minix/sys/ufs/chfs/chfs_readinode.c

1137 lines
29 KiB
C
Raw Normal View History

/* $NetBSD: chfs_readinode.c,v 1.2 2011/11/24 21:09:37 agc Exp $ */
/*-
* Copyright (c) 2010 Department of Software Engineering,
* University of Szeged, Hungary
* Copyright (C) 2010 David Tengeri <dtengeri@inf.u-szeged.hu>
* Copyright (C) 2010 Tamas Toth <ttoth@inf.u-szeged.hu>
* Copyright (C) 2010 Adam Hoka <ahoka@NetBSD.org>
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by the Department of Software Engineering, University of Szeged, Hungary
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* chfs_readinode.c
*
* Created on: 2010.05.31.
* Author: dtengeri
*/
#include <sys/buf.h>
#include "chfs.h"
/* tmp node operations */
int chfs_check_td_data(struct chfs_mount *,
struct chfs_tmp_dnode *);
int chfs_check_td_node(struct chfs_mount *,
struct chfs_tmp_dnode *);
struct chfs_node_ref *chfs_first_valid_data_ref(struct chfs_node_ref *);
int chfs_add_tmp_dnode_to_tree(struct chfs_mount *,
struct chfs_readinode_info *,
struct chfs_tmp_dnode *);
void chfs_add_tmp_dnode_to_tdi(struct chfs_tmp_dnode_info *,
struct chfs_tmp_dnode *);
void chfs_remove_tmp_dnode_from_tdi(struct chfs_tmp_dnode_info *,
struct chfs_tmp_dnode *);
static void chfs_kill_td(struct chfs_mount *,
struct chfs_tmp_dnode *);
static void chfs_kill_tdi(struct chfs_mount *,
struct chfs_tmp_dnode_info *);
/* frag node operations */
struct chfs_node_frag *new_fragment(struct chfs_full_dnode *,
uint32_t,
uint32_t);
int no_overlapping_node(struct rb_tree *, struct chfs_node_frag *,
struct chfs_node_frag *, uint32_t);
int chfs_add_frag_to_fragtree(struct chfs_mount *,
struct rb_tree *,
struct chfs_node_frag *);
void chfs_obsolete_node_frag(struct chfs_mount *,
struct chfs_node_frag *);
/* general node operations */
int chfs_get_data_nodes(struct chfs_mount *,
struct chfs_inode *,
struct chfs_readinode_info *);
int chfs_build_fragtree(struct chfs_mount *,
struct chfs_inode *,
struct chfs_readinode_info *);
/*
* --------------------------
* tmp node rbtree operations
* --------------------------
*/
static signed int
tmp_node_compare_nodes(void *ctx, const void *n1, const void *n2)
{
const struct chfs_tmp_dnode_info *tdi1 = n1;
const struct chfs_tmp_dnode_info *tdi2 = n2;
return (tdi1->tmpnode->node->ofs - tdi2->tmpnode->node->ofs);
}
static signed int
tmp_node_compare_key(void *ctx, const void *n, const void *key)
{
const struct chfs_tmp_dnode_info *tdi = n;
uint64_t ofs = *(const uint64_t *)key;
return (tdi->tmpnode->node->ofs - ofs);
}
const rb_tree_ops_t tmp_node_rbtree_ops = {
.rbto_compare_nodes = tmp_node_compare_nodes,
.rbto_compare_key = tmp_node_compare_key,
.rbto_node_offset = offsetof(struct chfs_tmp_dnode_info, rb_node),
.rbto_context = NULL
};
/*
* ---------------------------
* frag node rbtree operations
* ---------------------------
*/
static signed int
frag_compare_nodes(void *ctx, const void *n1, const void *n2)
{
const struct chfs_node_frag *frag1 = n1;
const struct chfs_node_frag *frag2 = n2;
return (frag1->ofs - frag2->ofs);
}
static signed int
frag_compare_key(void *ctx, const void *n, const void *key)
{
const struct chfs_node_frag *frag = n;
uint64_t ofs = *(const uint64_t *)key;
return (frag->ofs - ofs);
}
const rb_tree_ops_t frag_rbtree_ops = {
.rbto_compare_nodes = frag_compare_nodes,
.rbto_compare_key = frag_compare_key,
.rbto_node_offset = offsetof(struct chfs_node_frag, rb_node),
.rbto_context = NULL
};
/*
* -------------------
* tmp node operations
* -------------------
*/
/*
* Check the data CRC of the node.
