minix/minix/servers/rs/exec.c

172 lines
4.9 KiB
C
Raw Normal View History

#include "inc.h"
2010-12-10 10:27:56 +01:00
#include <assert.h>
#include <sys/exec.h>
2010-12-10 10:27:56 +01:00
#include <libexec.h>
#include <minix/param.h>
#include <machine/vmparam.h>
static int do_exec(int proc_e, char *exec, size_t exec_len, char *progname,
char *frame, int frame_len, vir_bytes ps_str);
static int exec_restart(int proc_e, int result, vir_bytes pc, vir_bytes ps_str);
2010-12-10 10:27:56 +01:00
static int read_seg(struct exec_info *execi, off_t off,
vir_bytes seg_addr, size_t seg_bytes);
2010-12-10 10:27:56 +01:00
/* Array of loaders for different object formats */
static struct exec_loaders {
libexec_exec_loadfunc_t load_object;
} const exec_loaders[] = {
{ libexec_load_elf },
2010-12-10 10:27:56 +01:00
{ NULL }
};
extern struct minix_kerninfo *_minix_kerninfo;
New RS and new signal handling for system processes. UPDATING INFO: 20100317: /usr/src/etc/system.conf updated to ignore default kernel calls: copy it (or merge it) to /etc/system.conf. The hello driver (/dev/hello) added to the distribution: # cd /usr/src/commands/scripts && make clean install # cd /dev && MAKEDEV hello KERNEL CHANGES: - Generic signal handling support. The kernel no longer assumes PM as a signal manager for every process. The signal manager of a given process can now be specified in its privilege slot. When a signal has to be delivered, the kernel performs the lookup and forwards the signal to the appropriate signal manager. PM is the default signal manager for user processes, RS is the default signal manager for system processes. To enable ptrace()ing for system processes, it is sufficient to change the default signal manager to PM. This will temporarily disable crash recovery, though. - sys_exit() is now split into sys_exit() (i.e. exit() for system processes, which generates a self-termination signal), and sys_clear() (i.e. used by PM to ask the kernel to clear a process slot when a process exits). - Added a new kernel call (i.e. sys_update()) to swap two process slots and implement live update. PM CHANGES: - Posix signal handling is no longer allowed for system processes. System signals are split into two fixed categories: termination and non-termination signals. When a non-termination signaled is processed, PM transforms the signal into an IPC message and delivers the message to the system process. When a termination signal is processed, PM terminates the process. - PM no longer assumes itself as the signal manager for system processes. It now makes sure that every system signal goes through the kernel before being actually processes. The kernel will then dispatch the signal to the appropriate signal manager which may or may not be PM. SYSLIB CHANGES: - Simplified SEF init and LU callbacks. - Added additional predefined SEF callbacks to debug crash recovery and live update. - Fixed a temporary ack in the SEF init protocol. SEF init reply is now completely synchronous. - Added SEF signal event type to provide a uniform interface for system processes to deal with signals. A sef_cb_signal_handler() callback is available for system processes to handle every received signal. A sef_cb_signal_manager() callback is used by signal managers to process system signals on behalf of the kernel. - Fixed a few bugs with memory mapping and DS. VM CHANGES: - Page faults and memory requests coming from the kernel are now implemented using signals. - Added a new VM call to swap two process slots and implement live update. - The call is used by RS at update time and in turn invokes the kernel call sys_update(). RS CHANGES: - RS has been reworked with a better functional decomposition. - Better kernel call masks. com.h now defines the set of very basic kernel calls every system service is allowed to use. This makes system.conf simpler and easier to maintain. In addition, this guarantees a higher level of isolation for system libraries that use one or more kernel calls internally (e.g. printf). - RS is the default signal manager for system processes. By default, RS intercepts every signal delivered to every system process. This makes crash recovery possible before bringing PM and friends in the loop. - RS now supports fast rollback when something goes wrong while initializing the new version during a live update. - Live update is now implemented by keeping the two versions side-by-side and swapping the process slots when the old version is ready to update. - Crash recovery is now implemented by keeping the two versions side-by-side and cleaning up the old version only when the recovery process is complete. DS CHANGES: - Fixed a bug when the process doing ds_publish() or ds_delete() is not known by DS. - Fixed the completely broken support for strings. String publishing is now implemented in the system library and simply wraps publishing of memory ranges. Ideally, we should adopt a similar approach for other data types as well. - Test suite fixed. DRIVER CHANGES: - The hello driver has been added to the Minix distribution to demonstrate basic live update and crash recovery functionalities. - Other drivers have been adapted to conform the new SEF interface.
