) hdr.a_bss; /* bss size in bytes */
*tot_bytes = hdr.a_total; /* total bytes to allocate for prog */
if (*tot_bytes == 0) return(ENOEXEC);
if (!*sep_id) {
/* If I & D space is not separated, it is all considered data. Text=0*/
*data_bytes += *text_bytes;
*text_bytes = 0;
}
*pc = hdr.a_entry; /* initial address to start execution */
*hdrlenp = hdr.a_hdrlen & BYTE; /* header length */
return(OK);
}
/*===========================================================================*
* patch_stack *
*===========================================================================*/
PRIVATE int patch_stack(rip, stack, stk_bytes)
struct inode *rip; /* pointer for open script file */
char stack[ARG_MAX]; /* pointer to stack image within FS */
vir_bytes *stk_bytes; /* size of initial stack */
{
/* Patch the argument vector to include the path name of the script to be
* interpreted, and all strings on the #! line. Returns the path name of
* the interpreter.
*/
enum { INSERT=FALSE, REPLACE=TRUE };
int n;
off_t pos;
block_t b;
struct buf *bp;
char *sp, *interp = NULL;
/* Make user_path the new argv[0]. */
if (!insert_arg(stack, stk_bytes, user_path, REPLACE)) return(ENOMEM);
pos= 0; /* Read from the start of the file */
b = read_map(rip, pos); /* get block number */
if (b == 0) /* Hole */
return ENOEXEC;
bp = get_block(rip->i_dev, b, NORMAL); /* get block */
n= rip->i_size;
if (n > rip->i_sp->s_block_size)
n= rip->i_sp->s_block_size;
if (n < 2)
{
put_block(bp, FULL_DATA_BLOCK);
return ENOEXEC;
}
sp= bp->b_data+2; /* just behind the #! */
n -= 2;
if (n > PATH_MAX)
n= PATH_MAX;
/* Use the user_path variable for temporary storage */
memcpy(user_path, sp, n);
put_block(bp, FULL_DATA_BLOCK);
if ((sp= memchr(user_path, '\n', n)) == NULL) /* must be a proper line */
return(ENOEXEC);
/* Move sp backwards through script[], prepending each string to stack. */
for (;;) {
/* skip spaces behind argument. */
while (sp > user_path && (*--sp == ' ' || *sp == '\t')) {}
if (sp == user_path) break;
sp[1] = 0;
/* Move to the start of the argument. */
while (sp > user_path && sp[-1] != ' ' && sp[-1] != '\t') --sp;
interp = sp;
if (!insert_arg(stack, stk_bytes, sp, INSERT)) return(ENOMEM);
}
/* Round *stk_bytes up to the size of a pointer for alignment contraints. */
*stk_bytes= ((*stk_bytes + PTRSIZE - 1) / PTRSIZE) * PTRSIZE;
if (interp != user_path)
memmove(user_path, interp, strlen(interp)+1);
return(OK);
}
/*===========================================================================*
* insert_arg *
*===========================================================================*/
PRIVATE int insert_arg(stack, stk_bytes, arg, replace)
char stack[ARG_MAX]; /* pointer to stack image within PM */
vir_bytes *stk_bytes; /* size of initial stack */
char *arg; /* argument to prepend/replace as new argv[0] */
int replace;
{
/* Patch the stack so that arg will become argv[0]. Be careful, the stack may
* be filled with garbage, although it normally looks like this:
* nargs argv[0] ... argv[nargs-1] NULL envp[0] ... NULL
* followed by the strings "pointed" to by the argv[i] and the envp[i]. The
* pointers are really offsets from the start of stack.
* Return true iff the operation succeeded.