*
* Returns: 0 - if everything OK;
* 1 - if CRC is incorrect;
* 2 - else;
* error code if an error occured.
*/
int
chfs_check_td_data(struct chfs_mount *chmp,
struct chfs_tmp_dnode *td)
{
int err;
size_t retlen, len, totlen;
uint32_t crc;
uint64_t ofs;
char *buf;
struct chfs_node_ref *nref = td->node->nref;
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
KASSERT(!mutex_owned(&chmp->chm_lock_sizes));
ofs = CHFS_GET_OFS(nref->nref_offset) + sizeof(struct chfs_flash_data_node);
len = td->node->size;
if (!len)
return 0;
buf = kmem_alloc(len, KM_SLEEP);
if (!buf) {
dbg("allocating error\n");
return 2;
}
err = chfs_read_leb(chmp, nref->nref_lnr, buf, ofs, len, &retlen);
if (err) {
dbg("error wile reading: %d\n", err);
err = 2;
goto out;
}
if (len != retlen) {
dbg("len:%zu, retlen:%zu\n", len, retlen);
err = 2;
goto out;
}
crc = crc32(0, (uint8_t *)buf, len);
if (crc != td->data_crc) {
dbg("crc failed, calculated: 0x%x, orig: 0x%x\n", crc, td->data_crc);
kmem_free(buf, len);
return 1;
}
nref->nref_offset = CHFS_GET_OFS(nref->nref_offset) | CHFS_NORMAL_NODE_MASK;
totlen = CHFS_PAD(sizeof(struct chfs_flash_data_node) + len);
mutex_enter(&chmp->chm_lock_sizes);
chfs_change_size_unchecked(chmp, &chmp->chm_blocks[nref->nref_lnr], -totlen);
chfs_change_size_used(chmp, &chmp->chm_blocks[nref->nref_lnr], totlen);
mutex_exit(&chmp->chm_lock_sizes);
KASSERT(chmp->chm_blocks[nref->nref_lnr].used_size <= chmp->chm_ebh->eb_size);
err = 0;
out:
kmem_free(buf, len);
return err;
}
int
chfs_check_td_node(struct chfs_mount *chmp, struct chfs_tmp_dnode *td)
{
int ret;
if (CHFS_REF_FLAGS(td->node->nref) != CHFS_UNCHECKED_NODE_MASK)
return 0;
ret = chfs_check_td_data(chmp, td);
if (ret == 1) {
chfs_mark_node_obsolete(chmp, td->node->nref);
}
return ret;
}
struct chfs_node_ref *
chfs_first_valid_data_ref(struct chfs_node_ref *nref)
{
while (nref) {
if (!CHFS_REF_OBSOLETE(nref)) {
#ifdef DGB_MSG_GC
if (nref->nref_lnr == REF_EMPTY_NODE) {
dbg("FIRST VALID IS EMPTY!\n");
}
#endif
return nref;
}
if (nref->nref_next) {
nref = nref->nref_next;
} else
break;
}
return NULL;
}
void
chfs_add_tmp_dnode_to_tdi(struct chfs_tmp_dnode_info *tdi,
struct chfs_tmp_dnode *td)
{
if (!tdi->tmpnode) {
tdi->tmpnode = td;
} else {
struct chfs_tmp_dnode *tmp = tdi->tmpnode;
while (tmp->next) {
tmp = tmp->next;
}
tmp->next = td;
}
}
void
chfs_remove_tmp_dnode_from_tdi(struct chfs_tmp_dnode_info *tdi,
struct chfs_tmp_dnode *td)
{
if (tdi->tmpnode == td) {
tdi->tmpnode = tdi->tmpnode->next;
} else {
struct chfs_tmp_dnode *tmp = tdi->tmpnode->next;
while (tmp->next && tmp->next != td) {
tmp = tmp->next;
}
if (tmp->next) {
tmp->next = td->next;
}
}
}
static void
chfs_kill_td(struct chfs_mount *chmp,
struct chfs_tmp_dnode *td)
{
/* check if we need to mark as obsolete, to avoid double mark */
if (!CHFS_REF_OBSOLETE(td->node->nref)) {
chfs_mark_node_obsolete(chmp, td->node->nref);
}
chfs_free_tmp_dnode(td);
}
static void
chfs_kill_tdi(struct chfs_mount *chmp,
struct chfs_tmp_dnode_info *tdi)
{
struct chfs_tmp_dnode *next, *tmp = tdi->tmpnode;
while (tmp) {
next = tmp->next;
chfs_kill_td(chmp, tmp);
tmp = next;
}
chfs_free_tmp_dnode_info(tdi);
}
int
chfs_add_tmp_dnode_to_tree(struct chfs_mount *chmp,
