minix/servers/rs/table.c

57 lines
2.2 KiB
C
Raw Normal View History

Rewrite of boot process KERNEL CHANGES: - The kernel only knows about privileges of kernel tasks and the root system process (now RS). - Kernel tasks and the root system process are the only processes that are made schedulable by the kernel at startup. All the other processes in the boot image don't get their privileges set at startup and are inhibited from running by the RTS_NO_PRIV flag. - Removed the assumption on the ordering of processes in the boot image table. System processes can now appear in any order in the boot image table. - Privilege ids can now be assigned both statically or dynamically. The kernel assigns static privilege ids to kernel tasks and the root system process. Each id is directly derived from the process number. - User processes now all share the static privilege id of the root user process (now INIT). - sys_privctl split: we have more calls now to let RS set privileges for system processes. SYS_PRIV_ALLOW / SYS_PRIV_DISALLOW are only used to flip the RTS_NO_PRIV flag and allow / disallow a process from running. SYS_PRIV_SET_SYS / SYS_PRIV_SET_USER are used to set privileges for a system / user process. - boot image table flags split: PROC_FULLVM is the only flag that has been moved out of the privilege flags and is still maintained in the boot image table. All the other privilege flags are out of the kernel now. RS CHANGES: - RS is the only user-space process who gets to run right after in-kernel startup. - RS uses the boot image table from the kernel and three additional boot image info table (priv table, sys table, dev table) to complete the initialization of the system. - RS checks that the entries in the priv table match the entries in the boot image table to make sure that every process in the boot image gets schedulable. - RS only uses static privilege ids to set privileges for system services in the boot image. - RS includes basic memory management support to allocate the boot image buffer dynamically during initialization. The buffer shall contain the executable image of all the system services we would like to restart after a crash. - First step towards decoupling between resource provisioning and resource requirements in RS: RS must know what resources it needs to restart a process and what resources it has currently available. This is useful to tradeoff reliability and resource consumption. When required resources are missing, the process cannot be restarted. In that case, in the future, a system flag will tell RS what to do. For example, if CORE_PROC is set, RS should trigger a system-wide panic because the system can no longer function correctly without a core system process. PM CHANGES: - The process tree built at initialization time is changed to have INIT as root with pid 0, RS child of INIT and all the system services children of RS. This is required to make RS in control of all the system services. - PM no longer registers labels for system services in the boot image. This is now part of RS's initialization process.
2009-12-11 01:08:19 +01:00
/* This file contains the definition of the boot image info tables.
*
* Changes:
* Nov 22, 2009: Created (Cristiano Giuffrida)
*/
#define _TABLE
#include "inc.h"
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
/* Definition of the boot image priv table. The order of entries in this table
* reflects the order boot system services are made runnable and initialized
* at boot time.
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
*/
2012-03-25 20:25:53 +02:00
struct boot_image_priv boot_image_priv_table[] = {
/*endpoint, label, flags, */
{RS_PROC_NR, "rs", RSYS_F },
{VM_PROC_NR, "vm", VM_F },
{PM_PROC_NR, "pm", SRV_F },
{SCHED_PROC_NR,"sched", SRV_F },
{VFS_PROC_NR, "vfs", SRV_F },
{DS_PROC_NR, "ds", SRV_F },
{TTY_PROC_NR, "tty", SRV_F },
{MEM_PROC_NR, "memory", SRV_F },
{LOG_PROC_NR, "log", SRV_F },
{MFS_PROC_NR,"fs_imgrd", SRV_F },
{PFS_PROC_NR, "pfs", SRV_F },
{INIT_PROC_NR, "init", USR_F },
{NULL_BOOT_NR, "", 0, } /* null entry */
Rewrite of boot process KERNEL CHANGES: - The kernel only knows about privileges of kernel tasks and the root system process (now RS). - Kernel tasks and the root system process are the only processes that are made schedulable by the kernel at startup. All the other processes in the boot image don't get their privileges set at startup and are inhibited from running by the RTS_NO_PRIV flag. - Removed the assumption on the ordering of processes in the boot image table. System processes can now appear in any order in the boot image table. - Privilege ids can now be assigned both statically or dynamically. The kernel assigns static privilege ids to kernel tasks and the root system process. Each id is directly derived from the process number. - User processes now all share the static privilege id of the root user process (now INIT). - sys_privctl split: we have more calls now to let RS set privileges for system processes. SYS_PRIV_ALLOW / SYS_PRIV_DISALLOW are only used to flip the RTS_NO_PRIV flag and allow / disallow a process from running. SYS_PRIV_SET_SYS / SYS_PRIV_SET_USER are used to set privileges for a system / user process. - boot image table flags split: PROC_FULLVM is the only flag that has been moved out of the privilege flags and is still maintained in the boot image table. All the other privilege flags are out of the kernel now. RS CHANGES: - RS is the only user-space process who gets to run right after in-kernel startup. - RS uses the boot image table from the kernel and three additional boot image info table (priv table, sys table, dev table) to complete the initialization of the system. - RS checks that the entries in the priv table match the entries in the boot image table to make sure that every process in the boot image gets schedulable. - RS only uses static privilege ids to set privileges for system services in the boot image. - RS includes basic memory management support to allocate the boot image buffer dynamically during initialization. The buffer shall contain the executable image of all the system services we would like to restart after a crash. - First step towards decoupling between resource provisioning and resource requirements in RS: RS must know what resources it needs to restart a process and what resources it has currently available. This is useful to tradeoff reliability and resource consumption. When required resources are missing, the process cannot be restarted. In that case, in the future, a system flag will tell RS what to do. For example, if CORE_PROC is set, RS should trigger a system-wide panic because the system can no longer function correctly without a core system process. PM CHANGES: - The process tree built at initialization time is changed to have INIT as root with pid 0, RS child of INIT and all the system services children of RS. This is required to make RS in control of all the system services. - PM no longer registers labels for system services in the boot image. This is now part of RS's initialization process.