2010-03-17 02:15:29 +01:00
int srv_execve(int proc_e, char *exec, size_t exec_len, char **argv,
char **envp)
{
size_t frame_size = 0; /* Size of the new initial stack. */
int argc = 0; /* Argument count. */
int envc = 0; /* Environment count */
char overflow = 0; /* No overflow yet. */
char *frame;
struct ps_strings *psp;
int vsp = 0; /* (virtual) Stack pointer in new address space. */
char *progname;
int r;
minix_stack_params(argv[0], argv, envp, &frame_size, &overflow,
&argc, &envc);
/* The party is off if there is an overflow. */
if (overflow) {
errno = E2BIG;
return -1;
}
/* Allocate space for the stack frame. */
if ((frame = (char *) sbrk(frame_size)) == (char *) -1) {
errno = E2BIG;
return -1;
}
minix_stack_fill(argv[0], argc, argv, envc, envp, frame_size, frame,
&vsp, &psp);
(progname=strrchr(argv[0], '/')) ? progname++ : (progname=argv[0]);
r = do_exec(proc_e, exec, exec_len, progname, frame, frame_size,
vsp + ((char *)psp - frame));
/* Failure, return the memory used for the frame and exit. */
(void) sbrk(-frame_size);
return r;
}
2010-12-10 10:27:56 +01:00
static int do_exec(int proc_e, char *exec, size_t exec_len, char *progname,
char *frame, int frame_len, vir_bytes ps_str)
2010-12-10 10:27:56 +01:00
{
int r;
vir_bytes vsp;
struct exec_info execi;
int i;
memset(&execi, 0, sizeof(execi));
execi.stack_high = _minix_kerninfo->kinfo->user_sp;
execi.stack_size = DEFAULT_STACK_LIMIT;
2010-12-10 10:27:56 +01:00
execi.proc_e = proc_e;
execi.hdr = exec;
execi.filesize = execi.hdr_len = exec_len;
2010-12-10 10:27:56 +01:00
strncpy(execi.progname, progname, PROC_NAME_LEN-1);
execi.progname[PROC_NAME_LEN-1] = '\0';
execi.frame_len = frame_len;
/* callback functions and data */
execi.copymem = read_seg;
execi.clearproc = libexec_clearproc_vm_procctl;
execi.clearmem = libexec_clear_sys_memset;
execi.allocmem_prealloc_cleared = libexec_alloc_mmap_prealloc_cleared;
execi.allocmem_prealloc_junk = libexec_alloc_mmap_prealloc_junk;
execi.allocmem_ondemand = libexec_alloc_mmap_ondemand;
2010-12-10 10:27:56 +01:00
for(i = 0; exec_loaders[i].load_object != NULL; i++) {
r = (*exec_loaders[i].load_object)(&execi);
/* Loaded successfully, so no need to try other loaders */
if (r == OK) break;
}
/* No exec loader could load the object */
if (r != OK) {
printf("RS: do_exec: loading error %d\n", r);
return r;
}
/* Inform PM */
if((r = libexec_pm_newexec(execi.proc_e, &execi)) != OK)
return r;
2010-12-10 10:27:56 +01:00
/* Patch up stack and copy it from RS to new core image. */
vsp = execi.stack_high - frame_len;
2010-12-10 10:27:56 +01:00
r = sys_datacopy(SELF, (vir_bytes) frame,
proc_e, (vir_bytes) vsp, (phys_bytes)frame_len);
if (r != OK) {
printf("do_exec: copying out new stack failed: %d\n", r);
exec_restart(proc_e, r, execi.pc, ps_str);
2010-12-10 10:27:56 +01:00
return r;
}
return exec_restart(proc_e, OK, execi.pc, ps_str);
2010-12-10 10:27:56 +01:00
}
/*===========================================================================*
* exec_restart *
*===========================================================================*/
static int exec_restart(int proc_e, int result, vir_bytes pc, vir_bytes ps_str)
{
int r;
message m;
memset(&m, 0, sizeof(m));
m.m_type = PM_EXEC_RESTART;