struct chfs_readinode_info *rii,
struct chfs_tmp_dnode *newtd)
{
uint64_t end_ofs = newtd->node->ofs + newtd->node->size;
struct chfs_tmp_dnode_info *this;
struct rb_node *node, *prev_node;
struct chfs_tmp_dnode_info *newtdi;
node = rb_tree_find_node(&rii->tdi_root, &newtd->node->ofs);
if (node) {
this = (struct chfs_tmp_dnode_info *)node;
while (this->tmpnode->overlapped) {
prev_node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
if (!prev_node) {
this->tmpnode->overlapped = 0;
break;
}
node = prev_node;
this = (struct chfs_tmp_dnode_info *)node;
}
}
while (node) {
this = (struct chfs_tmp_dnode_info *)node;
if (this->tmpnode->node->ofs > end_ofs)
break;
struct chfs_tmp_dnode *tmp_td = this->tmpnode;
while (tmp_td) {
if (tmp_td->version == newtd->version) {
if (!chfs_check_td_node(chmp, tmp_td)) {
dbg("calling kill td 0\n");
chfs_kill_td(chmp, newtd);
return 0;
} else {
chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
chfs_kill_td(chmp, tmp_td);
chfs_add_tmp_dnode_to_tdi(this, newtd);
return 0;
}
}
if (tmp_td->version < newtd->version &&
tmp_td->node->ofs >= newtd->node->ofs &&
tmp_td->node->ofs + tmp_td->node->size <= end_ofs) {
/* New node entirely overlaps 'this' */
if (chfs_check_td_node(chmp, newtd)) {
dbg("calling kill td 2\n");
chfs_kill_td(chmp, newtd);
return 0;
}
/* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
while (tmp_td && tmp_td->node->ofs + tmp_td->node->size <= end_ofs) {
struct rb_node *next = rb_tree_iterate(&rii->tdi_root, this, RB_DIR_RIGHT);
struct chfs_tmp_dnode_info *next_tdi = (struct chfs_tmp_dnode_info *)next;
struct chfs_tmp_dnode *next_td = NULL;
if (tmp_td->next) {
next_td = tmp_td->next;
} else if (next_tdi) {
next_td = next_tdi->tmpnode;
}
if (tmp_td->version < newtd->version) {
chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
chfs_kill_td(chmp, tmp_td);
if (!this->tmpnode) {
rb_tree_remove_node(&rii->tdi_root, this);
chfs_kill_tdi(chmp, this);
this = next_tdi;
}
}
tmp_td = next_td;
}
continue;
}
if (tmp_td->version > newtd->version &&
tmp_td->node->ofs <= newtd->node->ofs &&
tmp_td->node->ofs + tmp_td->node->size >= end_ofs) {
/* New node entirely overlapped by 'this' */
if (!chfs_check_td_node(chmp, tmp_td)) {
dbg("this version: %llu\n",
(unsigned long long)tmp_td->version);
dbg("this ofs: %llu, size: %u\n",
(unsigned long long)tmp_td->node->ofs,
tmp_td->node->size);
dbg("calling kill td 4\n");
chfs_kill_td(chmp, newtd);
return 0;
}
/* ... but 'this' was bad. Replace it... */
chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
chfs_kill_td(chmp, tmp_td);
if (!this->tmpnode) {
rb_tree_remove_node(&rii->tdi_root, this);
chfs_kill_tdi(chmp, this);
}
dbg("calling kill td 5\n");
chfs_kill_td(chmp, newtd);
break;
}
tmp_td = tmp_td->next;
}
node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
}
newtdi = chfs_alloc_tmp_dnode_info();
chfs_add_tmp_dnode_to_tdi(newtdi, newtd);
/* We neither completely obsoleted nor were completely
obsoleted by an earlier node. Insert into the tree */
struct chfs_tmp_dnode_info *tmp_tdi = rb_tree_insert_node(&rii->tdi_root, newtdi);
if (tmp_tdi != newtdi) {
chfs_add_tmp_dnode_to_tdi(tmp_tdi, newtd);
newtdi->tmpnode = NULL;
chfs_kill_tdi(chmp, newtdi);
}