2009-12-11 01:08:19 +01:00
};
/* Definition of the boot image sys table. */
2012-03-25 20:25:53 +02:00
struct boot_image_sys boot_image_sys_table[] = {
/*endpoint, flags */
{ RS_PROC_NR, SRVR_SF },
Initialization protocol for system services. SYSLIB CHANGES: - SEF framework now supports a new SEF Init request type from RS. 3 different callbacks are available (init_fresh, init_lu, init_restart) to specify initialization code when a service starts fresh, starts after a live update, or restarts. SYSTEM SERVICE CHANGES: - Initialization code for system services is now enclosed in a callback SEF will automatically call at init time. The return code of the callback will tell RS whether the initialization completed successfully. - Each init callback can access information passed by RS to initialize. As of now, each system service has access to the public entries of RS's system process table to gather all the information required to initialize. This design eliminates many existing or potential races at boot time and provides a uniform initialization interface to system services. The same interface will be reused for the upcoming publish/subscribe model to handle dynamic registration / deregistration of system services. VM CHANGES: - Uniform privilege management for all system services. Every service uses the same call mask format. For boot services, VM copies the call mask from init data. For dynamic services, VM still receives the call mask via rs_set_priv call that will be soon replaced by the upcoming publish/subscribe model. RS CHANGES: - The system process table has been reorganized and split into private entries and public entries. Only the latter ones are exposed to system services. - VM call masks are now entirely configured in rs/table.c - RS has now its own slot in the system process table. Only kernel tasks and user processes not included in the boot image are now left out from the system process table. - RS implements the initialization protocol for system services. - For services in the boot image, RS blocks till initialization is complete and panics when failure is reported back. Services are initialized in their order of appearance in the boot image priv table and RS blocks to implements synchronous initialization for every system service having the flag SF_SYNCH_BOOT set. - For services started dynamically, the initialization protocol is implemented as though it were the first ping for the service. In this case, if the system service fails to report back (or reports failure), RS brings the service down rather than trying to restart it.
2010-01-08 02:20:42 +01:00
{ VM_PROC_NR, VM_SF },
{ PM_PROC_NR, SRVR_SF },
{ VFS_PROC_NR, SRVR_SF },
{ LOG_PROC_NR, SRV_SF },
{ MFS_PROC_NR, 0 },
{ PFS_PROC_NR, SRV_SF },
Rewrite of boot process KERNEL CHANGES: - The kernel only knows about privileges of kernel tasks and the root system process (now RS). - Kernel tasks and the root system process are the only processes that are made schedulable by the kernel at startup. All the other processes in the boot image don't get their privileges set at startup and are inhibited from running by the RTS_NO_PRIV flag. - Removed the assumption on the ordering of processes in the boot image table. System processes can now appear in any order in the boot image table. - Privilege ids can now be assigned both statically or dynamically. The kernel assigns static privilege ids to kernel tasks and the root system process. Each id is directly derived from the process number. - User processes now all share the static privilege id of the root user process (now INIT). - sys_privctl split: we have more calls now to let RS set privileges for system processes. SYS_PRIV_ALLOW / SYS_PRIV_DISALLOW are only used to flip the RTS_NO_PRIV flag and allow / disallow a process from running. SYS_PRIV_SET_SYS / SYS_PRIV_SET_USER are used to set privileges for a system / user process. - boot image table flags split: PROC_FULLVM is the only flag that has been moved out of the privilege flags and is still maintained in the boot image table. All the other privilege flags are out of the kernel now. RS CHANGES: - RS is the only user-space process who gets to run right after in-kernel startup. - RS uses the boot image table from the kernel and three additional boot image info table (priv table, sys table, dev table) to complete the initialization of the system. - RS checks that the entries in the priv table match the entries in the boot image table to make sure that every process in the boot image gets schedulable. - RS only uses static privilege ids to set privileges for system services in the boot image. - RS includes basic memory management support to allocate the boot image buffer dynamically during initialization. The buffer shall contain the executable image of all the system services we would like to restart after a crash. - First step towards decoupling between resource provisioning and resource requirements in RS: RS must know what resources it needs to restart a process and what resources it has currently available. This is useful to tradeoff reliability and resource consumption. When required resources are missing, the process cannot be restarted. In that case, in the future, a system flag will tell RS what to do. For example, if CORE_PROC is set, RS should trigger a system-wide panic because the system can no longer function correctly without a core system process. PM CHANGES: - The process tree built at initialization time is changed to have INIT as root with pid 0, RS child of INIT and all the system services children of RS. This is required to make RS in control of all the system services. - PM no longer registers labels for system services in the boot image. This is now part of RS's initialization process.