*/
int offset, a0, a1, old_bytes = *stk_bytes;
/* Prepending arg adds at least one string and a zero byte. */
offset = strlen(arg) + 1;
a0 = (int) ((char **) stack)[1]; /* argv[0] */
if (a0 < 4 * PTRSIZE || a0 >= old_bytes) return(FALSE);
a1 = a0; /* a1 will point to the strings to be moved */
if (replace) {
/* Move a1 to the end of argv[0][] (argv[1] if nargs > 1). */
do {
if (a1 == old_bytes) return(FALSE);
--offset;
} while (stack[a1++] != 0);
} else {
offset += PTRSIZE; /* new argv[0] needs new pointer in argv[] */
a0 += PTRSIZE; /* location of new argv[0][]. */
}
/* stack will grow by offset bytes (or shrink by -offset bytes) */
if ((*stk_bytes += offset) > ARG_MAX) return(FALSE);
/* Reposition the strings by offset bytes */
memmove(stack + a1 + offset, stack + a1, old_bytes - a1);
strcpy(stack + a0, arg); /* Put arg in the new space. */
if (!replace) {
/* Make space for a new argv[0]. */
memmove(stack + 2 * PTRSIZE, stack + 1 * PTRSIZE, a0 - 2 * PTRSIZE);
((char **) stack)[0]++; /* nargs++; */
}
/* Now patch up argv[] and envp[] by offset. */
patch_ptr(stack, (vir_bytes) offset);
((char **) stack)[1] = (char *) a0; /* set argv[0] correctly */
return(TRUE);
}
/*===========================================================================*
* patch_ptr *
*===========================================================================*/
PRIVATE void patch_ptr(stack, base)
char stack[ARG_MAX]; /* pointer to stack image within PM */
vir_bytes base; /* virtual address of stack base inside user */
{
/* When doing an exec(name, argv, envp) call, the user builds up a stack
* image with arg and env pointers relative to the start of the stack. Now
* these pointers must be relocated, since the stack is not positioned at
* address 0 in the user's address space.
*/
char **ap, flag;
vir_bytes v;
flag = 0; /* counts number of 0-pointers seen */
ap = (char **) stack; /* points initially to 'nargs' */
ap++; /* now points to argv[0] */
while (flag < 2) {
if (ap >= (char **) &stack[ARG_MAX]) return; /* too bad */
if (*ap != NULL) {
v = (vir_bytes) *ap; /* v is relative pointer */
v += base; /* relocate it */
*ap = (char *) v; /* put it back */
} else {
flag++;
}
ap++;
}
}
/*===========================================================================*
* read_seg *
*===========================================================================*/
PRIVATE int read_seg(rip, off, proc_e, seg, seg_bytes)
struct inode *rip; /* inode descriptor to read from */
off_t off; /* offset in file */
int proc_e; /* process number (endpoint) */
int seg; /* T, D, or S */
phys_bytes seg_bytes; /* how much is to be transferred? */
{
/*
* The byte count on read is usually smaller than the segment count, because
* a segment is padded out to a click multiple, and the data segment is only
* partially initialized.
*/
int r, block_size;
off_t n, o, b_off, seg_off;
block_t b;
struct buf *bp;
/* Make sure that the file is big enough */
if (rip->i_size < off+seg_bytes)
return EIO;
block_size= rip->i_sp->s_block_size;
seg_off= 0;
for (o= off - (off % block_size); o < off+seg_bytes; o += block_size)
{
b= read_map(rip, o);
if (b == NO_BLOCK)
return EIO; /* Executables don't have holes */
bp = get_block(rip->i_dev, b, NORMAL); /* get block */
if (o < off)
b_off= off-o;
else
b_off= 0;
n= block_size-b_off;
if (o+b_off+n > off+seg_bytes)
n= off+seg_bytes-(o+b_off);
r= sys_vircopy(SELF, D, (vir_bytes)bp->b_data+b_off,
proc_e, seg, seg_off, n);
put_block(bp, FULL_DATA_BLOCK);
if (r != OK)
return r;
seg_off += n;
}
return OK;
}
/*===========================================================================*
* clo_exec *
*===========================================================================*/
PRIVATE void clo_exec(rfp)
struct fproc *rfp;
{
/* Files can be marked with the FD_CLOEXEC bit (in fp->fp_cloexec).
*/
int i, proc;
long bitmap;
/* The array of FD_CLOEXEC bits is in the fp_cloexec bit map. */
bitmap = rfp->fp_cloexec;
if (bitmap) {
/* Check the file desriptors one by one for presence of FD_CLOEXEC. */
for (i = 0; i < OPEN_MAX; i++) {
if ( (bitmap >> i) & 01) (void) close_fd(rfp, i);
}
}
}