2005-05-03 17:35:52 +02:00
|
|
|
/* EXTERN should be extern except in table.c */
|
|
|
|
#ifdef _TABLE
|
|
|
|
#undef EXTERN
|
|
|
|
#define EXTERN
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Global variables. */
|
|
|
|
EXTERN struct mproc *mp; /* ptr to 'mproc' slot of current process */
|
|
|
|
EXTERN int procs_in_use; /* how many processes are marked as IN_USE */
|
No more intel/minix segments.
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.
There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.
No static pre-allocated memory sizes exist any more.
Changes to booting:
. The pre_init.c leaves the kernel and modules exactly as
they were left by the bootloader in physical memory
. The kernel starts running using physical addressing,
loaded at a fixed location given in its linker script by the
bootloader. All code and data in this phase are linked to
this fixed low location.
. It makes a bootstrap pagetable to map itself to a
fixed high location (also in linker script) and jumps to
the high address. All code and data then use this high addressing.
. All code/data symbols linked at the low addresses is prefixed by
an objcopy step with __k_unpaged_*, so that that code cannot
reference highly-linked symbols (which aren't valid yet) or vice
versa (symbols that aren't valid any more).
. The two addressing modes are separated in the linker script by
collecting the unpaged_*.o objects and linking them with low
addresses, and linking the rest high. Some objects are linked
twice, once low and once high.
. The bootstrap phase passes a lot of information (e.g. free memory
list, physical location of the modules, etc.) using the kinfo
struct.
. After this bootstrap the low-linked part is freed.
. The kernel maps in VM into the bootstrap page table so that VM can
begin executing. Its first job is to make page tables for all other
boot processes. So VM runs before RS, and RS gets a fully dynamic,
VM-managed address space. VM gets its privilege info from RS as usual
but that happens after RS starts running.
. Both the kernel loading VM and VM organizing boot processes happen
using the libexec logic. This removes the last reason for VM to
still know much about exec() and vm/exec.c is gone.
Further Implementation:
. All segments are based at 0 and have a 4 GB limit.
. The kernel is mapped in at the top of the virtual address
space so as not to constrain the user processes.
. Processes do not use segments from the LDT at all; there are
no segments in the LDT any more, so no LLDT is needed.
. The Minix segments T/D/S are gone and so none of the
user-space or in-kernel copy functions use them. The copy
functions use a process endpoint of NONE to realize it's
a physical address, virtual otherwise.
. The umap call only makes sense to translate a virtual address
to a physical address now.
. Segments-related calls like newmap and alloc_segments are gone.
. All segments-related translation in VM is gone (vir2map etc).
. Initialization in VM is simpler as no moving around is necessary.
. VM and all other boot processes can be linked wherever they wish
and will be mapped in at the right location by the kernel and VM
respectively.
Other changes:
. The multiboot code is less special: it does not use mb_print
for its diagnostics any more but uses printf() as normal, saving
the output into the diagnostics buffer, only printing to the
screen using the direct print functions if a panic() occurs.
. The multiboot code uses the flexible 'free memory map list'
style to receive the list of free memory if available.
. The kernel determines the memory layout of the processes to
a degree: it tells VM where the kernel starts and ends and
where the kernel wants the top of the process to be. VM then
uses this entire range, i.e. the stack is right at the top,
and mmap()ped bits of memory are placed below that downwards,
and the break grows upwards.
Other Consequences:
. Every process gets its own page table as address spaces
can't be separated any more by segments.
. As all segments are 0-based, there is no distinction between
virtual and linear addresses, nor between userspace and
kernel addresses.
. Less work is done when context switching, leading to a net
performance increase. (8% faster on my machine for 'make servers'.)
. The layout and configuration of the GDT makes sysenter and syscall
possible.
2012-05-07 16:03:35 +02:00
|
|
|
EXTERN char monitor_params[MULTIBOOT_PARAM_BUF_SIZE];
|
2005-05-03 17:35:52 +02:00
|
|
|
|
2006-05-19 14:19:37 +02:00
|
|
|
/* Misc.c */
|
|
|
|
extern struct utsname uts_val; /* uname info */
|
|
|
|
|
2005-05-03 17:35:52 +02:00
|
|
|
/* The parameters of the call are kept here. */
|
|
|
|
EXTERN message m_in; /* the incoming message itself is kept here. */
|
endpoint-aware conversion of servers.
'who', indicating caller number in pm and fs and some other servers, has
been removed in favour of 'who_e' (endpoint) and 'who_p' (proc nr.).
In both PM and FS, isokendpt() convert endpoints to process slot
numbers, returning OK if it was a valid and consistent endpoint number.
okendpt() does the same but panic()s if it doesn't succeed. (In PM,
this is pm_isok..)
pm and fs keep their own records of process endpoints in their proc tables,
which are needed to make kernel calls about those processes.
message field names have changed.
fs drivers are endpoints.
fs now doesn't try to get out of driver deadlock, as the protocol isn't
supposed to let that happen any more. (A warning is printed if ELOCKED
is detected though.)
fproc[].fp_task (indicating which driver the process is suspended on)
became an int.
PM and FS now get endpoint numbers of initial boot processes from the
kernel. These happen to be the same as the old proc numbers, to let
user processes reach them with the old numbers, but FS and PM don't know
that. All new processes after INIT, even after the generation number
wraps around, get endpoint numbers with generation 1 and higher, so
the first instances of the boot processes are the only processes ever
to have endpoint numbers in the old proc number range.
More return code checks of sys_* functions have been added.
IS has become endpoint-aware. Ditched the 'text' and 'data' fields
in the kernel dump (which show locations, not sizes, so aren't terribly
useful) in favour of the endpoint number. Proc number is still visible.
Some other dumps (e.g. dmap, rs) show endpoint numbers now too which got
the formatting changed.
PM reading segments using rw_seg() has changed - it uses other fields
in the message now instead of encoding the segment and process number and
fd in the fd field. For that it uses _read_pm() and _write_pm() which to
_taskcall()s directly in pm/misc.c.
PM now sys_exit()s itself on panic(), instead of sys_abort().
RS also talks in endpoints instead of process numbers.
2006-03-03 11:20:58 +01:00
|
|
|
EXTERN int who_p, who_e; /* caller's proc number, endpoint */
|
2005-05-03 17:35:52 +02:00
|
|
|
EXTERN int call_nr; /* system call number */
|
|
|
|
|
2012-03-24 16:16:34 +01:00
|
|
|
extern int(*call_vec[]) (void);
|
2005-05-03 17:35:52 +02:00
|
|
|
EXTERN sigset_t core_sset; /* which signals cause core images */
|
|
|
|
EXTERN sigset_t ign_sset; /* which signals are by default ignored */
|
2010-01-31 20:13:20 +01:00
|
|
|
EXTERN sigset_t noign_sset; /* which signals cannot be ignored */
|
2005-05-03 17:35:52 +02:00
|
|
|
|
2008-12-11 15:49:17 +01:00
|
|
|
EXTERN u32_t system_hz; /* System clock frequency. */
|
2006-05-11 16:57:23 +02:00
|
|
|
EXTERN int abort_flag;
|
2010-09-15 16:10:33 +02:00
|
|
|
|
|
|
|
EXTERN struct machine machine; /* machine info */
|
2010-09-15 16:11:03 +02:00
|
|
|
#ifdef CONFIG_SMP
|
2010-09-15 16:11:21 +02:00
|
|
|
EXTERN int cpu_proc[CONFIG_MAX_CPUS];
|
2010-09-15 16:11:03 +02:00
|
|
|
#endif
|