2009-12-11 01:08:19 +01:00
{ DEFAULT_BOOT_NR, SRV_SF } /* default entry */
};
/* Definition of the boot image dev table. */
2012-03-25 20:25:53 +02:00
struct boot_image_dev boot_image_dev_table[] = {
/*endpoint, flags, dev_nr, dev_style, dev_style2 */
{ TTY_PROC_NR, SRV_DF, TTY_MAJOR, STYLE_TTY, STYLE_CTTY },
{ MEM_PROC_NR, SRV_DF, MEMORY_MAJOR, STYLE_DEV, STYLE_NDEV },
{ LOG_PROC_NR, SRV_DF, LOG_MAJOR, STYLE_DEVA, STYLE_NDEV },
2011-07-27 14:23:03 +02:00
{ PFS_PROC_NR, SRV_DF, UDS_MAJOR, STYLE_CLONE_A,STYLE_NDEV },
{ DEFAULT_BOOT_NR, SRV_DF, 0, STYLE_NDEV, STYLE_NDEV } /* default
* entry
*/
Rewrite of boot process KERNEL CHANGES: - The kernel only knows about privileges of kernel tasks and the root system process (now RS). - Kernel tasks and the root system process are the only processes that are made schedulable by the kernel at startup. All the other processes in the boot image don't get their privileges set at startup and are inhibited from running by the RTS_NO_PRIV flag. - Removed the assumption on the ordering of processes in the boot image table. System processes can now appear in any order in the boot image table. - Privilege ids can now be assigned both statically or dynamically. The kernel assigns static privilege ids to kernel tasks and the root system process. Each id is directly derived from the process number. - User processes now all share the static privilege id of the root user process (now INIT). - sys_privctl split: we have more calls now to let RS set privileges for system processes. SYS_PRIV_ALLOW / SYS_PRIV_DISALLOW are only used to flip the RTS_NO_PRIV flag and allow / disallow a process from running. SYS_PRIV_SET_SYS / SYS_PRIV_SET_USER are used to set privileges for a system / user process. - boot image table flags split: PROC_FULLVM is the only flag that has been moved out of the privilege flags and is still maintained in the boot image table. All the other privilege flags are out of the kernel now. RS CHANGES: - RS is the only user-space process who gets to run right after in-kernel startup. - RS uses the boot image table from the kernel and three additional boot image info table (priv table, sys table, dev table) to complete the initialization of the system. - RS checks that the entries in the priv table match the entries in the boot image table to make sure that every process in the boot image gets schedulable. - RS only uses static privilege ids to set privileges for system services in the boot image. - RS includes basic memory management support to allocate the boot image buffer dynamically during initialization. The buffer shall contain the executable image of all the system services we would like to restart after a crash. - First step towards decoupling between resource provisioning and resource requirements in RS: RS must know what resources it needs to restart a process and what resources it has currently available. This is useful to tradeoff reliability and resource consumption. When required resources are missing, the process cannot be restarted. In that case, in the future, a system flag will tell RS what to do. For example, if CORE_PROC is set, RS should trigger a system-wide panic because the system can no longer function correctly without a core system process. PM CHANGES: - The process tree built at initialization time is changed to have INIT as root with pid 0, RS child of INIT and all the system services children of RS. This is required to make RS in control of all the system services. - PM no longer registers labels for system services in the boot image. This is now part of RS's initialization process.
2009-12-11 01:08:19 +01:00
};