
Getting Started with Embedded
Development using Toradex SoM

• Often wrong way of doing things

• Is it reproducible?

• Use of distributions for Embedded?

2

Maker Board – Right way?

• Open source

• Huge number of contributors driving it forward

• Probability of drivers being available is very high

• Large number of user space software packages

Why Linux?

Where is Linux used?
• SpaceX
• International Space Station (ISS)
• Android
• Servers
• High Performance Computing Clusters
• High Performance Supercars
• Networking Equipment
• Embedded

• How is it different from microcontrollers?

● It’s an operating system!

● Monolithic kernel

● Unix philosophy

● Customisable to no end (subject to?)

● Designed to be general purpose and maximise throughput

The Linux approach to Embedded

Is Linux right for you?
• Team skills? Background?

• Does lack of GUI tools pose a hindrance?

• Driver requirements?

• Latency requirements if any?

• Do you require a “non-embedded” language? Python? Nodejs? Java?

• Software component requirements?

• Understand the source of software components?

Before starting Linux?
• Install Linux (Not in VM!)

• Get well versed with command line

• What is cross compilation? Host? Target?

• Bootloader? Kernel? Rootfs?

• Deploying application to a target?

• Buildroot
– Focuses on simplicity. Small and simple.
– Special cases are handled in extension
– Minimal by default making builds fast
– Output is a root filesystem image and nothing more

• OpenEmbedded
– Versatile and supports a wide range of embedded systems.
– Defines builds in recipes and supports concept of layers (recipe

collections)
– Output is “a distribution”. Package feeds, package management,

generation full disk images and SDK

8

Embedded Build Systems

Recommended Development Flow?
• OpenEmbedded SDK

– Toolchain (compilers, debugger, assembler)
– Header files
– Libraries

• Eclipse setup

• Pinmultiplexing in kernel and u-boot if required

• Application development

• Custom image generation with OpenEmbedded

10

GPIO

• How does it differ from microcontrollers?
● Method of access?
● Interrupts handled?
● Multiplexing?

• sysfs access (/sys/class/gpio)

• libsoc

• Drivers live in: drivers/gpio/

● i2cdev interface
● open
● read
● write
● close

• libsoc

• Drivers live in: drivers/i2c/busses

11

I2C

12

SPI

• spidev

• libsoc

• Drivers live in: drivers/spi

13

PWM

• /sys/class/pwm

• libsoc

• Drivers live in: drivers/pwm

14

Industrial IO subsystem

• Drivers live in: drivers/iio ; drivers/staging/iio

• /sys/bus/iio

● ADC

● DAC

● Frquency

● Gyro

● Humidity

15

Linux Workshop Codes

 Github repo: https://github.com/SanchayanMaity/LinuxWorkshop.git

16

The Hardware

17

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