/* If there's anything behind that overlaps us, note it */
node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
if (node) {
while (1) {
this = (struct chfs_tmp_dnode_info *)node;
if (this->tmpnode->node->ofs + this->tmpnode->node->size > newtd->node->ofs) {
newtd->overlapped = 1;
}
if (!this->tmpnode->overlapped)
break;
prev_node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_LEFT);
if (!prev_node) {
this->tmpnode->overlapped = 0;
break;
}
node = prev_node;
}
}
/* If the new node overlaps anything ahead, note it */
node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
this = (struct chfs_tmp_dnode_info *)node;
while (this && this->tmpnode->node->ofs < end_ofs) {
this->tmpnode->overlapped = 1;
node = rb_tree_iterate(&rii->tdi_root, node, RB_DIR_RIGHT);
this = (struct chfs_tmp_dnode_info *)node;
}
return 0;
}
/*
* --------------------
* frag node operations
* --------------------
*/
struct chfs_node_frag *
new_fragment(struct chfs_full_dnode *fdn, uint32_t ofs, uint32_t size)
{
struct chfs_node_frag *newfrag;
newfrag = chfs_alloc_node_frag();
if (newfrag) {
newfrag->ofs = ofs;
newfrag->size = size;
newfrag->node = fdn;
} else {
chfs_err("cannot allocate a chfs_node_frag object\n");
}
return newfrag;
}
int
no_overlapping_node(struct rb_tree *fragtree,
struct chfs_node_frag *newfrag,
struct chfs_node_frag *this, uint32_t lastend)
{
if (lastend < newfrag->node->ofs) {
struct chfs_node_frag *holefrag;
holefrag = new_fragment(NULL, lastend, newfrag->node->ofs - lastend);
if (!holefrag) {
chfs_free_node_frag(newfrag);
return ENOMEM;
}
rb_tree_insert_node(fragtree, holefrag);
this = holefrag;
}
rb_tree_insert_node(fragtree, newfrag);
return 0;
}
int
chfs_add_frag_to_fragtree(struct chfs_mount *chmp,
struct rb_tree *fragtree,
struct chfs_node_frag *newfrag)
{
struct chfs_node_frag *this;
uint32_t lastend;
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
this = (struct chfs_node_frag *)rb_tree_find_node_leq(fragtree, &newfrag->ofs);
if (this) {
lastend = this->ofs + this->size;
} else {
lastend = 0;
}
if (lastend <= newfrag->ofs) {
//dbg("no overlapping node\n");
if (lastend && (lastend - 1) >> PAGE_SHIFT == newfrag->ofs >> PAGE_SHIFT) {
if (this->node)
CHFS_MARK_REF_NORMAL(this->node->nref);
CHFS_MARK_REF_NORMAL(newfrag->node->nref);
}
return no_overlapping_node(fragtree, newfrag, this, lastend);
}
if (newfrag->ofs > this->ofs) {
CHFS_MARK_REF_NORMAL(newfrag->node->nref);
if (this->node)
CHFS_MARK_REF_NORMAL(this->node->nref);
if (this->ofs + this->size > newfrag->ofs + newfrag->size) {
/* newfrag is inside of this */
//dbg("newfrag is inside of this\n");
struct chfs_node_frag *newfrag2;
newfrag2 = new_fragment(this->node, newfrag->ofs + newfrag->size,
this->ofs + this->size - newfrag->ofs - newfrag->size);
if (!newfrag2)
return ENOMEM;
if (this->node)
this->node->frags++;
this->size = newfrag->ofs - this->ofs;
rb_tree_insert_node(fragtree, newfrag);
rb_tree_insert_node(fragtree, newfrag2);
return 0;
}
/* newfrag is bottom of this */
//dbg("newfrag is bottom of this\n");
this->size = newfrag->ofs - this->ofs;
rb_tree_insert_node(fragtree, newfrag);
} else {
/* newfrag start at same point */
//dbg("newfrag start at same point\n");
//TODO replace instead of remove and insert