m.m_rs_pm_exec_restart.endpt = proc_e;
m.m_rs_pm_exec_restart.result = result;
m.m_rs_pm_exec_restart.pc = pc;
m.m_rs_pm_exec_restart.ps_str = ps_str;
r = ipc_sendrec(PM_PROC_NR, &m);
if (r != OK)
return r;
return m.m_type;
}
/*===========================================================================*
* read_seg *
*===========================================================================*/
2010-12-10 10:27:56 +01:00
static int read_seg(
struct exec_info *execi, /* various data needed for exec */
off_t off, /* offset in file */
vir_bytes seg_addr, /* address to load segment */
size_t seg_bytes /* how much is to be transferred? */
2010-12-10 10:27:56 +01:00
)
{
/*
* The byte count on read is usually smaller than the segment count, because
* a segment is padded out to a click multiple, and the data segment is only
* partially initialized.
*/
int r;
if (off+seg_bytes > execi->hdr_len) return ENOEXEC;
make vfs & filesystems use failable copying Change the kernel to add features to vircopy and safecopies so that transparent copy fixing won't happen to avoid deadlocks, and such copies fail with EFAULT. Transparently making copying work from filesystems (as normally done by the kernel & VM when copying fails because of missing/readonly memory) is problematic as it can happen that, for file-mapped ranges, that that same filesystem that is blocked on the copy request is needed to satisfy the memory range, leading to deadlock. Dito for VFS itself, if done with a blocking call. This change makes the copying done from a filesystem fail in such cases with EFAULT by VFS adding the CPF_TRY flag to the grants. If a FS call fails with EFAULT, VFS will then request the range to be made available to VM after the FS is unblocked, allowing it to be used to satisfy the range if need be in another VFS thread. Similarly, for datacopies that VFS itself does, it uses the failable vircopy variant and callers use a wrapper that talk to VM if necessary to get the copy to work. . kernel: add CPF_TRY flag to safecopies . kernel: only request writable ranges to VM for the target buffer when copying fails . do copying in VFS TRY-first . some fixes in VM to build SANITYCHECK mode . add regression test for the cases where - a FS system call needs memory mapped in a process that the FS itself must map. - such a range covers more than one file-mapped region. . add 'try' mode to vircopy, physcopy . add flags field to copy kernel call messages . if CP_FLAG_TRY is set, do not transparently try to fix memory ranges . for use by VFS when accessing user buffers to avoid deadlock . remove some obsolete backwards compatability assignments . VFS: let thread scheduling work for VM requests too Allows VFS to make calls to VM while suspending and resuming the currently running thread. Does currently not work for the main thread. . VM: add fix memory range call for use by VFS Change-Id: I295794269cea51a3163519a9cfe5901301d90b32
2014-01-16 14:22:13 +01:00
if((r= sys_datacopy(SELF, ((vir_bytes)execi->hdr)+off,
execi->proc_e, seg_addr, seg_bytes)) != OK) {
printf("RS: exec read_seg: copy 0x%x bytes into %i at 0x%08lx failed: %i\n",
(int) seg_bytes, execi->proc_e, seg_addr, r);
}
return r;
}