rb_tree_remove_node(fragtree, this);
rb_tree_insert_node(fragtree, newfrag);
if (newfrag->ofs + newfrag->size >= this->ofs+this->size) {
chfs_obsolete_node_frag(chmp, this);
} else {
this->ofs += newfrag->size;
this->size -= newfrag->size;
rb_tree_insert_node(fragtree, this);
return 0;
}
}
/* OK, now we have newfrag added in the correct place in the tree, but
frag_next(newfrag) may be a fragment which is overlapped by it
*/
while ((this = frag_next(fragtree, newfrag)) && newfrag->ofs + newfrag->size >= this->ofs + this->size) {
rb_tree_remove_node(fragtree, this);
chfs_obsolete_node_frag(chmp, this);
}
if (!this || newfrag->ofs + newfrag->size == this->ofs)
return 0;
this->size = (this->ofs + this->size) - (newfrag->ofs + newfrag->size);
this->ofs = newfrag->ofs + newfrag->size;
if (this->node)
CHFS_MARK_REF_NORMAL(this->node->nref);
CHFS_MARK_REF_NORMAL(newfrag->node->nref);
return 0;
}
void
chfs_kill_fragtree(struct rb_tree *fragtree)
{
struct chfs_node_frag *this, *next;
//dbg("start\n");
this = (struct chfs_node_frag *)RB_TREE_MIN(fragtree);
while (this) {
//for (this = (struct chfs_node_frag *)RB_TREE_MIN(&fragtree); this != NULL; this = (struct chfs_node_frag *)rb_tree_iterate(&fragtree, &this->rb_node, RB_DIR_RIGHT)) {
next = frag_next(fragtree, this);
rb_tree_remove_node(fragtree, this);
chfs_free_node_frag(this);
//dbg("one frag killed\n");
this = next;
}
//dbg("end\n");
}
uint32_t
chfs_truncate_fragtree(struct chfs_mount *chmp,
struct rb_tree *fragtree, uint32_t size)
{
struct chfs_node_frag *frag;
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
dbg("truncate to size: %u\n", size);
frag = (struct chfs_node_frag *)rb_tree_find_node_leq(fragtree, &size);
/* Find the last frag before size and set its new size. */
if (frag && frag->ofs != size) {
if (frag->ofs + frag->size > size) {
frag->size = size - frag->ofs;
}
frag = frag_next(fragtree, frag);
}
/* Delete frags after new size. */
while (frag && frag->ofs >= size) {
struct chfs_node_frag *next = frag_next(fragtree, frag);
rb_tree_remove_node(fragtree, frag);
chfs_obsolete_node_frag(chmp, frag);
frag = next;
}
if (size == 0) {
return 0;
}
frag = frag_last(fragtree);
if (!frag) {
return 0;
}
if (frag->ofs + frag->size < size) {
return frag->ofs + frag->size;
}
/* FIXME Should we check the postion of the last node? (PAGE_CACHE size, etc.) */
if (frag->node && (frag->ofs & (PAGE_SIZE - 1)) == 0) {
frag->node->nref->nref_offset = CHFS_GET_OFS(frag->node->nref->nref_offset) | CHFS_PRISTINE_NODE_MASK;
}
return size;
}
void
chfs_obsolete_node_frag(struct chfs_mount *chmp,
struct chfs_node_frag *this)
{
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
if (this->node) {
this->node->frags--;
if (!this->node->frags) {
struct chfs_vnode_cache *vc = chfs_nref_to_vc(this->node->nref);
chfs_mark_node_obsolete(chmp, this->node->nref);
if (vc->dnode == this->node->nref) {
vc->dnode = this->node->nref->nref_next;
} else {
struct chfs_node_ref *tmp = vc->dnode;
while (tmp->nref_next != (struct chfs_node_ref*) vc
&& tmp->nref_next != this->node->nref) {
tmp = tmp->nref_next;
}
if (tmp->nref_next == this->node->nref) {
tmp->nref_next = this->node->nref->nref_next;
}
// FIXME should we free here the this->node->nref?
}
chfs_free_full_dnode(this->node);
} else {
CHFS_MARK_REF_NORMAL(this->node->nref);
}
}
chfs_free_node_frag(this);
}
int
chfs_add_full_dnode_to_inode(struct chfs_mount *chmp,
struct chfs_inode *ip,
struct chfs_full_dnode *fd)
{
int ret;
struct chfs_node_frag *newfrag;
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
if (unlikely(!fd->size))
return 0;
newfrag = new_fragment(fd, fd->ofs, fd->size);
if (unlikely(!newfrag))
return ENOMEM;
newfrag->node->frags = 1;
ret = chfs_add_frag_to_fragtree(chmp, &ip->fragtree, newfrag);
if (ret)
return ret;
if (newfrag->ofs & (PAGE_SIZE - 1)) {
struct chfs_node_frag *prev = frag_prev(&ip->fragtree, newfrag);
CHFS_MARK_REF_NORMAL(fd->nref);
if (prev->node)
CHFS_MARK_REF_NORMAL(prev->node->nref);
}
if ((newfrag->ofs+newfrag->size) & (PAGE_SIZE - 1)) {
struct chfs_node_frag *next = frag_next(&ip->fragtree, newfrag);
if (next) {
CHFS_MARK_REF_NORMAL(fd->nref);
if (next->node)
CHFS_MARK_REF_NORMAL(next->node->nref);
}
}
return 0;
}
/*
* -----------------------
* general node operations
* -----------------------
*/
/* get tmp nodes of an inode */
int
chfs_get_data_nodes(struct chfs_mount *chmp,
struct chfs_inode *ip,
struct chfs_readinode_info *rii)
{
uint32_t crc;
int err;
size_t len, retlen;
struct chfs_node_ref *nref;
struct chfs_flash_data_node *dnode;
struct chfs_tmp_dnode *td;
char* buf;
len = sizeof(struct chfs_flash_data_node);
buf = kmem_alloc(len, KM_SLEEP);
dnode = kmem_alloc(len, KM_SLEEP);
if (!dnode)
return ENOMEM;
nref = chfs_first_valid_data_ref(ip->chvc->dnode);
rii->highest_version = ip->chvc->highest_version;
while(nref && (struct chfs_vnode_cache *)nref != ip->chvc) {
err = chfs_read_leb(chmp, nref->nref_lnr, buf, CHFS_GET_OFS(nref->nref_offset), len, &retlen);
if (err || len != retlen)
goto out;
dnode = (struct chfs_flash_data_node*)buf;
//check header crc
crc = crc32(0, (uint8_t *)dnode, CHFS_NODE_HDR_SIZE - 4);
if (crc != le32toh(dnode->hdr_crc)) {
chfs_err("CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->hdr_crc));
goto cont;
}
//check header magic bitmask
if (le16toh(dnode->magic) != CHFS_FS_MAGIC_BITMASK) {
chfs_err("Wrong magic bitmask.\n");
goto cont;
}
//check node crc
crc = crc32(0, (uint8_t *)dnode, sizeof(*dnode) - 4);
if (crc != le32toh(dnode->node_crc)) {
chfs_err("Node CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->node_crc));
goto cont;
}
td = chfs_alloc_tmp_dnode();
if (!td) {
chfs_err("Can't allocate tmp dnode info.\n");
err = ENOMEM;
goto out;
}
/* We don't check data crc here, just add nodes to tmp frag tree, because
* we don't want to check nodes which have been overlapped by a new node
* with a higher version number.
*/
td->node = chfs_alloc_full_dnode();
if (!td->node) {
chfs_err("Can't allocate full dnode info.\n");
err = ENOMEM;
goto out_tmp_dnode;
}
td->version = le64toh(dnode->version);
td->node->ofs = le64toh(dnode->offset);
td->data_crc = le32toh(dnode->data_crc);
td->node->nref = nref;
td->node->size = le32toh(dnode->data_length);
td->overlapped = 0;
if (td->version > rii->highest_version) {
rii->highest_version = td->version;
}
err = chfs_add_tmp_dnode_to_tree(chmp, rii, td);
if (err)
goto out_full_dnode;
cont:
nref = chfs_first_valid_data_ref(nref->nref_next);
}
ip->chvc->highest_version = rii->highest_version;
return 0;
/* Exit points */
out_full_dnode:
chfs_free_full_dnode(td->node);
out_tmp_dnode:
chfs_free_tmp_dnode(td);
out:
kmem_free(buf, len);
kmem_free(dnode, len);
return err;
}
/* Build final normal fragtree from tdi tree. */
int
chfs_build_fragtree(struct chfs_mount *chmp, struct chfs_inode *ip,
struct chfs_readinode_info *rii)
{
struct chfs_tmp_dnode_info *pen, *last, *this;
struct rb_tree ver_tree; /* version tree */
uint64_t high_ver = 0;
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
rb_tree_init(&ver_tree, &tmp_node_rbtree_ops);
if (rii->mdata_tn) {
high_ver = rii->mdata_tn->tmpnode->version;
rii->latest_ref = rii->mdata_tn->tmpnode->node->nref;
}
pen = (struct chfs_tmp_dnode_info *)RB_TREE_MAX(&rii->tdi_root);
while((last = pen)) {
pen = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&rii->tdi_root, last, RB_DIR_LEFT);
rb_tree_remove_node(&rii->tdi_root, last);
rb_tree_insert_node(&ver_tree, last);
if (last->tmpnode->overlapped) {
if (pen)
continue;
last->tmpnode->overlapped = 0;
}
this = (struct chfs_tmp_dnode_info *)RB_TREE_MAX(&ver_tree);
while (this) {
struct chfs_tmp_dnode_info *vers_next;
int ret;
vers_next = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&ver_tree, this, RB_DIR_LEFT);
rb_tree_remove_node(&ver_tree, this);
struct chfs_tmp_dnode *tmp_td = this->tmpnode;
while (tmp_td) {
struct chfs_tmp_dnode *next_td = tmp_td->next;
if (chfs_check_td_node(chmp, tmp_td)) {
if (next_td) {
chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
} else {
break;
}
} else {
if (tmp_td->version > high_ver) {
high_ver = tmp_td->version;
dbg("highver: %llu\n", (unsigned long long)high_ver);
rii->latest_ref = tmp_td->node->nref;
}
ret = chfs_add_full_dnode_to_inode(chmp, ip, tmp_td->node);
if (ret) {
while (1) {
vers_next = (struct chfs_tmp_dnode_info *)rb_tree_iterate(&ver_tree, this, RB_DIR_LEFT);
while (tmp_td) {
next_td = tmp_td->next;
if (chfs_check_td_node(chmp, tmp_td) > 1) {
chfs_mark_node_obsolete(chmp,
tmp_td->node->nref);
}
chfs_free_full_dnode(tmp_td->node);
chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
chfs_free_tmp_dnode(tmp_td);
tmp_td = next_td;
}
chfs_free_tmp_dnode_info(this);
this = vers_next;
if (!this)
break;
rb_tree_remove_node(&ver_tree, vers_next);
}
return ret;
}
chfs_remove_tmp_dnode_from_tdi(this, tmp_td);
chfs_free_tmp_dnode(tmp_td);
}
tmp_td = next_td;
}
chfs_kill_tdi(chmp, this);
this = vers_next;
}
}
return 0;
}
int chfs_read_inode(struct chfs_mount *chmp, struct chfs_inode *ip)
{
struct chfs_vnode_cache *vc = ip->chvc;
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
retry:
/* XXX locking */
//mutex_enter(&chmp->chm_lock_vnocache);
switch (vc->state) {
case VNO_STATE_UNCHECKED:
case VNO_STATE_CHECKEDABSENT:
// chfs_vnode_cache_set_state(chmp, vc, VNO_STATE_READING);
vc->state = VNO_STATE_READING;
break;
case VNO_STATE_CHECKING:
case VNO_STATE_GC:
//sleep_on_spinunlock(&chmp->chm_lock_vnocache);
//KASSERT(!mutex_owned(&chmp->chm_lock_vnocache));
goto retry;
break;
case VNO_STATE_PRESENT:
case VNO_STATE_READING:
chfs_err("Reading inode #%llu in state %d!\n",
(unsigned long long)vc->vno, vc->state);
chfs_err("wants to read a nonexistent ino %llu\n",
(unsigned long long)vc->vno);
return ENOENT;
default:
panic("BUG() Bad vno cache state.");
}
//mutex_exit(&chmp->chm_lock_vnocache);
return chfs_read_inode_internal(chmp, ip);
}
/*
* Read inode frags.
* Firstly get tmp nodes,
* secondly build fragtree from those.
*/
int
chfs_read_inode_internal(struct chfs_mount *chmp, struct chfs_inode *ip)
{
int err;
size_t len, retlen;
char* buf;
struct chfs_readinode_info rii;
struct chfs_flash_vnode *fvnode;
KASSERT(mutex_owned(&chmp->chm_lock_mountfields));
len = sizeof(*fvnode);
memset(&rii, 0, sizeof(rii));
rb_tree_init(&rii.tdi_root, &tmp_node_rbtree_ops);
/* build up a temp node frag tree */
err = chfs_get_data_nodes(chmp, ip, &rii);
if (err) {
if (ip->chvc->state == VNO_STATE_READING)
ip->chvc->state = VNO_STATE_CHECKEDABSENT;
/* FIXME Should we kill fragtree or something here? */
return err;
}
rb_tree_init(&ip->fragtree, &frag_rbtree_ops);
/*
* build fragtree from temp nodes
*/
err = chfs_build_fragtree(chmp, ip, &rii);
if (err) {
if (ip->chvc->state == VNO_STATE_READING)
ip->chvc->state = VNO_STATE_CHECKEDABSENT;
/* FIXME Should we kill fragtree or something here? */
return err;
}
if (!rii.latest_ref) {
return 0;
}
buf = kmem_alloc(len, KM_SLEEP);
if (!buf)
return ENOMEM;
/*
* set inode size from chvc->v
*/
err = chfs_read_leb(chmp, ip->chvc->v->nref_lnr, buf, CHFS_GET_OFS(ip->chvc->v->nref_offset), len, &retlen);
if (err || retlen != len) {
kmem_free(buf, len);
return err?err:EIO;
}
fvnode = (struct chfs_flash_vnode*)buf;
dbg("set size from v: %u\n", fvnode->dn_size);
chfs_set_vnode_size(ITOV(ip), fvnode->dn_size);
uint32_t retsize = chfs_truncate_fragtree(chmp, &ip->fragtree, fvnode->dn_size);
if (retsize != fvnode->dn_size) {
dbg("Truncating failed. It is %u instead of %u\n", retsize, fvnode->dn_size);
}
kmem_free(buf, len);
if (ip->chvc->state == VNO_STATE_READING) {
ip->chvc->state = VNO_STATE_PRESENT;
}
return 0;
}
int
chfs_read_data(struct chfs_mount* chmp, struct vnode *vp,
struct buf *bp)
{
off_t ofs;
struct chfs_node_frag *frag;
char * buf;
int err = 0;
size_t size, retlen;
uint32_t crc;
struct chfs_inode *ip = VTOI(vp);
struct chfs_flash_data_node *dnode;
struct chfs_node_ref *nref;
memset(bp->b_data, 0, bp->b_bcount);
ofs = bp->b_blkno * PAGE_SIZE;
frag = (struct chfs_node_frag *)rb_tree_find_node_leq(&ip->fragtree, &ofs);
if (!frag || frag->ofs > ofs || frag->ofs + frag->size <= ofs) {
dbg("not found in frag tree\n");
return 0;
}
if (!frag->node) {
dbg("no node in frag\n");
return 0;
}
nref = frag->node->nref;
size = sizeof(*dnode) + frag->size;
buf = kmem_alloc(size, KM_SLEEP);
dbg("reading from lnr: %u, offset: %u, size: %zu\n", nref->nref_lnr, CHFS_GET_OFS(nref->nref_offset), size);
err = chfs_read_leb(chmp, nref->nref_lnr, buf, CHFS_GET_OFS(nref->nref_offset), size, &retlen);
if (err) {
chfs_err("error after reading: %d\n", err);
goto out;
}
if (retlen != size) {
chfs_err("retlen: %zu != size: %zu\n", retlen, size);
err = EIO;
goto out;
}
dnode = (struct chfs_flash_data_node *)buf;
crc = crc32(0, (uint8_t *)dnode, CHFS_NODE_HDR_SIZE - 4);
if (crc != le32toh(dnode->hdr_crc)) {
chfs_err("CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->hdr_crc));
err = EIO;
goto out;
}
//check header magic bitmask
if (le16toh(dnode->magic) != CHFS_FS_MAGIC_BITMASK) {
chfs_err("Wrong magic bitmask.\n");
err = EIO;
goto out;
}
//check node crc
crc = crc32(0, (uint8_t *)dnode, sizeof(*dnode) - 4);
if (crc != le32toh(dnode->node_crc)) {
chfs_err("Node CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->node_crc));
err = EIO;
goto out;
}
crc = crc32(0, (uint8_t *)dnode->data, dnode->data_length);
if (crc != le32toh(dnode->data_crc)) {
chfs_err("Data CRC check failed. calc: 0x%x orig: 0x%x\n", crc, le32toh(dnode->data_crc));
err = EIO;
goto out;
}
memcpy(bp->b_data, dnode->data, dnode->data_length);
bp->b_resid = 0;
out:
kmem_free(buf, size);
return err;
}